粤教版高中物理必修第三册第六章电磁现象与电磁波第二节磁感应强度 课件(39页PPT)+检测含答案(教师用)

文档属性

名称 粤教版高中物理必修第三册第六章电磁现象与电磁波第二节磁感应强度 课件(39页PPT)+检测含答案(教师用)
格式 zip
文件大小 844.8KB
资源类型 试卷
版本资源 粤教版(2019)
科目 物理
更新时间 2025-05-14 10:09:51

文档简介

(共39张PPT)
第二节 磁感应强度
核心素养点击
一、磁感应强度的方向和大小
1.填一填
(1)物理意义:描述磁场_____和_____的物理量。
(2)小磁针静止时_____所指的方向就是该点磁感应强度的方向,简称_____的方向。
(3)控制变量法探究影响通电导线受力的因素。
如图所示,三块相同的蹄形磁铁,并列放在桌上,直导线所在处的磁场认为是均匀的。
强弱
方向
N极
磁场
①保持通电导线长度不变,改变__________,观察通电导线__________大小来比较磁场力大小。
②保持电流大小不变,改变磁场中___________,通过观察通电导线摆动幅度大小比较磁场力大小。
③实验结论:当通电导线与磁场方向垂直时,它在同一磁场中所受磁场作用力F的大小与_______和___________的乘积成正比。
(4)磁感应强度的大小。
当通电导线与磁场垂直时,通电导线所受磁场的作用力F与电流I和导线长度L的_______之比,称为____________。
(5)公式:B= 。
(6)单位:国际单位是_______,简称特,国际符号是___,1 T=1 。
电流大小
摆动幅度
导线长度
电流I
导线长度L
乘积IL
磁感应强度
特斯拉
T
2.判一判
(1)通电导线在磁场中受到的磁场力为零,则说明该处的磁感应强度为零。 ( )
(2)磁感应强度的大小与电流成反比,与其受到的磁场力成正比。 ( )
(3)磁感应强度的大小等于通电导线受到的磁场力大小F与电流I和导线长度L的乘积的比值。 ( )
×
×
×
3.选一选
在磁感应强度的定义式B= 中,有关各物理量间的关系,下列说法正确的是 (  )
A.B由F、I和L决定
B.F由B、I和L决定
C.I由B、F和L决定
D.L由B、F和I决定
解析:磁感应强度是磁场中某点的固有性质,与放入什么样的导线无关;电流是由导线的电阻和导线两端的电压决定的;而导线长度更是与磁场没有关系,在放入磁场前就确定了;由受力大小F=BIL知,F由B、I、L三项共同决定,故B正确。
答案:B
二、匀强磁场 磁通量
1.填一填
(1)匀强磁场:如果磁场中某一区域内磁感应强度的_____和______处处相同,则该区域的磁场叫作匀强磁场。
(2)磁感线特点:匀强磁场的磁感线是一些_________的平行直线。距离很近的两个_____________之间(除边缘外)的磁场、通电螺线管内__________的磁场,都可近似认为是匀强磁场。
(3)磁通量:在匀强磁场中有一个与磁场方向垂直的平面,_____________与面积S的乘积叫作穿过该平面的磁通量,即Φ=____。
(4)单位:国际单位制是_____,简称韦,符号是Wb,1 Wb=______。
(5)磁通密度:B= ,表示磁感应强度在数值上等于垂直磁感应强度的___________的磁通量。
大小
方向
间隔相同
平行异名磁极
中间部分
磁感应强度B
BS
韦伯
1 T·m2
单位面积上
2.判一判
(1)磁通量不仅有大小而且有方向,所以是矢量。 ( )
(2)磁通量越大,磁感应强度越大。 ( )
(3)穿过某一面积的磁通量为零,该处磁感应强度不一定为零。 ( )
×
×

3.想一想
磁通量可以形象地理解为“穿过磁场中某一面积的磁感线条数”,在如图所示磁场中,S1、S2、S3为三个面积相同的相互平行的线圈。则穿过哪个线圈的磁通量最大?
