中小学教育资源及组卷应用平台
2025年九年级数学中考三轮冲刺训练圆中相似三角形综合训练
1.已知AD为⊙O的直径,BC为⊙O的切线,切点为M,分别过A,D两点作BC的垂线,垂足分别为B,C,AD的延长线与BC相交于点E.
(1)求证:△ABM∽△MCD;
(2)若AD=8,AB=5,求ME的长.
2.如图AB是⊙O的直径,PA与⊙O相切于点A,BP与⊙O相交于点D,C为⊙O上的一点,分别连接CB、CD,∠BCD=60°.
(1)求∠ABD的度数;
(2)若AB=6,求PD的长度.
3.如图,AD是△ABC的外接圆⊙O的直径,点P在BC延长线上,且满足∠PAC=∠B.
(1)求证:PA是⊙O的切线;
(2)弦CE⊥AD交AB于点F,若AF AB=12,求AC的长.
4.如图所示,⊙O的半径为4,点A是⊙O上一点,直线l过点A;P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l于点B,交⊙O于点E,直径PD延长线交直线l于点F,点A是的中点.
(1)求证:直线l是⊙O的切线;
(2)若PA=6,求PB的长.
5.如图,在△ABC中,AB=BC,以AB为直径的⊙O交BC于点D,交AC于点F,过点C作CE∥AB,与过点A的切线相交于点E,连接AD.
(1)求证:AD=AE;
(2)若AB=6,AC=4,求AE的长.
6.如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,且交⊙O于点E.连接OC,BE,相交于点F.
(1)求证:EF=BF;
(2)若DC=4,DE=2,求直径AB的长.
7.如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.
(1)求证:DE是⊙O的切线;
(2)若AC∥DE,当AB=8,CE=2时,求AC的长.
8.如图,AB是⊙M的直径,BC是⊙M的切线,切点为B,C是BC上(除B点外)的任意一点,连接CM交⊙M于点G,过点C作DC⊥BC交BG的延长线于点D,连接AG并延长交BC于点E.
(1)求证:△ABE∽△BCD;
(2)若MB=BE=1,求CD的长度.
9.如图,P是⊙O外的一点,PA、PB是⊙O的两条切线,A、B是切点,PO交AB于点F,延长BO交⊙O于点C,交PA的延长交于点Q,连结AC.
(1)求证:AC∥PO;
(2)设D为PB的中点,QD交AB于点E,若⊙O的半径为3,CQ=2,求的值.
10.如图,AB是⊙O的直径,=,E是OB的中点,连接CE并延长到点F,使EF=CE.连接AF交⊙O于点D,连接BD,BF.
(1)求证:直线BF是⊙O的切线;
(2)若OB=2,求BD的长.
11.已知:AB为⊙O的直径,延长AB到点P,过点P作圆O的切线,切点为C,连接AC,且AC=CP.
(1)求∠P的度数;
(2)若点D是弧AB的中点,连接CD交AB于点E,且DE DC=20,求⊙O的面积.(π取3.14)
12.如图,AG是∠HAF的平分线,点E在AF上,以AE为直径的⊙O交AG于点D,过点D作AH的垂线,垂足为点C,交AF于点B.
(1)求证:直线BC是⊙O的切线;
(2)若AC=2CD,设⊙O的半径为r,求BD的长度.
13.如图,CD是⊙O的切线,点C在直径AB的延长线上.
(1)求证:∠CAD=∠BDC;
(2)若BD=AD,AC=3,求CD的长.
24.如图,点P是⊙O的直径AB延长线上一点,且AB=4,点M为上一个动点(不与A,B重合),射线PM与⊙O交于点N(不与M重合).
(1)当M在什么位置时,△MAB的面积最大,并求出这个最大值;
(2)求证:△PAN∽△PMB.
15.如图,AB是⊙O的直径,点E为线段OB上一点(不与O,B重合),作EC⊥OB,交⊙O于点C,作直径CD,过点C的切线交DB的延长线于点P,作AF⊥PC于点F,连接CB.
(1)求证:AC平分∠FAB;
(2)求证:BC2=CE CP;
(3)当AB=4且=时,求劣弧的长度.
