2025年九年级中考数学三轮冲刺训练圆中线段的计算与证明综合训练(含解析)

文档属性

名称 2025年九年级中考数学三轮冲刺训练圆中线段的计算与证明综合训练(含解析)
格式 docx
文件大小 330.1KB
资源类型 试卷
版本资源 通用版
科目 数学
更新时间 2025-05-11 12:42:22

图片预览

文档简介

中小学教育资源及组卷应用平台
2025年九年级中考数学三轮冲刺训练圆中线段的计算与证明综合训练
1.如图,AB是⊙O的直径,AC为弦,∠BAC的平分线交⊙O于点D,过点D的切线交AC的延长线于点E.
求证:(1)DE⊥AE;
(2)AE+CE=AB.
2.如图,AB是⊙O的直径,ED切⊙O于点C,AD交⊙O于点F,AC平分∠BAD,连接BF.
(1)求证:AD⊥ED;
(2)若CD=4,AF=2,求⊙O的半径.
3.如图,BE是O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点C.
(1)若∠ADE=25°,求∠C的度数;
(2)若AB=AC,CE=2,求⊙O半径的长.
4.如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.
(1)求证:OP⊥CD;
(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.
5.如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.
(1)求证:CE=EF;
(2)连接AF并延长,交⊙O于点G.填空:
①当∠D的度数为   时,四边形ECFG为菱形;
②当∠D的度数为   时,四边形ECOG为正方形.
6.如图,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD为直径作⊙O,分别与AC、BC交于点M、N.
(1)过点N作⊙O的切线NE与AB相交于点E,求证:NE⊥AB;
(2)连接MD,求证:MD=NB.
7.如图,AB是⊙O的直径,点C为⊙O上一点,CN为⊙O的切线,OM⊥AB于点O,分别交AC、CN于D、M两点.
(1)求证:MD=MC;
(2)若⊙O的半径为5,AC=4,求MC的长.
8.如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的切线交OP于点C.
(1)求证:∠CBP=∠ADB.
(2)若OA=2,AB=1,求线段BP的长.
9.如图,AB是⊙O的直径,直线CD与⊙O相切于点C,且与AB的延长线交于点E,点C是的中点.
(1)求证:AD⊥CD;
(2)若∠CAD=30°,⊙O的半径为3,一只蚂蚁从点B出发,沿着BE﹣EC﹣爬回至点B,求蚂蚁爬过的路程(π≈3.14,≈1.73,结果保留一位小数).
10.如图,已知三角形ABC的边AB是⊙O的切线,切点为B.AC经过圆心O并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E.
(1)求证:CB平分∠ACE;
(2)若BE=3,CE=4,求⊙O的半径.
11.如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.
(1)求证:AE=ED;
(2)若AB=10,∠CBD=36°,求的长.
12.如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE⊥AB,垂足为E,DE的延长线交此圆于点F.BG⊥AD,垂足为G,BG交DE于点H,DC,FB的延长线交于点P,且PC=PB.
(1)求证:BG∥CD;
(2)设△ABC外接圆的圆心为O,若AB=DH,∠OHD=80°,求∠BDE的大小.
13.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作⊙O的切线DE,交AC于点E,AC的反向延长线交⊙O于点F.
(1)求证:DE⊥AC;
(2)若DE+EA=8,⊙O的半径为10,求AF的长度.
14.如图AB是⊙O的直径,PA与⊙O相切于点A,BP与⊙O相交于点D,C为⊙O上的一点,分别连接CB、CD,∠BCD=60°.
(1)求∠ABD的度数;
(2)若AB=6,求PD的长度.
15.如图,在△ABC中,AB=BC,以AB为直径的⊙O交BC于点D,交AC于点F,过点C作CE∥AB,与过点A的切线相交于点E,连接AD.
(1)求证:AD=AE;
(2)若AB=6,AC=4,求AE的长.
参考答案
1.【解答】证明:(1)连接OD,如图1所示.
∵OA=OD,AD平分∠BAC,
∴∠OAD=∠ODA,∠CAD=∠OAD,
∴∠CAD=∠ODA,
∴AE∥OD.