提示:由于S1、S2、S3面积相同,由图可知穿过S1的磁感线条数最多,故穿过S1的磁通量最大。
探究(一)  对磁感应强度的理解
[问题驱动]
条形磁铁放于桌面上,小磁针放于磁铁周围不同位置。
分析回答以下问题:
(1)不同位置的小磁针北极指向是否相同?
提示:小磁针北极指向不同。
(2)以上现象说明了什么?
提示:条形磁铁周围不同位置磁场方向不同,也就是磁感应强度方向不同。
[重难释解]
(1)磁感应强度的定义式:B= 。
①公式成立条件:通电导线必须垂直于磁场方向放置,不垂直则公式不成立。
②决定磁感应强度的因素:仅由磁场本身决定,与导线是否受磁场力以及磁场力的大小无关。
③磁感应强度的定义式也适用于非匀强磁场,这时L应很短,IL称为“电流元”,相当于静电场中的“试探电荷”。
(2)方向:磁感应强度B是一个矢量,某点磁感应强度的方向不是放在该处的通电导线的受力方向。它的方向可以有以下几种表述方式:
①小磁针静止时N极所指的方向,或小磁针静止时S极所指的反方向。
②小磁针N极受力的方向(不论小磁针是否静止),或S极受力的反方向。
③磁感应强度的方向就是该点的磁场方向。
(3)大小:磁场在某位置的磁感应强度的大小与方向是客观存在的,与通过导线的电流大小、导线的长短无关。即使不放入载流导线,磁感应强度也照样存在,故不能说“B与F成正比”或“B与IL成反比”。
关于磁感应强度,下列说法正确的是 (  )
A.由B= 可知,B与F成正比,与IL成反比
B.通电导线放在磁场中某点,该点就有磁感应强度,如果将通电导线拿走,该点的磁感应强度就变为零
C.通电导线所受磁场力不为零的地方一定存在磁场,通电导线不受磁场力的地方一定不存在磁场(即B=0)
D.磁场中某一点的磁感应强度由磁场本身决定
解析:由定义式B= 可知,磁感应强度是属于比值定义的,B与F、IL均没有关系,故A错误;通电导线放在磁场中的某点,就有可能受到磁场力,如果将通电导线拿走,该点的磁感应强度仍存在,故B错误;同一条通电导线放在磁场中某处所受的磁场力不一定相同,受到放置的角度影响,若导线平行磁场方向放置在磁场中,即使此处的磁感应强度不为零,通电导线在该处所受磁场力也一定为零,故C错误;磁场中某一点的磁感应强度由磁场本身决定,其大小和方向是唯一确定的,故D正确。
答案:D
[素养训练]
1.[多选]把一小段通电直导线垂直磁场方向放入一匀强磁场中,图中能正确反映各量间关系的是 (  )
答案:BC
2.将通电直导线置于匀强磁场中,导线与磁场方向垂直。若仅将导线中的电流增大为原来的3倍,则该匀强磁场的磁感应强度 (  )
A.减小为原来的
B.保持不变
C.增大为原来的3倍
D.增大为原来的9倍
解析:导线与磁场方向垂直,则导线受到的磁场力为F=BIL;若仅将导线中的电流增大为原来的3倍,则磁场力将增大为原来3倍,而磁场的磁感应强度只与磁场本身有关,与电流大小无关,则该磁场的磁感应强度保持不变,故B正确,A、C、D错误。
答案:B
3.一条长度为0.5 m,电流为20 A的通电直导线,置于匀强磁场中,磁场的方向与导线垂直,导线上受到的磁场力大小为0.1 N,则该磁场的磁感应强度大小为 (  )
A.0.01 T B.0.02 T
C.0.1 T D.0.2 T
探究(二)  磁通量的理解和计算
[问题驱动]
(1)如图,平面S在垂直于磁场方向上的投影面积为S′,若
有n条磁感线通过S′,则通过面积S的磁感线有多少条?