16.如图,已知BC⊥AC,圆心O在AC上,点M与点C分别是AC与⊙O的交点,点D是MB与⊙O的交点,点P是AD延长线与BC的交点,且=.
(1)求证:PD是⊙O的切线;
(2)若AD=12,AM=MC,求的值.
参考答案
1.【解答】(1)证明:∵AD为圆O的切线,
∴∠AMD=90°,
∵∠BMC=180°,
∴∠2+∠3=90°,
∵∠ABM=∠MCD=90°,
∴∠2+∠1=90°,
∴∠1=∠3,
则△ABM∽△MCD;
(2)解:连接OM,
∵BC为圆O的切线,
∴OM⊥BC,
∵AB⊥BC,
∴sin∠E==,即=,
∵AD=8,AB=5,
∴=,即OE=16,
根据勾股定理得:ME===4.
2.【解答】解:(1)方法一:如图1,连接AD.
∵BA是⊙O直径,
∴∠BDA=90°.
∵=,
∴∠BAD=∠C=60°.
∴∠ABD=90°﹣∠BAD=90°﹣60°=30°.
方法二:如图2,连接DA、OD,则∠BOD=2∠C=2×60°=120°.
∵OB=OD,
∴∠OBD=∠ODB=(180°﹣120°)=30°.
即∠ABD=30°.
(2)如图1,∵AP是⊙O的切线,
∴∠BAP=90°.
在Rt△BAD中,∵∠ABD=30°,
∴DA=BA=×6=3.
∴BD=DA=3.
在Rt△BAP中,∵cos∠ABD=,
∴cos30°==.
∴BP=4.
∴PD=BP﹣BD=4﹣3=.
3.【解答】(1)∵AD是⊙O的直径
∴∠ACD=90°;
∴∠CAD+∠D=90°
∵∠PAC=∠PBA,∠D=∠PBA,
∴∠CAD+∠PAC=90°,
∴∠PAD=90°,
∴PA⊥AD,
∵点A在⊙O上,
∴PA是⊙O的切线
(2)∵CF⊥AD,
∴∠ACF+∠CAD=90°,
∵∠CAD+∠D=90°,
∴∠D=∠ACF,
∴∠B=∠ACF,
∵∠BAC=∠CAF,
∴△ABC∽△ACF,
∴,
∴AC2=AF AB
∵AF AB=12,
∴AC2=12,
∴AC=2.
4.【解答】(1)证明:连接DE,OA.
∵PD是直径,
∴∠DEP=90°,
∵PB⊥FB,
∴∠DEP=∠FBP,
∴DE∥BF,
∵=,
∴OA⊥DE,
∴OA⊥BF,
∴直线l是⊙O的切线.
(2)解:作OH⊥PA于H.
∵OA=OP,OH⊥PA,
∴AH=PH=3,
∵OA∥PB,
∴∠OAH=∠APB,
∵∠AHO=∠ABP=90°,
∴△AOH∽△PAB,
∴=,
∴=,
∴PB=.
5.【解答】(1)证明:∵AE与⊙O相切,AB是⊙O的直径,
∴∠BAE=90°,∠ADB=90°,
∵CE∥AB,
∴∠E=90°,
∴∠E=∠ADB,
∵在△ABC中,AB=BC,
∴∠BAC=∠BCA,
∵∠BAC+∠EAC=90°,∠ACE+∠EAC=90°,
∴∠BAC=∠ACE,
∴∠BCA=∠ACE,
又∵AC=AC,
∴△ADC≌△AEC(AAS),
∴AD=AE;
(2)解:设AE=AD=x,CE=CD=y,
则BD=(6﹣y),
∵△AEC和△ADB为直角三角形,
∴AE2+CE2=AC2,AD2+BD2=AB2,
AB=6,AC=4,AE=AD=x,CE=CD=y,BD=(6﹣y)代入,
解得:x=,y=,
即AE的长为.
6.【解答】(1)证明:∵OC⊥CD,AD⊥CD,
∴OC∥AD,∠OCD=90°,
∴∠OFE=∠OCD=90°,
∵OB=OE,
∴EF=BF;
(2)∵∵AB为⊙O的直径,
∴∠AEB=90°,
∵∠OCD=∠CFE=90°,
∴四边形EFCD是矩形,
∴EF=CD,DE=CF,
∵DC=4,DE=2,
∴EF=4,CF=2,
设⊙O的为r,
∵∠OFB=90°,
∴OB2=OF2+BF2,
即r2=(r﹣2)2+42,
解得,r=5,
∴AB=2r=10,
即直径AB的长是10.
