【期末专项培优】图形的运动(三)高频易错提高卷(含解析)-2024-2025学年五年级下册数学人教版

文档属性

名称 【期末专项培优】图形的运动(三)高频易错提高卷(含解析)-2024-2025学年五年级下册数学人教版
格式 docx
文件大小 2.1MB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2025-05-09 20:26:46

图片预览

文档简介

图形的运动(三)
一.确定轴对称图形的对称轴条数及位置(共41小题)
1.下面各图中,只有两条对称轴的图形有(  )个。
A.1 B.2 C.3
2.下面的图形中,只有一条对称轴的是(  )
A. B. C.
3.下面图形中对称轴最多的是(  )
A. B.
C. D.
4.环形的对称轴有(  )
A.一条 B.2条 C.无数条
5.等边三角形、正方形、等腰梯形、正六边形这四种图形,对称轴条数最多的图形是(  )
A.正方形 B.正六边形
C.等边三角形
6.以虚线为对称轴,画出“”的轴对称图形,正确的是(  )
A. B.
C. D.
7.下面图形中,对称轴最多的是(  )
A. B.
C. D.
8.下面图形中对称轴最多的是(  )
A. B.
C. D.
9.下列图形中对称轴条数最多的是(  )
A. B. C. D.
10.如图图形中对称轴条数相同是(  )
① ② ③ ④
A.①④ B.②④ C.②③ D.②③④
11.下列组合图形中,对称轴数量最少的是(  )
A. B. C. D.
12.下面轴对称图形中,对称轴最少的是(  )
A.等腰三角形 B.正方形
C.圆
13.下列图形中对称轴数量最少的是(  )
A. B.
C. D.
14.下列图形中,对称轴条数最多的图形是(  )
A. B. C.
15.圆有     条对称轴,长方形有     条对称轴,等边三角形有     条对称轴,等腰梯形有     条对称轴。
16.把圆沿着它的一条直径对折,直径两边的部分都能重合,所以圆是轴对称图形,它有     条对称轴。半圆有     条对称轴。
17.等边三角形有     条对称轴,圆有     条对称轴。
18.圆的对称轴有     条。
19.正方形有     条对称轴,圆有     条对称轴。
20.长方形有     条对称轴,圆有     条对称轴,正方形有     条对称轴.
21.等边三角形有     条对称轴,圆有     条对称轴。
22.每个轴对称图形至少有    条对称轴.
23.一个三角形最多有     条对称轴.
24.圆有     条对称轴,长方形有     条对称轴。
25.等边三角形有     条对称轴,圆有     条对称轴。
26.等边三角形有     条对称轴,正方形有     条对称轴,等腰梯形有     条对称轴。
27.等腰梯形有    条对称轴,等边三角形有    条对称轴.
28.如图有     条对称轴;如果圆的半径是5厘米,长方形的周长是     厘米。
29.圆有无数条对称轴。    
30.长方形有4条对称轴。    
31.等边三角形是轴对称图形,有三条对称轴。    
32.有4条对称轴。    
33.圆有两条对称轴。    
34.在长方形、正方形、等边三角形和等腰梯形中,对称轴最多的是正方形。    
35.扇形只有一条对称轴,圆有无数条对称轴。    
36.圆有无数条对称轴。    
37.圆形的对称轴有无数条。    
38.有2条对称轴。    
39.当一个大圆和一个小圆组合在一起时,会有多少条对称轴?有几种情况?把你的想法展示出来。
40.画出下面图形的对称轴。
41.按要求画一画。
(1)画出下面图形的对称轴。
(2)以虚线为对称轴,画出下面图形的轴对称图形。
二.将简单图形平移或旋转一定的度数(共1小题)
42.(1)画出长方形以O点为中心按时针方向旋转90度的图形。
(2)画出长方形的轴对称图形。
三.运用平移、对称和旋转设计图案(共2小题)
43.请你根据给出的图形,利用图形的运动设计一幅美丽的图案。
44.李师傅计划用2.5米长的铁丝做一个如图所示的框架.你认为够不够?