提示:n条。
(2)若磁场增强,即B增大,通过面积S的磁感线条数是否增多?
提示:B增大时,通过面积S的磁感线条数增多。
[重难释解]
1.磁通量的计算
(1)公式:Φ=BS。
适用条件:①匀强磁场;②磁场与平面垂直。
(2)若磁场与平面不垂直,S应为平面在垂直于磁感线方向
上的投影面积,Φ=BScos θ。式中Scos θ即为平面S在垂直于磁
场方向上的投影面积,也称为“有效面积”(如图所示)。
2.磁通量的正、负
(1)磁通量是标量,但有正、负,当以磁感线从某一面上穿入时,磁通量为正值,则磁感线从此面穿出时即为负值。
(2)若同时有磁感线沿相反方向穿过同一平面,且正向磁通量大小为Φ1,反向磁通量大小为Φ2,则穿过该平面的合磁通量Φ=Φ1-Φ2。
3.磁通量的变化量
(1)当B不变,有效面积S变化时,ΔΦ=B·Δ S。
(2)当B变化,S不变时,ΔΦ=ΔB·S。
(3)B和S同时变化,则ΔΦ=Φ2-Φ1。但此时ΔΦ≠ΔB·ΔS。
面积为0.5 m2的矩形线圈处于磁感应强度为3 T的匀强
磁场中,线圈平面与磁场方向垂直,穿过该线圈的磁通量是
多少?如果转动线圈使线圈平面与磁场方向夹角为60°(如图),
穿过该线圈的磁通量又是多少?
[解题指导] 在匀强磁场中,当线圈平面与磁场方向垂直时,可根据磁通量的定义式Φ=BS计算磁通量;当线圈平面与磁场方向不垂直时,可应用Φ=BScos α计算磁通量,α为线圈平面与垂直于磁场方向投影面的夹角。
解析:已知S=0.5 m2,B=3 T。
因线圈平面与磁场方向垂直,故Φ1=BS=3×0.5 Wb=1.5 Wb,因线圈平面与磁场方向夹角为60°,即与垂直于磁场方向投影面的夹角为30°,所以Φ2=BScos α=3×0.5×cos 30° Wb=1.3 Wb,当线圈平面与磁场方向垂直时,穿过该线圈的磁通量是1.5 Wb;当线圈平面与磁场方向夹角为60°时,穿过该线圈的磁通量是1.3 Wb。
答案:1.5 Wb 1.3 Wb
(1)线圈平面与磁场方向垂直时磁通量最大,线圈转动后穿过线圈的磁感线条数减少,磁通量减小。
(2)在匀强磁场中才能应用公式Φ=BScos α计算磁通量。应用公式时还需要明确公式中各物理量的含义。
[迁移·发散]
在一些问题的讨论中,有时需要知道磁通量的变化量。磁通量的变化量ΔΦ指变化后的磁通量Φ2与变化前的磁通量Φ1之差的绝对值,即ΔΦ=|Φ2-Φ1|。在上述问题中,穿过线圈的磁通量的变化量是多少?
