数学:1.2.2《同角三角函数的基本关系》教案(2)(新人教a版必修4)

文档属性

名称 数学:1.2.2《同角三角函数的基本关系》教案(2)(新人教a版必修4)
格式 rar
文件大小 66.1KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2010-01-08 19:02:00

图片预览

文档简介

本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
第1章 三角函数
4-1.2.2同角三角函数的基本关系(3)
教学目的:
知识目标:根据三角函数关系式进行三角式的化简和证明;
能力目标:(1)了解已知一个三角函数关系式求三角函数(式)值的方法。
(2)灵活运用同角三角函数关系式的不同变形,提高三角恒等变形的能力;
德育目标:训练三角恒等变形的能力,进一步树立化归思想方法;
教学重点:同角三角函数的基本关系式
教学难点:如何运用公式对三角式进行化简和证明。
授课类型:新授课
教学模式:启发、诱导发现教学.
教 具:多媒体、实物投影仪
教学过程:
一、复习引入:
1.同角三角函数的基本关系式。
(1)倒数关系:,,.
(2)商数关系:,.
(3)平方关系:,,.
(练习)已知,求
2.tanαcosα= ,cotαsecα= ,(secα+tanα)·( )=1
二、讲解新课:
例8.已知,试确定使等式成立的角的集合。
解:∵=
==.
又∵,
∴, 即得或.
所以,角的集合为:或.
例9.化简.
解:原式=

说明:化简后的简单三角函数式应尽量满足以下几点:
(1)所含三角函数的种类最少;
(2)能求值(指准确值)尽量求值;
(3)不含特殊角的三角函数值。
例10.求证:.
证法一:由题义知,所以.
∴左边=右边.
∴原式成立.
证法二:由题义知,所以.
又∵,
∴.
证法三:由题义知,所以.

∴.
例11.求证:.
证明:左边

右边.
所以,原式成立。
总结:证明恒等式的过程就是分析、转化、消去等式两边差异来促成统一的过程,证明时常用的方法有:(1)从一边开始,证明它等于另一边(如例5的证法一);(2)证明左右两边同等于同一个式子(如例6);(3)证明与原式等价的另一个式子成立,从而推出原式成立。
例12.已知,求.
解:由等式两边平方:

∴(*),
即,
可看作方程的两个根,解得.
又∵,∴.又由(*)式知
因此,.
三、巩固与练习
1. 求证:
小结:化简三角函数式,化简的一般要求是:(1)尽量使函数种类最少,项数最少,次数最低;(2)尽量使分母不含三角函数式;(3)根式内的三角函数式尽量开出来;(4)能求得数值的应计算出来,其次要注意在三角函数式变形时,常常将式子中的“1”作巧妙的变形,如:1=
2、已知方程的两根分别是,

解:
(化弦法)
3、已知
证:由题设:
4、消去式子中的
解:由
由 (平方消去法)
四、小 结:本节课学习了以下内容:
1.运用同角三角函数关系式化简、证明。
2.常用的变形措施有:大角化小,切割化弦等。
五、课后作业:
六、板书设计:
w.w.w.k.s.5.u.c.o.m
www.
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网