概率初步
知识点1:确定事件和随机事件
(1)必然事件和不可能事件统称确定性事件。
必然事件:在一定条件下,一定会发生的事件称为必然事件。
不可能事件:在一定条件下,一定不会发生的事件称为不可能事件。
(2)随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件。
随机事件发生的可能性:
一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。
对随机事件发生的可能性的大小,我们利用反复试验所获取一定的经验数据可以预测它们发生机会的大小。要评判一些游戏规则对参与游戏者是否公平,就是看它们发生的可能性是否一样。所谓判断事件可能性是否相同,就是要看各事件发生的可能性的大小是否一样,用数据来说明问题。
知识点2:概率
(1)概率的性质:P(必然事件)=1;P(不可能事件)=0;0<P(不确定事件)<1。
(2)一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包括其中的m种结果,那么事件A发生的概率。
(3)事件和概率的表示方法:
一般地,事件用英文大写字母A,B,C,…,表示事件A的概率p,可记为P(A)=P
知识点3:确定事件和随机事件的概率之间的关系
(1)确定事件概率
当A是必然发生的事件时,P(A)=1
当A是不可能发生的事件时,P(A)=0
知识点4:求概率的方法
1.列表法求概率
(1)列表法。用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。
(2)列表法的应用场合。当一次试验要设计两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。
2.树状图法求概率
(1)树状图法。就是通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法。
(2)运用树状图法求概率的条件。当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。
知识点5:利用频率估计概率
1.利用频率估计概率。在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率。
2.在统计学中,常用较为简单的试验方法代替实际操作中复杂的试验来完成概率估计,这样的试验称为模拟实验。
3.随机数。在随机事件中,需要用大量重复试验产生一串随机的数据来开展统计工作。把这些随机产生的数据称为随机数。
本章内容要求学生了解事件的可能性,在探究交流中学习体验概率在生活中的乐趣和实用性,学会计算概率。记忆并理解本章思维导图。
《概率初步》单元检测试卷
一、选择题(每小题3分,共36分)
1.下列说法正确的是( )
A.“经过有交通信号的路口遇到红灯”是必然事件
B.已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次
C.投掷一枚硬币正面朝上是随机事件
D.明天太阳从东方升起是随机事件
2.下列说法正确的是( )
A.“367人中必有2人的生日是同一天”是必然事件
B.了解一批灯泡的使用寿命采用全面调查
C.一组数据6,5,3,5,4的众数是5,中位数是3
D.一组数据10,11,12,9,8的平均数是10,方差是1.5
3.下列事件中,属于随机事件的是( )
A.的值比8大 B.购买一张彩票,中奖
C.地球自转的同时也在绕日公转 D.袋中只有5个黄球,摸出一个球是白球
4.袋中有4个除颜色外其余都相同的小球,其中1个红色,1个黑色,2个白色.现随机从袋中摸取两个球,则摸出的球都是白色的概率为( )
A. B. C. D.
5.已知一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为,则a等于( )
A.1 B.2 C.3 D.4
6.如图,正方形ABCD内接于⊙O,⊙O的直径为 分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD内的概率是( )
A. B. C. D.π
7.如图,在4×4正方形网格中,任意选取一个白色的小正方形并涂上阴影,使图中阴影部分的图形构成一个轴对称图形的概率是( )
A. B. C. D.
8.有三张正面分别写有数字﹣1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片中随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为( )