∵DE是⊙O的切线,
∴∠ODE=90°,
∴OD⊥DE,
∴DE⊥AE.
(2)过点D作DM⊥AB于点M,连接CD、DB,如图2所示.
∵AD平分∠BAC,DE⊥AE,DM⊥AB,
∴DE=DM.
在△DAE和△DAM中,,
∴△DAE≌△DAM(SAS),
∴AE=AM.
∵∠EAD=∠MAD,
∴=,
∴CD=BD.
在Rt△DEC和Rt△DMB中,,
∴Rt△DEC≌Rt△DMB(HL),
∴CE=BM,
∴AE+CE=AM+BM=AB.
2.【解答】(1)证明:连接OC,如图,
∵AC平分∠BAD,
∴∠1=∠2,
∵OA=OC,
∴∠1=∠3,
∴∠2=∠3,
∴OC∥AD,
∵ED切⊙O于点C,
∴OC⊥DE,
∴AD⊥ED;
(2)解:OC交BF于H,如图,
∵AB为直径,
∴∠AFB=90°,
易得四边形CDFH为矩形,
∴FH=CD=4,∠CHF=90°,
∴OH⊥BF,
∴BH=FH=4,
∴BF=8,
在Rt△ABF中,AB===2,
∴⊙O的半径为.
3.【解答】解:(1)连接OA,
∵AC是⊙O的切线,OA是⊙O的半径,
∴OA⊥AC,
∴∠OAC=90°,
∵,∠ADE=25°,
∴∠AOE=2∠ADE=50°,
∴∠C=90°﹣∠AOE=90°﹣50°=40°;
(2)∵AB=AC,
∴∠B=∠C,
∵,
∴∠AOC=2∠B,
∴∠AOC=2∠C,
∵∠OAC=90°,
∴∠AOC+∠C=90°,
∴3∠C=90°,
∴∠C=30°,
∴OA=OC,
设⊙O的半径为r,
∵CE=2,
∴r=,
解得:r=2,
∴⊙O的半径为2.
4.【解答】解:(1)连接OC,OD,
∴OC=OD,
∵PD,PC是⊙O的切线,
∵∠ODP=∠OCP=90°,
在Rt△ODP和Rt△OCP中,,
∴Rt△ODP≌Rt△OCP,
∴∠DOP=∠COP,
∵OD=OC,
∴OP⊥CD;
(2)如图,连接OD,OC,
∴OA=OD=OC=OB=2,
∴∠ADO=∠DAO=50°,∠BCO=∠CBO=70°,
∴∠AOD=80°,∠BOC=40°,
∴∠COD=60°,
∵OD=OC,
∴△COD是等边三角形,
由(1)知,∠DOP=∠COP=30°,
在Rt△ODP中,OP==.
5.【解答】(1)证明:连接OC,如图,
∵CE为切线,
∴OC⊥CE,
∴∠OCE=90°,即∠1+∠4=90°,
∵DO⊥AB,
∴∠3+∠B=90°,
而∠2=∠3,
∴∠2+∠B=90°,
而OB=OC,
∴∠4=∠B,
∴∠1=∠2,
∴CE=FE;
(2)解:①当∠D=30°时,∠DAO=60°,
而AB为直径,
∴∠ACB=90°,
∴∠B=30°,
∴∠3=∠2=60°,
而CE=FE,
∴△CEF为等边三角形,
∴CE=CF=EF,
同理可得∠GFE=60°,
利用对称得FG=FC,
∵FG=EF,
∴△FEG为等边三角形,
∴EG=FG,
∴EF=FG=GE=CE,
∴四边形ECFG为菱形;
②当∠D=22.5°时,∠DAO=67.5°,
而OA=OC,
∴∠OCA=∠OAC=67.5°,
∴∠AOC=180°﹣67.5°﹣67.5°=45°,
∴∠AOC=45°,
∴∠COE=45°,
利用对称得∠EOG=45°,
∴∠COG=90°,
易得△OEC≌△OEG,
∴∠OGE=∠OCE=90°,
∴四边形ECOG为矩形,
而OC=OG,
∴四边形ECOG为正方形.