图形的运动(三)
参考答案与试题解析
一.确定轴对称图形的对称轴条数及位置(共41小题)
1.下面各图中,只有两条对称轴的图形有(  )个。
A.1 B.2 C.3
【答案】C
【分析】把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,这条直线就是它的对称轴,据此解答即可。
【解答】解:根据图示,第一、三、四个图都只有两条对称轴,所以只有两条对称轴的有3个。
故选:C。
【点评】本题考查了轴对称图形知识,结合题意分析解答即可。
2.下面的图形中,只有一条对称轴的是(  )
A. B. C.
【答案】B
【分析】一个图形沿一条直线对折,直线两旁的部分能够完全重合,这个图形就是轴对称图形,这条直线就是它的对称轴;由此即可判断轴对称图形的对称轴的条数。
【解答】解:A、有2条对称轴,不符合题意;
B、有1条对称轴,符合题意;
C、有2条对称轴,不符合题意。
故选:B。
【点评】此题考查了利用轴对称图形的定义判断轴对称图形的对称轴条数的方法。
3.下面图形中对称轴最多的是(  )
A. B.
C. D.
【答案】C
【分析】如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫作轴对称图形,这条直线叫作对称轴,据此数出它们的对称轴,即可选择。
【解答】解:上面图形中,对称轴条数最少的是,有3条对称轴;有2条对称轴,有1条对称轴,有4条对称轴。
故选:C。
【点评】此题考查了利用轴对称图形的定义确定轴对称图形的对称轴的条数的灵活运用。
4.环形的对称轴有(  )
A.一条 B.2条 C.无数条
【答案】C
【分析】轴对称图形定义,如果一个图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫作轴对称图形,折痕所在的直线叫作对称轴,圆有无数条对称轴,即过每条直径的直线。
【解答】解:环形的对称轴有无数条。
故选:C。
【点评】此题考查了确定轴对称图形对称轴的条数及位置。关键是掌握轴对称图形的意义,结合相关图形的特征。
5.等边三角形、正方形、等腰梯形、正六边形这四种图形,对称轴条数最多的图形是(  )
A.正方形 B.正六边形
C.等边三角形
【答案】B
【分析】依据轴对称图形的意义,即在平面内,如果一个图形沿一条直线对折,直线两旁的部分能够完全重合,这样的图形叫作轴对称图形,这条直线就是其对称轴,由此解答即可。
【解答】解:等边三角形有3条对称轴;正方形有4条对称轴;等腰梯形有1条对称轴;正六边形有6条对称轴;这四种图形,对称轴条数最多的图形是正六边形。
故选:B。
【点评】此题主要考查轴对称图形的意义及特征及其对称轴的条数。
6.以虚线为对称轴,画出“”的轴对称图形,正确的是(  )
A. B.
C. D.
【答案】D
【分析】把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线 (成轴)对称,这条直线就是它的对称轴。据此解答即可。
【解答】解:以虚线为对称轴,画出“”的轴对称图形,正确的是。
故选:D。
【点评】本题考查了轴对称图形知识,结合题意分析解答即可。
7.下面图形中,对称轴最多的是(  )
A. B.
C. D.
【答案】C
【分析】在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这样的图形叫轴对称图形,这条直线就是其对称轴;据此解答即可。
【解答】解:上面图形中对称轴最多是,有3条;有2条;有2条;有1条。
故选:C。
【点评】此题考查了轴对称的意义及在实际当中的运用,结合题意分析解答即可。
8.下面图形中对称轴最多的是(  )
A. B.
C. D.
【答案】B
【分析】在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这样的图形叫轴对称图形,这条直线就是其对称轴;据此解答即可。
【解答】解:上面图形中对称轴最多的是,有无数条。
故选:B。
【点评】此题考查了轴对称的意义及在实际当中的运用,结合题意分析解答即可。
9.下列图形中对称轴条数最多的是(  )
