§11.1 全等三角形
教学目标
1.知道什么是全等形、全等三角形及全等三角形的对应元素;
2.知道全等三角形的性质,能用符号正确地表示两个三角形全等;
3.能熟练找出两个全等三角形的对应角、对应边.
教学重点
全等三角形的性质.
教学难点
找全等三角形的对应边、对应角.
教学过程
Ⅰ.提出问题,创设情境
1、问题:你能发现这两个三角形有什么美妙的关系吗?
这两个三角形是完全重合的.
2.学生自己动手(同桌两名同学配合)
取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板形状、大小完全一样.
3.获取概念
让学生用自己的语言叙述:全等形、全等三角形、对应顶点、对应角、对应边,以及有关的数学符号.
形状与大小都完全相同的两个图形就是全等形.
要是把两个图形放在一起,能够完全重合,就可以说明这两个图形的形状、大小相同.
概括全等形的准确定义:能够完全重合的两个图形叫做全等形.请同学们类推得出全等三角形的概念,并理解对应顶点、对应角、对应边的含义.仔细阅读课本中“全等”符号表示的要求.
Ⅱ.导入新课
利用投影片演示
将△ABC沿直线BC平移得△DEF;将△ABC沿BC翻折180°得到△DBC;将△ABC旋转180°得△AED.
议一议:各图中的两个三角形全等吗?
不难得出: △ABC≌△DEF,△ABC≌△DBC,△ABC≌△AED.
(注意强调书写时对应顶点字母写在对应的位置上)
启示:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的方法寻求全等的一种策略.
观察与思考:
寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢?
(引导学生从全等三角形可以完全重合出发找等量关系)
得到全等三角形的性质:全等三角形的对应边相等. 全等三角形的对应角相等.
[例1]如图,△OCA≌△OBD,C和B,A和D是对应顶点,说出这两个三角形中相等的边和角.
问题:△OCA≌△OBD,说明这两个三角形可以重合,思考通过怎样变换可以使两三角形重合?
将△OCA翻折可以使△OCA与△OBD重合.因为C和B、A和D是对应顶点,所以C和B重合,A和D重合.
∠C=∠B;∠A=∠D;∠AOC=∠DOB.AC=DB;OA=OD;OC=OB.
总结:两个全等的三角形经过一定的转换可以重合.一般是平移、翻转、旋转的方法.
[例2]如图,已知△ABE≌△ACD,∠ADE=∠AED,∠B=∠C,指出其他的对应边和对应角.
分析:对应边和对应角只能从两个三角形中找,所以需将△ABE和△ACD从复杂的图形中分离出来.
根据位置元素来找:有相等元素,它们就是对应元素,然后再依据已知的对应元素找出其余的对应元素.常用方法有:
(1)全等三角形对应角所对的边是对应边;两个对应角所夹的边也是对应边.
(2)全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.
解:对应角为∠BAE和∠CAD.
对应边为AB与AC、AE与AD、BE与CD.
[例3]已知如图△ABC≌△ADE,试找出对应边、对应角.(由学生讨论完成)
借鉴例2的方法,可以发现∠A=∠A,在两个三角形中∠A的对边分别是BC和DE,所以BC和DE是一组对应边.而AB与AE显然不重合,所以AB与AD是一组对应边,剩下的AC与AE自然是一组对应边了.再根据对应边所对的角是对应角可得∠B与∠D是对应角,∠ACB与∠AED是对应角.所以说对应边为AB与AD、AC与AE、BC与DE.对应角为∠A与∠A、∠B与∠D、∠ACB与∠AED.
做法二:沿A与BC、DE交点O的连线将△ABC翻折180°后,它正好和△ADE重合.这时就可找到对应边为:AB与AD、AC与AE、BC与DE.对应角为∠A与∠A、∠B与∠D、∠ACB与∠AED.
Ⅲ.课堂练习
课本P4练习1.
课本P4习题13.1复习巩固1.
Ⅳ.课时小结
通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,并且利用性质可以找到两个全等三角形的对应元素.这也是这节课大家要重点掌握的.
找对应元素的常用方法有两种:
(一)从运动角度看
1.翻转法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素.
2.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素.
3.平移法:沿某一方向推移使两三角形重合来找对应元素.
(二)根据位置元素来推理
1.全等三角形对应角所对的边是对应边;两个对应角所夹的边是对应边.
2.全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.
Ⅴ.作业
课本P4习题13.1、复习巩固2、综合运用3.
课后作业:<<三级训练>>
板书设计
§11.1 全等三角形 一、概念 二、全等三角形的性质 三、性质应用 例1:(运动角度看问题) 例2:(根据位置来推理) 例3:(根据位置和运动角度两种办法来推理) 四、小结:找对应元素的方法 运动法:翻折、旋转、平移. 位置法:对应角→对应边,对应边→对应角.
§11.2 三角形全等的判定
§11.2.1 三角形全等的条件(一)
教学目标
1.三角形全等的“边边边”的条件.
2.了解三角形的稳定性.
3.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.
教学重点
三角形全等的条件.
教学难点
寻求三角形全等的条件.
教学过程
Ⅰ.创设情境,引入新课
出示投影片,回忆前面研究过的全等三角形.
已知△ABC≌△A′B′C′,找出其中相等的边与角.
图中相等的边是:AB=A′B、BC=B′C′、AC=A′C.
相等的角是:∠A=∠A′、∠B=∠B′、∠C=∠C′.
展示课作前准备的三角形纸片,提出问题:你能画一个三角形与它全等吗?怎样画?
(可以先量出三角形纸片的各边长和各个角的度数,再作出一个三角形使它的边、角分别和已知的三角形纸片的对应边、对应角相等.这样作出的三角形一定与已知的三角形纸片全等).