7.【解答】解:(1)如图,
连接BD,∵∠BAD=90°,
∴点O必在BD上,即:BD是直径,
∴∠BCD=90°,
∴∠DEC+∠CDE=90°,
∵∠DEC=∠BAC,
∴∠BAC+∠CDE=90°,
∵∠BAC=∠BDC,
∴∠BDC+∠CDE=90°,
∴∠BDE=90°,即:BD⊥DE,
∵点D在⊙O上,
∴DE是⊙O的切线;
(2)∵DE∥AC,
∵∠BDE=90°,
∴∠BFC=90°,
∴CB=AB=8,AF=CF=AC,
∵∠CDE+∠BDC=90°,∠BDC+∠CBD=90°,
∴∠CDE=∠CBD,
∵∠DCE=∠BCD=90°,
∴△BCD∽△DCE,
∴,
∴,
∴CD=4,
在Rt△BCD中,BD==4
同理:△CFD∽△BCD,
∴,
∴,
∴CF=,
∴AC=2AF=.
8.【解答】(1)证明:∵BC为⊙M切线
∴∠ABC=90°
∵DC⊥BC
∴∠BCD=90°
∴∠ABC=∠BCD
∵AB是⊙M的直径
∴∠AGB=90°
即:BG⊥AE
∴∠CBD=∠A
∴△ABE∽△BCD
(2)解:过点G作GH⊥BC于H
∵MB=BE=1
∴AB=2
∴AE=
由(1)根据面积法
AB BE=BG AE
∴BG=
由勾股定理:
AG=,GE=
∵GH∥AB
∴
∴
∴GH=
又∵GH∥AB
①
同理:②
①+②,得
∴
∴CD=
9.【解答】(1)证明:∵PA、PB是⊙O的两条切线,A、B是切点,
∴PA=PB,且PO平分∠BPA,
∴PO⊥AB.
∵BC是直径,
∴∠CAB=90°,
∴AC⊥AB,
∴AC∥PO;
(2)解:连结OA、DF,如图,
∵PA、PB是⊙O的两条切线,A、B是切点,
∴∠OAQ=∠PBQ=90°.
在Rt△OAQ中,OA=OC=3,∴OQ=5.
由QA2+OA2=OQ2,得QA=4.
在Rt△PBQ中,PA=PB,QB=OQ+OB=8,
由QB2+PB2=PQ2,得82+PB2=(PB+4)2,
解得PB=6,
∴PA=PB=6,
∵OP⊥AB,
∴BF=AF=AB.
又∵D为PB的中点,
∴DF∥AP,DF=PA=3,
∴△DFE∽△QEA,
∴==,
设AE=4t,FE=3t,则AF=AE+FE=7t,
∴BE=BF+FE=AF+FE=7t+3t=10t,
∴==.
10.【解答】(1)证明:连接OC,
∵AB是⊙O的直径,=,
∴∠BOC=90°,
∵E是OB的中点,
∴OE=BE,
在△OCE和△BFE中,
∵,
∴△OCE≌△BFE(SAS),
∴∠OBF=∠COE=90°,
∴直线BF是⊙O的切线;
(2)解:∵OB=OC=2,
由(1)得:△OCE≌△BFE,
∴BF=OC=2,
∴AF===2,
∴S△ABF=,
4×2=2 BD,
∴BD=.
11.【解答】解:(1)连接OC,
∵PC为⊙O的切线,
∴∠OCP=90°,即∠2+∠P=90°,
∵OA=OC,
∴∠CAO=∠1,
∵AC=CP,
∴∠P=∠CAO,
又∵∠2是△AOC的一个外角,
∴∠2=2∠CAO=2∠P,
∴2∠P+∠P=90°,
∴∠P=30°;
(2)连接AD,
∵D为的中点,
∴∠ACD=∠DAE,
∴△ACD∽△EAD,
∴=,即AD2=DC DE,
∵DC DE=20,
∴AD=2,
∵=,
∴AD=BD,
∵AB是⊙O的直径,
∴Rt△ADB为等腰直角三角形,
∴AB=2,
∴OA=AB=,
∴S⊙O=π OA2=10π=31.4.