提示:ΔΦ=|Φ2-Φ1|=|1.3 Wb-1.5 Wb|=0.2 Wb。
[素养训练]
1. 如图所示的磁场中垂直磁场放置两个面积相同的闭合线圈S1(左)、
S2(右),由图可知穿过线圈S1、S2的磁通量大小关系正确的是
(  )
A.穿过线圈S1的磁通量比较大
B.穿过线圈S2的磁通量比较大
C.穿过线圈S1、S2的磁通量一样大
D.不能比较
解析:穿过线圈S1的磁感线条数多,故穿过线圈S1的磁通量比较大。
答案:A
2.如图所示,AB是水平面上一个圆的直径,在过AB的竖直平面
内有一根通电导线CD,已知CD∥AB。当CD竖直向上平移时,
电流磁场穿过圆面积的磁通量将 (  )
A.逐渐增大 B.逐渐减小
C.始终为0 D.不为0但保持不变
解析:通电直导线产生稳定的磁场,根据安培定则判断可知:在AB的外侧磁感线向下穿过圆平面,在AB的里侧磁感线向上穿过圆平面,根据对称性可知,穿过圆面积的磁感线的总条数为零,磁通量为零,CD竖直向上平移时,穿过这个圆面的磁通量始终为零,保持不变,故A、B、D错误,C正确。
答案:C
3. 如图所示,两个同心放置的平面金属圆环,条形磁铁穿过圆心且
与两环平面垂直,则通过两圆环的磁通量Φa、Φb间的关系是 (  )
A.Φa>Φb B.Φa<Φb
C.Φa=Φb D.不能确定
解析:通过圆环的磁通量为穿过圆环的磁感线的条数,首先明确条形磁铁的磁感线分布情况,另外要注意磁感线是闭合的曲线。条形磁铁的磁感线在磁体的内部是从S极到N极,在磁体的外部是从N极到S极,内部有多少根磁感线,外部的整个空间就有多少根磁感线同内部磁感线构成闭合曲线。对两个圆环,磁体内部的磁感线全部穿过圆环,外部的磁感线穿过多少,磁通量就抵消多少,所以圆环面积越大,磁通量反而越小,故A正确。
答案:A
探究(三)  磁感应强度的叠加
[重难释解]
(1)合磁场的计算方法:两个以上电流在空间产生磁场时,空间各处的磁感应强度是各电流单独产生磁场时磁感应强度的矢量和。
(2)求解电流磁场叠加问题的步骤:先用安培定则判断各电流磁场的方向,再用平行四边形定则求磁感应强度的矢量和。
[多选] 如图,纸面内有两条互相垂直的长直绝缘导线L1、L2,
L1中的电流方向向左,L2中的电流方向向上;L1的正上方有a、b两点,
它们相对于L2对称。整个系统处于匀强外磁场中,外磁场的磁感应强度大小为B0,方向垂直于纸面向外。已知a、b两点的磁感应强度大小分别为 B0和 B0,方向也垂直于纸面向外。则 (  )
答案:AC 
[素养训练]
1.(2024·广东1月学考)如图所示,水平放置着一根通电直导线,电流方向垂直纸面向外,a、b、c和d是以通电直导线为圆心的同一圆周上的四个点。已知通电直导线产生磁场的磁感应强度在同一圆周上各点大小相等。再添加一个竖直向下的匀强磁场,则在这四个点中合磁场的磁感应强度最大的点是(  )
A.a B.b
C.c D.d
解析:根据右手螺旋定则可知,通电直导线产生的磁场方向为逆时针方向,如图所示,根据磁感应强度叠加原则可知合磁场的磁感应强度最大的点是a。故选A。
答案:A
2.如图所示,两根互相平行的长直导线过纸面上的M、N两
点 ,且与纸面垂直,导线中通有大小相等、方向相反的电流。
a、O、b在M、N的连线上,O为MN的中点,c、d位于MN的中
垂线上,且a、b、c、d到O点的距离均相等。下列说法正确的是 (  )
A.O点处的磁感应强度为零
B.a、b两点处的磁感应强度大小相等、方向相反
C.c、d两点处的磁感应强度大小相等、方向相同