故答案为30°,22.5°.
6.【解答】证明:(1)连接ON,如图,
∵CD为斜边AB上的中线,
∴CD=AD=DB,
∴∠1=∠B,
∵OC=ON,
∴∠1=∠2,
∴∠2=∠B,
∴ON∥DB,
∵NE为切线,
∴ON⊥NE,
∴NE⊥AB;
(2)连接DN,如图,
∵CD为直径,
∴∠CMD=∠CND=90°,
而∠MCB=90°,
∴四边形CMDN为矩形,
∴DM=CN,
∵DN⊥BC,∠1=∠B,
∴CN=BN,
∴MD=NB.
7.【解答】解:(1)连接OC,
∵CN为⊙O的切线,
∴OC⊥CM,∠OCA+∠ACM=90°,
∵OM⊥AB,
∴∠OAC+∠ODA=90°,
∵OA=OC,
∴∠OAC=∠OCA,
∴∠ACM=∠ODA=∠CDM,
∴MD=MC;
(2)由题意可知AB=5×2=10,AC=4,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴BC=,
∵∠AOD=∠ACB,∠A=∠A,
∴△AOD∽△ACB,
∴,即,
可得:OD=2.5,
设MC=MD=x,在Rt△OCM中,由勾股定理得:(x+2.5)2=x2+52,
解得:x=,
即MC=.
8.【解答】(1)证明:连接OB,如图,
∵AD是⊙O的直径,
∴∠ABD=90°,
∴∠A+∠ADB=90°,
∵BC为切线,
∴OB⊥BC,
∴∠OBC=90°,
∴∠OBA+∠CBP=90°,
而OA=OB,
∴∠A=∠OBA,
∴∠CBP=∠ADB;
(2)解:∵OP⊥AD,
∴∠POA=90°,
∴∠P+∠A=90°,
∴∠P=∠D,
∴△AOP∽△ABD,
∴=,即=,
∴BP=7.
9.【解答】(1)证明:连接OC,
∵直线CD与⊙O相切,
∴OC⊥CD,
∵点C是的中点,
∴∠DAC=∠EAC,
∵OA=OC,
∴∠OCA=∠EAC,
∴∠DAC=∠OCA,
∴OC∥AD,
∴AD⊥CD;
(2)解:∵∠CAD=30°,
∴∠CAE=∠CAD=30°,
由圆周角定理得,∠COE=60°,
∴OE=2OC=6,EC=OC=3,==π,
∴蚂蚁爬过的路程=3+3+π≈11.3.
10.【解答】(1)证明:如图1,连接OB,
∵AB是⊙0的切线,
∴OB⊥AB,
∵CE丄AB,
∴OB∥CE,
∴∠1=∠3,
∵OB=OC,
∴∠1=∠2
∴∠2=∠3,
∴CB平分∠ACE;
(2)如图2,连接BD,
∵CE丄AB,
∴∠E=90°,
∴BC===5,
∵CD是⊙O的直径,
∴∠DBC=90°,
∴∠E=∠DBC,
∴△DBC∽△CBE,
∴,
∴BC2=CD CE,
∴CD==,
∴OC==,
∴⊙O的半径=.
11.【解答】证明:(1)∵AB是⊙O的直径,
∴∠ADB=90°,
∵OC∥BD,
∴∠AEO=∠ADB=90°,
即OC⊥AD,
∴AE=ED;
(2)∵OC⊥AD,
∴,
∴∠ABC=∠CBD=36°,
∴∠AOC=2∠ABC=2×36°=72°,
∴.