A. B. C. D.
【答案】B
【分析】依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫作轴对称图形,这条直线就是其对称轴,据此解答即可。
【解答】解:有4条对称轴;有6条对称轴;有4条对称轴;有3条对称轴。
故选:B。
【点评】本题考查了轴对称图形知识,结合题意分析解答即可。
10.如图图形中对称轴条数相同是(  )
① ② ③ ④
A.①④ B.②④ C.②③ D.②③④
【答案】B
【分析】把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,这条直线就是它的对称轴,据此解答即可。
【解答】解:①有3条对称轴;
②有2条对称轴;
③有1条对称轴;
④有2条对称轴。
答:图形中对称轴条数相同是②④。
故选:B。
【点评】本题考查了轴对称图形知识,结合题意分析解答即可。
11.下列组合图形中,对称轴数量最少的是(  )
A. B. C. D.
【答案】A
【分析】轴对称:在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这样的图形叫作轴对称图形,这条直线就是其对称轴。
【解答】解:上列组合图形中,对称轴数量最多的是有无数条,最少,只有1条。
故选:A。
【点评】此题考查了轴对称的意义及在实际当中的运用。
12.下面轴对称图形中,对称轴最少的是(  )
A.等腰三角形 B.正方形
C.圆
【答案】A
【分析】依据轴对称图形的定义及特征即可作答:一个图形沿某条直线对折,直线两旁的部分能够完全重合,这个图形就是轴对称图形,这条直线就是这个图形的一条对称轴。
【解答】解:等腰三角形有1条对称轴,正方形有4条对称轴,圆有无数条对称轴,所以对称轴最少的是等腰三角形。
故选:A。
【点评】此题考查了利用轴对称图形的定义确定轴对称图形的对称轴的条数的灵活应用。
13.下列图形中对称轴数量最少的是(  )
A. B.
C. D.
【答案】A
【分析】轴对称:在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这样的图形叫作轴对称图形,这条直线就是其对称轴。据此数出对称轴即可。
【解答】解:只有1条对称轴,有2条对称轴,有4条对称轴,有3条对称轴。
故选:A。
【点评】此题考查了轴对称的意义及在实际当中的运用。
14.下列图形中,对称轴条数最多的图形是(  )
A. B. C.
【答案】A
【分析】一个图形沿一条直线对折,直线两旁的部分能够完全重合,那么这个图形就是轴对称图形,这条直线就是这个图形的一条对称轴,由此即可确定这个图形的对称轴的条数及位置。
【解答】解:A、正方形有4条对称轴。
B、长方形有2条对称轴。
C、等腰三角形有1条对称轴。
故选:A。
【点评】此题考查了利用轴对称图形的定义判断轴对称图形的对称轴条数及位置的灵活应用。
15.圆有  无数  条对称轴,长方形有  2  条对称轴,等边三角形有  3  条对称轴,等腰梯形有  1  条对称轴。
【答案】无数,2,3,1。
【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫作轴对称图形,这条直线叫作对称轴;据此解答即可。
【解答】解:圆有无数条对称轴,长方形有2条对称轴,等边三角形有3条对称轴,等腰梯形有1条对称轴。
故答案为:无数,2,3,1。
【点评】此题考查了轴对称图形的定义,要求学生能够正确找出轴对称图形的对称轴。
16.把圆沿着它的一条直径对折,直径两边的部分都能重合,所以圆是轴对称图形,它有  无数  条对称轴。半圆有  1  条对称轴。
【答案】无数,1。
【分析】一个图形沿一条直线对折,直线两旁的部分能够完全重合,那么这个图形就是轴对称图形,这条直线就是这个图形的对称轴,由此即可解答问题。
【解答】解:把圆沿着它的一条直径对折,直径两边的部分都能重合,所以圆是轴对称图形,它有无数条对称轴。半圆有1条对称轴。
故答案为:无数,1。
【点评】这是一道关于轴对称图形的题目,熟练掌握轴对称图形的定义是解题的关键。
17.等边三角形有  3  条对称轴,圆有  无数  条对称轴。
【答案】3,无数。
【分析】依据轴对称图形的意义,即在同一个平面内,一个图形沿某条直线对折,对折后的两部分都能完全重合,则这个图形就是轴对称图形,这条直线就是其对称轴,据此解答即可。
【解答】解:等边三角形有3条对称轴,圆有无数条对称轴。
故答案为:3,无数。
【点评】本题是考查轴对称图形的意义及对称轴的确定。
18.圆的对称轴有  无数  条。
【答案】无数。
【分析】如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形;折痕所在的这条直线叫作对称轴,所以对称轴是条直线。
【解答】解:圆的对称轴有无数条。
故答案为:无数。
【点评】此题主要考查轴对称图形的意义的灵活运用。
19.正方形有  4  条对称轴,圆有  无数  条对称轴。
【答案】4,无数。
【分析】依据轴对称图形的定义及特征即可作答:一个图形沿某条直线对折,直线两旁的部分能够完全重合,这个图形就是轴对称图形,这条直线就是这个图形的一条对称轴。
【解答】解:正方形有4条对称轴,圆有无数条对称轴。
故答案为:4,无数。
【点评】判断是不是轴对称图形的关键是寻找对称轴,图形折叠后直线两旁的部分能够互相重合。
20.长方形有  2  条对称轴,圆有  无数  条对称轴,正方形有  4  条对称轴.