D.a、c两点处的磁感应强度方向不同
解析:a、b、c、d四个点的磁感应强度均为M、N两长直导线在各点的磁感应强度的叠加,由安培定则可知,M、N在O点处磁感应强度的方向相同,合磁感应强度竖直向下,不为零,A错误;由对称性可知,a、b两点处的磁感应强度大小和方向均相同,c、d两点处的磁感应强度大小和方向均相同,B错误,C正确;a、c两点处的磁感应强度均垂直于ab连线竖直向下,方向相同,D错误。
答案:C
一、培养创新意识和创新思维
1.在磁场中放置一条直导线,导线的方向与磁场方向垂直。先后在导线中通入不同的电流,导线所受的力也不一样。如图所示中的图像表现的是导线受力的大小F与通过导线的电流I的关系。A、B各代表一组F、I的数据。在甲、乙、丙、丁四幅图中,正确的是哪一幅或哪几幅?说明道理。
二、注重学以致用和思维建模
2.如图所示是实验室里用来测量磁场力的一种仪器——电流天平,某同学在实验室里,用电流天平测算通电螺线管中的磁感应强度,他测得的数据记录如下所示,请你算出通电螺线管中的磁感应强度B。
已知:CD段导线长度l=4×10-2 m。
天平平衡时钩码重力G=4×10-5 N。
通过导线的电流I=0.5 A。
答案:2.0×10-3 T课时跟踪检测(二十二) 磁感应强度
A组—重基础·体现综合
1.关于磁通量,下列说法中正确的是(  )
A.磁通量不仅有大小而且有方向,所以是矢量
B.磁通量越大,磁感应强度越大
C.穿过某一面积的磁通量为零,则该处磁感应强度不一定为零
D.磁通量就是磁感应强度
解析:选C 磁通量Φ=BS是标量,它的方向是人为规定的,正、负只是表明从不同的面穿入,磁通量越大,磁感应强度不一定越大。若圆环平面与磁场方向平行,磁通量为零,但磁感应强度不为零。
2.[多选]关于磁感应强度的大小,下列说法正确的是(  )
A.磁极在磁场中受磁场力大的地方,该处的磁感应强度一定大
B.磁极在磁场中受磁场力大的地方,该处的磁感应强度不一定大,与放置方向有关
C.通电导线在磁场中受磁场力大的地方,该处磁感应强度一定大
D.通电导线在磁场中受磁场力大的地方,该处磁感应强度不一定大,与放置方向有关
解析:选AD 磁极在磁场中的受力跟放置方向无关,电流在磁场中的受力与放置方向有关。
3. [多选]如图所示,平行金属轨道固定在水平面内,M区域内有竖直向上的匀强磁场,与轨道垂直且接触良好的导体棒向右运动,导体棒与导轨及电阻R构成回路。则(  )
A.棒在M区域运动时,回路磁通量不变
B.棒在M区域运动时,回路磁通量增大
C.棒在N区域运动时,回路磁通量不变
D.棒在N区域运动时,回路磁通量增大
解析:选BC 根据Φ=BS,由图可知棒在M区域运动时,穿过闭合回路的有效面积S在增大,则回路磁通量Φ增大,故A错误,B正确;根据Φ=BS,由图可知棒在N区域运动时,穿过闭合回路的有效面积S保持不变,则回路磁通量Φ不变,故C正确,D错误。
4.如图所示,图中虚线是匀强磁场区的边界,一个闭合线框自左向右穿过该磁场区,线框经过图示的哪个位置时磁通量有增加的趋势(  )
A.在位置1 B.在位置2
C.在位置3 D.在位置4
解析:选B 由磁通量的定义Φ=BS知,线框穿过匀强磁场,B不变,则当线框处在磁场中的面积增加时,磁通量增加,故在位置2线框进入磁场过程,磁通量有增加趋势,故A、C、D错误,B正确。
5.[多选]如图所示,A和B为两根互相平行的长直导线,通以同方向等大电流,虚线C为在A和B所确定的平面内与A、B等距的直线,则下列说法正确的是(  )
A.两导线间的空间不存在磁场
B.虚线C处磁感应强度为零