12.【解答】(1)证明:连接OD,
∵AG是∠HAF的平分线,
∴∠CAD=∠BAD,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠CAD=∠ODA,
∴OD∥AC,
∵∠ACD=90°,
∴∠ODB=∠ACD=90°,即OD⊥CB,
∵D在⊙O上,
∴直线BC是⊙O的切线;
(2)解:在Rt△ACD中,设CD=a,则AC=2a,AD=a,
连接DE,
∵AE是⊙O的直径,
∴∠ADE=90°,
由∠CAD=∠BAD,∠ACD=∠ADE=90°,
∴△ACD∽△ADE,
∴,
即,
∴a=,
由(1)知:OD∥AC,
∴=,即,
∵a=,解得BD=r.
13.【解答】(1)证明:连接OD,如图所示.
∵OB=OD,
∴∠OBD=∠ODB.
∵CD是⊙O的切线,OD是⊙O的半径,
∴∠ODB+∠BDC=90°.
∵AB是⊙O的直径,
∴∠ADB=90°,
∴∠OBD+∠CAD=90°,
∴∠CAD=∠BDC.
(2)解:∵∠C=∠C,∠CAD=∠CDB,
∴△CDB∽△CAD,
∴=.
∵BD=AD,
∴=,
∴=,
又∵AC=3,
∴CD=2.
14.【解答】解:(1)当点M在的中点处时,△MAB面积最大,此时OM⊥AB,
∵OM=AB=×4=2,
∴S△ABM=AB OM=×4×2=4;
(2)∵∠PMB=∠PAN,∠P=∠P,
∴△PAN∽△PMB.
15.【解答】(1)证明:∵AB是直径,
∴∠ACB=90°,
∴∠BCP+∠ACF=90°,∠ACE+∠BCE=90°,
∵∠BCP=∠BCE,
∴∠ACF=∠ACE,即AC平分∠FAB.
(2)证明:∵OC=OB,
∴∠OCB=∠OBC,
∵PF是⊙O的切线,CE⊥AB,
∴∠OCP=∠CEB=90°,
∴∠PCB+∠OCB=90°,∠BCE+∠OBC=90°,
∴∠BCE=∠BCP,
∵CD是直径,
∴∠CBD=∠CBP=90°,
∴△CBE∽△CPB,
∴=,
∴BC2=CE CP;
(3)解:作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=3a,PC=4a,PM=a,
∵∠MCB+∠P=90°,∠P+∠PBM=90°,
∴∠MCB=∠PBM,
∵CD是直径,BM⊥PC,
∴∠CMB=∠BMP=90°,
∴△BMC∽△PMB,
∴=,
∴BM2=CM PM=3a2,
∴BM=a,
∴tan∠BCM==,
∴∠BCM=30°,
∴∠OCB=∠OBC=∠BOC=60°,∠BOD=120°
∴的长==π.
16.【解答】(1)证明:连接OD、OP、CD.
∵=,∠A=∠A,
∴△ADM∽△APO,
∴∠ADM=∠APO,
∴MD∥PO,
∴∠1=∠4,∠2=∠3,
∵OD=OM,
∴∠3=∠4,
∴∠1=∠2,
∵OP=OP,OD=OC,
∴△ODP≌△OCP,
∴∠ODP=∠OCP,
∵BC⊥AC,
∴∠OCP=90°,
∴OD⊥AP,
∴PD是⊙O的切线.
(2)连接CD.由(1)可知:PC=PD,
∵AM=MC,
∴AM=2MO=2R,
在Rt△AOD中,OD2+AD2=OA2,
∴R2+122=9R2,
∴R=3,
∴OD=3,MC=6,
∵==,
∴DP=6,
∵O是MC的中点,
∴==,
∴点P是BC的中点,
∴BP=CP=DP=6,
∵MC是⊙O的直径,
∴∠BDC=∠CDM=90°,
在Rt△BCM中,∵BC=2DP=12,MC=6,
∴BM=6,
∵△BCM∽△CDM,
∴=,即=,
∴MD=2,
∴==.
21世纪教育网(www.21cnjy.com)