12.【解答】(1)证明:如图1,∵PC=PB,
∴∠PCB=∠PBC,
∵四边形ABCD内接于圆,
∴∠BAD+∠BCD=180°,
∵∠BCD+∠PCB=180°,
∴∠BAD=∠PCB,
∵∠BAD=∠BFD,
∴∠BFD=∠PCB=∠PBC,
∴BC∥DF,
∵DE⊥AB,
∴∠DEB=90°,
∴∠ABC=90°,
∴AC是⊙O的直径,
∴∠ADC=90°,
∵BG⊥AD,
∴∠AGB=90°,
∴∠ADC=∠AGB,
∴BG∥CD;
(2)由(1)得:BC∥DF,BG∥CD,
∴四边形BCDH是平行四边形,
∴BC=DH,
在Rt△ABC中,∵AB=DH,
∴tan∠ACB==,
∴∠ACB=60°,∠BAC=30°,
∴∠ADB=60°,BC=AC,
∴DH=AC,
①当点O在DE的左侧时,如图2,作直径DM,连接AM、OH,则∠DAM=90°,
∴∠AMD+∠ADM=90°
∵DE⊥AB,
∴∠BED=90°,
∴∠BDE+∠ABD=90°,
∵∠AMD=∠ABD,
∴∠ADM=∠BDE,
∵DH=AC,
∴DH=OD,
∴∠DOH=∠OHD=80°,
∴∠ODH=20°
∵∠ADB=60°,
∴∠ADM+∠BDE=40°,
∴∠BDE=∠ADM=20°,
②当点O在DE的右侧时,如图3,作直径DN,连接BN,
由①得:∠ADE=∠BDN=20°,∠ODH=20°,
∴∠BDE=∠BDN+∠ODH=40°,
综上所述,∠BDE的度数为20°或40°.
13.【解答】(1)证明:∵OB=OD,
∴∠ABC=∠ODB,
∵AB=AC,
∴∠ABC=∠ACB,
∴∠ODB=∠ACB,
∴OD∥AC.
∵DE是⊙O的切线,OD是半径,
∴DE⊥OD,
∴DE⊥AC;
(2)如图,过点O作OH⊥AF于点H,则∠ODE=∠DEH=∠OHE=90°,
∴四边形ODEH是矩形,
∴OD=EH,OH=DE.
设AH=x.
∵DE+AE=8,OD=10,
∴AE=10﹣x,OH=DE=8﹣(10﹣x)=x﹣2.
在Rt△AOH中,由勾股定理知:AH2+OH2=OA2,即x2+(x﹣2)2=102,
解得x1=8,x2=﹣6(不合题意,舍去).
∴AH=8.
∵OH⊥AF,
∴AH=FH=AF,
∴AF=2AH=2×8=16.
14.【解答】解:(1)方法一:如图1,连接AD.
∵BA是⊙O直径,
∴∠BDA=90°.
∵=,
∴∠BAD=∠C=60°.
∴∠ABD=90°﹣∠BAD=90°﹣60°=30°.
方法二:如图2,连接DA、OD,则∠BOD=2∠C=2×60°=120°.
∵OB=OD,
∴∠OBD=∠ODB=(180°﹣120°)=30°.
即∠ABD=30°.
(2)如图1,∵AP是⊙O的切线,
∴∠BAP=90°.
在Rt△BAD中,∵∠ABD=30°,
∴DA=BA=×6=3.
∴BD=DA=3.
在Rt△BAP中,∵cos∠ABD=,
∴cos30°==.
∴BP=4.
∴PD=BP﹣BD=4﹣3=.
15.【解答】(1)证明:∵AE与⊙O相切,AB是⊙O的直径,
∴∠BAE=90°,∠ADB=90°,
∵CE∥AB,
∴∠E=90°,
∴∠E=∠ADB,
∵在△ABC中,AB=BC,
∴∠BAC=∠BCA,
∵∠BAC+∠EAC=90°,∠ACE+∠EAC=90°,
∴∠BAC=∠ACE,
∴∠BCA=∠ACE,
又∵AC=AC,
∴△ADC≌△AEC(AAS),
∴AD=AE;
(2)解:设AE=AD=x,CE=CD=y,
则BD=(6﹣y),
∵△AEC和△ADB为直角三角形,
∴AE2+CE2=AC2,AD2+BD2=AB2,
AB=6,AC=4,AE=AD=x,CE=CD=y,BD=(6﹣y)代入,
解得:x=,y=,
即AE的长为.
21世纪教育网(www.21cnjy.com)
同课章节目录