【答案】见试题解答内容
【分析】依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,据此即可进行解答.
【解答】解:根据题干分析可得:长方形有 2条对称轴,圆有 无数条对称轴,正方形有 4条对称轴.
故答案为:2;无数;4.
【点评】解答此题的主要依据是:轴对称图形的定义及其对称轴的条数.
21.等边三角形有  3  条对称轴,圆有  无数  条对称轴。
【答案】3,无数。
【分析】依据轴对称图形的意义,即在同一个平面内,一个图形沿某条直线对折,对折后的两部分都能完全重合,则这个图形就是轴对称图形,这条直线就是其对称轴,据此解答即可。
【解答】解:等边三角形有3条对称轴,圆有无数条对称轴。
故答案为:3,无数。
【点评】本题是考查轴对称图形的意义及对称轴的确定。
22.每个轴对称图形至少有 1  条对称轴.
【答案】见试题解答内容
【分析】根据对称轴的定义:如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.
【解答】解:如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.
所以轴对称图形至少有一条对称轴.
故答案为:1.
【点评】解答此题的主要依据是:轴对称图形的意义及特征.
23.一个三角形最多有  3  条对称轴.
【答案】见试题解答内容
【分析】根据轴对称图形的依据轴对称图形的意义,即在同一个平面内,一个图形沿某条直线对折,对折后的两部分都能完全重合,则这个图形就是轴对称图形,这条直线就是其对称轴,据此解答即可.
【解答】解:根据轴对称图形的感念可知,普通三角形不是轴对称图形,等腰三角形有1条对称轴,等边三角形有3条对称轴,所以一个三角形最多有 3条对称轴;
故答案为:3.
【点评】此题考查了根据轴对称图形定义,确定轴对称图形的对称轴的条数.
24.圆有  无数  条对称轴,长方形有  2  条对称轴。
【答案】无数,2。
【分析】依据轴对称图形的意义,即在同一个平面内,一个图形沿某条直线对折,对折后的两部分都能完全重合,则这个图形就是轴对称图形,这条直线就是其对称轴,据此解答即可。
【解答】解:圆有无数条对称轴,长方形有2条对称轴。
故答案为:无数,2。
【点评】本题是考查轴对称图形的意义及对称轴的确定。
25.等边三角形有  3  条对称轴,圆有  无数  条对称轴。
【答案】故答案为:3,无数。
【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫作轴对称图形,这条直线叫对称轴;据此解答即可。
【解答】解:等边三角形有3条对称轴,圆有无数条对称轴。
故答案为:3,无数。
【点评】此题考查了轴对称图形的定义,要求学生能够正确找出轴对称图形的对称轴。
26.等边三角形有  3  条对称轴,正方形有  4  条对称轴,等腰梯形有  1  条对称轴。
【答案】3,4,1。
【分析】依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线对折,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,据此即可进行判断。
【解答】解:等边三角形有3条对称轴,正方形有4条对称轴,等腰梯形有1条对称轴。
故答案为:3,4,1。
【点评】解答此题的主要依据是:轴对称图形的定义及其对称轴的条数。
27.等腰梯形有 1  条对称轴,等边三角形有 3  条对称轴.