C.AC间磁感应强度垂直纸面向里
D.CB间磁感应强度垂直纸面向外
解析:选BCD 设电流A、B在空间产生的磁感应强度大小分别为BA、BB,根据安培定则,电流A在AB间产生的磁场垂直纸面向里,而电流B在AB间产生的磁场垂直纸面向外,又因IA=IB,故在AC区,BA>BB,合磁场方向垂直于纸面向里,在BC区,BA6.如图所示,两个单匝线圈a、b的半径分别为r和2r,圆形匀强磁场B的边缘恰好与a线圈重合,则穿过a、b两线圈的磁通量之比为(  )
A.1∶1 B.1∶2
C.1∶4 D.4∶1
解析:选A 两个线圈的半径虽然不同,但是线圈内的匀强磁场的半径一样,则穿过两线圈的磁通量相同,故选项A正确。
7.如图所示,匀强磁场的磁感应强度为B,磁场方向与线框平面的夹角为θ,若线框的面积为S,匝数为n,则穿过线框平面的磁通量为(  )
A.BSsin θ B.BScos θ
C.nBSsin θ D.nBScos θ
解析:选A 根据磁通量的概念可知,穿过线框平面的磁通量为BSsin θ。
8.[多选]一根长0.001 m的导线通有0.1 A的电流,放置在匀强磁场中,导线所受磁场力的大小为0.001 N,则该磁场的磁感应强度的大小可能为(  )
A.5 T   B.10 T   
C.15 T   D.20 T
解析:选BCD 根据F≤BIl,则B≥= T=10 T。
9.[多选]有一个面积很小的圆环,设这个圆环所在位置的磁感应强度为B,穿过圆环的磁通量为Φ,则下列判断中正确的是(  )
A.如果Φ=0,则B=0   B.如果Φ≠0,则B≠0
C.如果B=0,则Φ=0   D.如果B≠0,则Φ≠0
解析:选BC 通过圆环的磁通量为Φ=BScos θ,θ为圆环所在平面与垂直于磁感线平面的夹角,由公式可知B、C正确;圆环所在平面与磁感线平行时,穿过圆环的磁通量为零,故A、D错误。
B组—重应用·体现创新
10.三根完全相同的长直导线互相平行,它们的截面处于一个正方形abcd的三个顶点a、b、c处,导线中通有大小和方向都相同的电流,如图所示,已知每根通电导线在其周围产生的磁场的磁感应强度大小与距该导线的距离成反比,通电导线b在d处所产生的磁场的磁感应强度大小为B,则三根通电导线产生的磁场在d处的合磁感应强度大小为(  )
A.2B   B.3B  
C.2.1B   D.3.8B
解析:选B 设a、b、c三根通电导线在d处产生的磁场的磁感应强度大小分别为Ba、Bb和Bc,正方形的边长为l,则有Bb=B==,Ba=Bc=,又Ba与Bc的矢量和为Bac==2B,且方向与Bb方向相同,故d处的合磁感应强度大小为B合=Bb+Bac=3B,选项B正确。
11.如图所示,三根通电长直导线P、Q、R互相平行,垂直纸面放置,其间距均为L,电流均为I′,方向垂直纸面向里,O点为P、Q连线的中点,RO垂直于PQ,则O点的磁感应强度方向为(  )
A.方向指向x轴正方向   B.方向指向y轴正方向
C.方向指向x轴负方向   D.方向指向y轴负方向
解析:选C P、Q两根导线距离O点的距离相等,根据安培定则,在O点产生的磁感应强度大小相等,方向相反,所以O点合磁感应强度等于R在O点产生的磁感应强度,根据安培定则可知,其方向沿x轴负方向。
12.[多选]安装适当的软件后,利用智能手机中的磁传感器可以测量磁感应强度B。如图,在手机上建立直角坐标系,手机显示屏所在平面为xOy面。某同学在某地对地磁场进行了四次测量,每次测量时y轴指向不同方向而z轴正向保持竖直向上。根据表中测量结果可推知(  )