A. B. C. D.
9.小杰想用6个除颜色外均相同的球设计一个游戏,下面是他设计的4个游戏方案.不成功的是( )
A.摸到黄球的概率为,红球的概率为
B.摸到黄、红、白球的概率都为
C.摸到黄球的概率为,红球的概率为,白球的概率为
D.摸到黄球的概率为,摸到红球、白球的概率都是
10.用频率估计概率,可以发现,某种幼树在一定条件下移植成活的概率为0.9,下列说法正确的是( )
A.种植10棵幼树,结果一定是“有9棵幼树成活”
B.种植100棵幼树,结果一定是“90棵幼树成活”和“10棵幼树不成活”
C.种植10n棵幼树,恰好有“n棵幼树不成活”
D.种植n棵幼树,当n越来越大时,种植成活幼树的频率会越来越稳定于0.9
11.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是( )
实验次数 100 200 300 500 800 1000 2000
频率 0.365 0.328 0.330 0.334 0.336 0.332 0.333
A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃
B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”
C.抛一个质地均匀的正六面体骰子,向上的面点数是5
D.抛一枚硬币,出现反面的概率
12.某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的试验最有可能的是( )
A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球
B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数
C.先后两次掷一枚质地均匀的硬币,两次都出现反面
D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9
二、填空题(每空3分,共18分)
13.“明天会下雨”是_________事件.
14.掷一枚质地均匀的骰子,向上一面的点数为奇数的概率是________.
15.抛掷一枚质地均匀的硬币,落地后正面朝上的概率是 .
16.一只蚂蚁在如图所示的七巧板上任意爬行,已知它停在这副七巧板上的任何一点的可能性都相同,那么它停在1号板上的概率是______.
17.“国际马拉松”的赛事共有三项:A、“全程马拉松”、B、“半程马拉松”、C、“迷你马拉松”.小明和小刚参加了该项赛事的志愿者服务工作,组委会随机将志愿者分配到以上三个项目组,则小明和小刚被分配到不同项目组的概率是 .
18.下表记录了某种幼树在一定条件下移植成活情况
移植总数n 400 1500 3500 7000 9000 14000
成活数m 325 1336 3203 6335 8073 12628
成活的频率(精确到0.01) 0.813 0.891 0.915 0.905 0.897 0.902
由此估计这种幼树在此条件下移植成活的概率约是 (精确到0.1).
三、解答题(7个小题,共66分)
19.一个袋中装有2个红球,3个白球,和5个黄球,每个球除了顔色外都相同,从中任意摸出一个球,分别求出摸到红球,白球,黄球的概率。
20.一个袋中装有1个红球,1个黑球和1个黄球,它们除了颜色外都相同,从中任意摸出一球,记录颜色后又放回袋中;充分摇匀后,再任意摸出一球,记录颜色后又将它放回袋中;再一次充分摇匀后,又从中任意摸出一球.试求:
(1)三次均摸出黑球的概率;
(2)三次中至少有一次摸出黑球的概率.
21.在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:
(1)请补全条形统计图和扇形统计图;
(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?
(3)若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?
(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?
22.某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:
(1)计算并完成表格:(精确到0.01)
转动转盘的次数n 100 150 200 500 800 1000
落在“铅笔”的次数m 79 121 162 392 653 794
落在“铅笔”的频率 0.78 0.82 0.79
(2)请估计,当n很大时,频率将会接近 . (精确到0.1)
(3)假如你去转动该转盘一次,你获得铅笔的概率约是 . (精确到0.1)
(4)在该转盘中,表示“铅笔”区域的扇形的圆心角约是多少(精确到1°)
23.张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调査,并将调査结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调査结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:
(1)本次调查中,张老师一共调査了 名同学,其中C类女生有 名,D类男生有 名;
(2)将上面的条形统计图补充完整;
(3)为了共同进步,张老师想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.
24.某镇对辖区内所有的小微企业按年利润w(万元)的多少分为以下四个类型:A类(w<10),B类(10≤w<20),C类(20≤w<30),D类(w≥30),该镇政府对辖区内所有小微企业的相关信息进行统计后,绘制成以下条形统计图和扇形统计图,请你结合图中信息解答下列问题:
(1)该镇本次统计的小微企业总个数是 ,扇形统计图中B类所对应扇形圆心角的度数为 度,请补全条形统计图;
(2)为了进一步解决小微企业在发展中的问题,该镇政府准备召开一次座谈会,每个企业派一名代表参会.计划从D类企业的4个参会代表中随机抽取2个发言,D类企业的4个参会代表中有2个来自高新区,另2个来自开发区.请用列表或画树状图的方法求出所抽取的2个发言代表都来自高新区的概率.