【答案】见试题解答内容
【分析】根据轴对称图形的定义:如果一个图形沿一条直线对折后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴;由此分别找出这2个图形的所有对称轴,即可解决问题.
【解答】解:根据题干分析可得,等腰梯形有1条对称轴,等边三角形有3条对称轴.
故答案为:1;3.
【点评】根据轴对称图形的定义得出图形的对称轴的条数,然后填空则可.
28.如图有  2  条对称轴;如果圆的半径是5厘米,长方形的周长是  60  厘米。
【答案】2,60。
【分析】观察可得图中有2条对称轴,如果圆的半径是5厘米,根据圆的周长=2πr,每个圆的周长是2πr=2×3.14×5=31.4(厘米),长方形的长是4个圆的半径,即4×5=20(厘米),宽是2个半径,是2×5=10(厘米),那么根据长方形周长=(长+宽)×2,长方形的周长为(20+10)×2=60(厘米)。
【解答】解:2×3.14×5=31.4(厘米)
(5×4+2×5)×2
=30×2
=60(厘米)
答:图中有2条对称轴;如果圆的半径是5厘米,长方形的周长是60厘米。
故答案为:2,60。
【点评】此题主要考查圆、长方形周长公式的应用,解答此类的题要特别注意单位。
29.圆有无数条对称轴。  √ 
【答案】√
【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫轴对称图形,这条直线叫对称轴;依次进行判断即可。
【解答】解:分析可知,圆有无数条对称轴。所以原题说法正确。
故答案为:√。
【点评】此题考查了轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合。
30.长方形有4条对称轴。  × 
【答案】×
【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫作轴对称图形,这条直线叫作对称轴;依次进行判断即可。
【解答】解:根据轴对称图形的意义可知:长方形有2条对称轴,所以原题说法错误。
故答案为:×。
【点评】此题考查了轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合。
31.等边三角形是轴对称图形,有三条对称轴。  √ 
【答案】√
【分析】把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图形关于这条直线对称,据此判断即可。
【解答】解:如图所示:
等边三角形是轴对称图形,有三条对称轴。所以原题说法正确。
故答案为:√。
【点评】本题考查了轴对称图形知识,结合题意分析解答即可。
32.有4条对称轴。  √ 
【答案】√
【分析】把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,这条直线就是它的对称轴,据此解答即可。
【解答】解:如图:
有4条对称轴。所以原题说法正确。
故答案为:√。
【点评】此题考查了轴对称图形的定义,要求学生能够正确找出轴对称图形的对称轴,结合题意分析解答即可。
33.圆有两条对称轴。  × 
【答案】×。
【分析】根据轴对称图形的特征,圆的任何一条直径所在的直线都是圆的对称轴,因为圆有无数条直径,所以圆有无数条对称轴。
【解答】解:圆有无数条对称轴,所以原题说法错误。
故答案为:×。
【点评】本题是考查圆的特征、轴对称图形的特征,属于基础知识.注意,不要说成圆的直径是圆的对称轴,因为对称轴是直线,所以应说成直径所在的直线是圆的对称轴。
34.在长方形、正方形、等边三角形和等腰梯形中,对称轴最多的是正方形。  √ 
【答案】√
【分析】依据轴对称图形的意义,即:在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴;据此逐个图形分析即可判断。
【解答】解:长方形有2条对称轴;正方形有4条对称轴;等边三角形有3条对称轴;等腰梯形有1条对称轴;所以长方形、正方形、等边三角形和等腰梯形中,对称轴最多的是正方形。原题说法正确。
故答案为:√。
【点评】此题主要考查轴对称图形的意义及其对称轴的条数。
35.扇形只有一条对称轴,圆有无数条对称轴。  √ 
【答案】√
【分析】把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线 成轴对称,这条直线就是它的对称轴,据此解答即可。