测量序号 Bx/μT By/μT Bz/μT
1 0 21 -45
2 0 -20 -46
3 21 0 -45
4 -21 0 -45
A.测量地点位于南半球
B.当地的地磁场大小约为50 μT
C.第2次测量时y轴正向指向南方
D.第3次测量时y轴正向指向东方
解析:选BC 如图所示,地磁南极大致在地理北极附近,地磁北极大致在地理南极附近。由表中z轴数据可看出z轴的磁场竖直向下,则测量地点应位于北半球,A错误;磁感应强度为矢量,故由表格中第1次数据可看出此处的磁感应强度大致为B=,计算得B≈50 μT,B正确;由以上分析知测量地在北半球,而北半球地磁场指向北方斜向下,第2次测量By<0,故y轴指向南方,第3次测量Bx>0,故x轴指向北方而y轴则指向西方,C正确,D错误。
13.[多选]如图所示是等腰直角三棱柱,其中底面abcd为正方形,边长为L,它们按图示位置放置于竖直向下的匀强磁场中,磁感应强度为B,下面说法中正确的是(  )
A.通过abcd平面的磁通量大小为L2B
B.通过dcfe平面的磁通量大小为L2B
C.通过abfe平面的磁通量大小为零
D.通过整个三棱柱表面的磁通量为零
解析:选BCD abcd平面在垂直于B方向的投影S⊥=L2,所以Φ=BS⊥=L2B,A错误;dcfe平面与B垂直,S=L2,所以Φ=L2B,B正确;abfe平面与B平行,S⊥=0,Φ=0,C正确;整个三棱柱穿进的磁感线和穿出的磁感线条数相等,抵消为零,所以Φ=0,D正确。
14.如图所示,正方形线圈abcO边长为0.8 m,匀强磁场沿x轴正向,B=0.2 T,线圈在图示位置绕Oz轴转过60°的过程中,穿过线圈的磁通量变化了多少?
解析:由题意,初磁通量Φ1=BSsin 0°=0,
末磁通量Φ2=BSsin 60°=0.2×0.82× Wb=0.064 Wb≈0.11 Wb, 
所以ΔΦ=Φ2-Φ1=0.11 Wb。
答案:0.11 Wb
15.如图所示,有一个垂直纸面向里的匀强磁场,磁感应强度B=0.8 T,磁场有明显的圆形边界,圆心为O,半径为1.0 cm,现在纸面内先后放上圆线圈,圆心均在O处,A线圈半径为1.0 cm,10匝;B线圈半径为2.0 cm,1匝;C线圈半径为0.5 cm,1匝。问:
(1)在B减为0.4 T的过程中,A和B中磁通量各改变多少?
(2)当磁场方向转过30°角的过程中,C中的磁通量改变多少?
解析:(1)A线圈半径为1.0 cm,正好和圆形磁场区域的半径相等,而B线圈半径为2.0 cm,大于圆形磁场区域的半径,但穿过A、B线圈的磁感线的条数相等,因此在求通过B线圈中的磁通量时,面积S只能取圆形磁场区域的面积。
设圆形磁场区域的半径为R,对线圈A、B,磁通量的改变量:ΔΦA=ΔΦB=|Φ2-Φ1|=(0.8-0.4)×3.14×(10-2)2Wb=1.256×10-4 Wb。
(2)当线圈平面与磁场方向垂直,若用公式Φ=BSsin θ求磁通量,此时θ1=90°,
当磁场方向转过30°角时,磁场方向与线圈平面之间的夹角为θ2=60°。
对线圈C,设C线圈的半径为r,
Φ1=Bπr2sin θ1,Φ2=Bπr2sin θ2,
磁通量的改变量
ΔΦ=|Φ2-Φ1|=Bπr2(sin 90°-sin 60°)
=0.8×3.14×(5×10-3)2×(1-0.866)Wb
=8.4×10-6 Wb。
答案:(1)1.256×10-4 Wb 1.256×10-4 Wb 
(2)8.4×10-6 Wb
21世纪教育网(www.21cnjy.com)