25.随着社会经济的发展,汽车逐渐走入平常百姓家.某数学兴趣小组随机抽取了我市某单位部分职工进行调查,对职工购车情况分4类(A:车价40万元以上;B:车价在20﹣40万元;C:车价在20万元以下;D:暂时未购车)进行了统计,并将统计结果绘制成以下条形统计图和扇形统计图.请结合图中信息解答下列问题:
(1)调查样本人数为 ,样本中B类人数百分比是 ,其所在扇形统计图中的圆心角度数是 ;
(2)把条形统计图补充完整;
(3)该单位甲、乙两个科室中未购车人数分别为2人和3人,现从这5个人中选2人去参观车展,用列表或画树状图的方法,求选出的2人来自不同科室的概率.
答案
1.C
2.A
3.B
4.D.
5.A
6.A;
7.A
8.B
9.D
10.D.
11.B.
12.D
13.答案为:不确定
14.答案为:0.5.
15.答案为:.
16.答案为:
17.答案为:.
18.答案为:0.9.
19.解:摸到红球的概率为,摸到白球的概率为.摸到白球的概率为
20.解:一共有27种情况,所以(1)三次均摸出黑球的概率为;
(2)三次中至少有一次摸出黑球的概率为.
21.解:(1)由条形图知,男生共有10+20+13+9=52(人),
∴女生人数为100-52=48(人),
∴参加武术的女生人数为48-15-8-15=10(人),
∴参加武术的人数为20+10=30(人),
∴30÷100=30%.
参加器乐的人数为9+15=24(人),
∴24÷100=24%.
补全条形统计图和扇形统计图如图所示.
(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是×100%=40%.
答:在参加“剪纸”活动项目的学生中,男生所占的百分比为40%.
(3)500×21%=105(人).
答:估计其中参加“书法”项目活动的有105人.
(4)==.
答:正好抽到参加“器乐”活动项目的女生的概率为.
22.解:(1)
转动转盘的次数n 100 150 200 500 800 1000
落在“铅笔”的次数m 79 121 162 392 653 794
落在“铅笔”的频率 0.8 0.8 0.8 0.78 0.82 0.79
(2)当n很大时,频率将会接近(79+121+162+392+653+794)÷=0.8,
故答案为:0.8;
(3)获得铅笔的概率约是0.8,
故答案为:0.8;
(4)扇形的圆心角约是0.8×360°=288度.
23.解:(1)3÷15%=20,
20×25%=5.女生:5﹣3=2,
1﹣25%﹣50%﹣15%=10%,
20×10%=2,男生:2﹣1=1,
故答案为:20,2,1;
(2)如图所示:
(3)根据张老师想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,可以将A类与D类学生分为以下几种情况:
男A 女A1 女A2
男D 男A男D 女A1男D 女A2男D
女D 女D男A 女A1女D 女A2女D
∴共有6种结果,每种结果出现可能性相等,
∴两位同学恰好是一位男同学和一位女同学的概率为:P(一男一女)=.
24.解:(1)该镇本次统计的小微企业总个数为4÷16%=25(个);
扇形统计图中B类所对应扇形圆心角的度数=×360°=72°
A类小微企业个数为25﹣5﹣14﹣=2(个), 补全条形统计图为:
故答案为25个,72;
(2)2个来自高新区的企业用A、B表示,2个来自开发区的企业用a、b表示,
画树状图为:
共有12种等可能的结果数,其中所抽取的2个发言代表都来自高新区的结果数为2,所以所抽取的2个发言代表都来自高新区的概率=.
25.解:(1)调查样本人数为4÷8%=50(人),
样本中B类人数百分比(50﹣4﹣28﹣8)÷50=20%,
B类人数所在扇形统计图中的圆心角度数是20%×360°=72°
故答案为:50,20%,72°.
(2)如图,样本中B类人数=50﹣4﹣28﹣8=10(人)
(3)画树状图为:
共有20种可能的结果数,其中选出选出的2人来自不同科室占12种,
所以选出的2人来自不同科室的概率=0.6.