【解答】解:分析可知,扇形只有一条对称轴,圆有无数条对称轴。所以原题说法正确。
故答案为:√。
【点评】本题考查了轴对称图形知识,结合题意分析解答即可。
36.圆有无数条对称轴。  √ 
【答案】√
【分析】把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线 成轴对称,这条直线就是它的对称轴,据此判断即可。
【解答】解:圆有无数条对称轴。所以原题说法正确。
故答案为:√。
【点评】本题考查了轴对称图形知识,结合题意分析解答即可。
37.圆形的对称轴有无数条。  √ 
【答案】√。
【分析】依据轴对称图形的定义:一个图形沿一条直线对折,对折后的两部分都能完全重合,这条直线就是对称轴,即可作答。
【解答】解:圆形的对称轴有无数条,说法正确。
故答案为:√。
【点评】此题主要考查如何确定轴对称图形的对称轴条数及位置。
38.有2条对称轴。  × 
【答案】×
【分析】在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴。
【解答】解:有4条对称轴,故原题错误。
故答案为:×。
【点评】解答此题的主要依据是:轴对称图形的概念及特征。
39.当一个大圆和一个小圆组合在一起时,会有多少条对称轴?有几种情况?把你的想法展示出来。
【答案】
(图形不唯一)
无数条或一条,两种情况。
【分析】若大小两个圆是同心圆,有无数条对称轴;若大小两个圆不是同心圆,有一条对称轴,据此解答。
【解答】解:若大小两个圆是同心圆,有无数条对称轴(如下图):
若大小两个圆不是同心圆,有一条对称轴(如下图):
(图形不唯一)
答:若大小两个圆是同心圆,有无数条对称轴;若大小两个圆不是同心圆,有一条对称轴,共有两种情况。
【点评】解答本题需熟练掌握对称轴的意义和画法,灵活解答。
40.画出下面图形的对称轴。
【答案】
【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此解答即可。
【解答】解:
【点评】判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可完全重合。
41.按要求画一画。
(1)画出下面图形的对称轴。
(2)以虚线为对称轴,画出下面图形的轴对称图形。
【答案】解:(1)
(2)
【分析】(1)根据对称轴的定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线 (成轴)对称,这条直线就是它的对称轴。
(2)根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴,在对称轴的右边画出左图的关键对称点,依次连接即可画出这个图形的轴对称图形。
【解答】解:(1)
(2)
【点评】求作一个几何图形关于某条直线对称的图形,可以转化为求作这个图形上的特征点关于这条直线对称的点,然后依次连接各对称点即可。
二.将简单图形平移或旋转一定的度数(共1小题)
42.(1)画出长方形以O点为中心按时针方向旋转90度的图形。
(2)画出长方形的轴对称图形。
【答案】
【分析】根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴,在对称轴(虚线)的下边画出长方形的关键对称点,依次连接即可画出长方形的对称图形。
【解答】解:根据题意画图如下:
【点评】作轴对称图形,对称点位置的确定是关键。
三.运用平移、对称和旋转设计图案(共2小题)
43.请你根据给出的图形,利用图形的运动设计一幅美丽的图案。
【答案】(答案不唯一)
【分析】把给出的图形进行旋转即可得到一幅美丽的图案。答案不唯一。
【解答】解:
(答案不唯一)
【点评】本题考查旋转变换作图,注意做这类题的关键是找对应点。
44.李师傅计划用2.5米长的铁丝做一个如图所示的框架.你认为够不够?
【答案】见试题解答内容
【分析】根据题意,把图形0.38m的边平移到与0.22m相平,短竖边平移到0.27m的边上面,就变成了一个长是0.63m,宽是0.22+0.38=0.6m的长方形,根据长方形的周长公式,求出周长,然后再与2.5米进行比较解答.
【解答】解:经过平移可得:
(0.22+0.38+0.63)×2
=1.23×2
=2.46(米)
2.46<2.5
答:用2.5米长的铁丝够.
【点评】本题关键是把不规则的图形通过平移变成规则图形,然后再求出周长进行比较解答.
21世纪教育网(www.21cnjy.com)