这是利用了全等三角形的定义来作图.那么是否一定需要六个条件呢?条件能否尽可能少呢?现在我们就来探究这个问题.
Ⅱ.导入新课
出示投影片
1.只给一个条件(一组对应边相等或一组对应角相等),画出的两个三角形一定全等吗?
2.给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?分别按下列条件做一做.
①三角形一内角为30°,一条边为3cm.
②三角形两内角分别为30°和50°.
③三角形两条边分别为4cm、6cm.
学生分组讨论、探索、归纳,最后以组为单位出示结果作补充交流.
结果展示:
1.只给定一条边时:
只给定一个角时:
2.给出的两个条件可能是:一边一内角、两内角、两边.
可以发现按这些条件画出的三角形都不能保证一定全等.
给出三个条件画三角形,你能说出有几种可能的情况吗?
归纳:有四种可能.即:三内角、三条边、两边一内角、两内有一边.
在刚才的探索过程中,我们已经发现三内角不能保证三角形全等.下面我们就来逐一探索其余的三种情况.
已知一个三角形的三条边长分别为6cm、8cm、10cm.你能画出这个三角形吗?把你画的三角形剪下与同伴画的三角形进行比较,它们全等吗?
1.作图方法:
先画一线段AB,使得AB=6cm,再分别以A、B为圆心,8cm、10cm为半径画弧,两弧交点记作C,连结线段AC、BC,就可以得到三角形ABC,使得它们的边长分别为AB=6cm,AC=8cm,BC=10cm.
2.以小组为单位,把剪下的三角形重叠在一起,发现都能够重合.这说明这些三角形都是全等的.
3.特殊的三角形有这样的规律,要是任意画一个三角形ABC,根据前面作法,同样可以作出一个三角形A′B′C′,使AB=A′B′、AC=A′C′、BC=B′C′.将△A′B′C′剪下,发现两三角形重合.这反映了一个规律:
三边对应相等的两个三角形全等,简写为“边边边”或“SSS”.
用上面的规律可以判断两个三角形全等.判断两个三角形全等的推理过程,叫做证明三角形全等.所以“SSS”是证明三角形全等的一个依据.请看例题.
[例]如图,△ABC是一个钢架,AB=AC,AD是连结点A与BC中点D的支架.
求证:△ABD≌△ACD.
[师生共析]要证△ABD≌△ACD,可以看这两个三角形的三条边是否对应相等.
证明:因为D是BC的中点
所以BD=DC
在△ABD和△ACD中
所以△ABD≌△ACD(SSS).
生活实践的有关知识:用三根木条钉成三角形框架,它的大小和形状是固定不变的,而用四根木条钉成的框架,它的形状是可以改变的.三角形的这个性质叫做三角形的稳定性.所以日常生活中常利用三角形做支架.就是利用三角形的稳定性.例如屋顶的人字梁、大桥钢架、索道支架等.
Ⅲ.随堂练习
如图,已知AC=FE、BC=DE,点A、D、B、F在一条直线上,AD=FB.要用“边边边”证明△ABC≌△FDE,除了已知中的AC=FE,BC=DE以外,还应该有什么条件?怎样才能得到这个条件?
2.课本P8练习.
Ⅳ.课时小结
本节课我们探索得到了三角形全等的条件,发现了证明三角形全等的一个规律SSS.并利用它可以证明简单的三角形全等问题.
Ⅴ.作业
1.习题11.2复习巩固1、2. 习题11.2综合运用9.
课后作业:《课堂感悟与探究》
Ⅵ.活动与探索
如图,一个六边形钢架ABCDEF由6条钢管连结而成,为使这一钢架稳固,请你用三条钢管连接使它不能活动,你能找出几种方法?
本题的目的是让学生能够进一步理解三角形的稳定性在现实生活中的应用.
结果:(1)可从这六个顶点中的任意一个作对角线,把这个六边形划分成四个三角形.如图(1)为其中的一种.(2)也可以把这个六边形划分成四个三角形.如图(2).
板书设计
§11.2.1 三角形全等的条件(一) 一、三角形全等的条件 三边对应相等的两三角形全等(SSS) 二、例 三、课堂练习 四、小结
§11.2.2 三角形全等的条件(二)
教学目标
1.三角形全等的“边角边”的条件.
2.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.
3.掌握三角形全等的“SAS”条件,了解三角形的稳定性.
4.能运用“SAS”证明简单的三角形全等问题.
教学重点
三角形全等的条件.
教学难点
寻求三角形全等的条件.
教学过程
一、创设情境,复习提问
1.怎样的两个三角形是全等三角形?2.全等三角形的性质?
3.指出图中各对全等三角形的对应边和对应角,并说明通过怎样的变换能使它们完全重合:
图(1)中:△ABD≌△ACE,AB与AC是对应边;
图(2)中:△ABC≌△AED,AD与AC是对应边.
4.三角形全等的判定Ⅰ的内容是什么?
二、导入新课
1.三角形全等的判定(二)
(1)全等三角形具有“对应边相等、对应角相等”的性质.那么,怎样才能判定两个三角形全等呢?也就是说,具备什么条件的两个三角形能全等?是否需要已知“三条边相等和三个角对应相等”?现在我们用图形变换的方法研究下面的问题:
如图2,AC、BD相交于O,AO、BO、CO、DO的长度如图所标,△ABO和△CDO是否能完全重合呢?
不难看出,这两个三角形有三对元素是相等的:
AO=CO,
∠AOB= ∠COD,
BO=DO.
如果把△OAB绕着O点顺时针方向旋转,因为OA=OC,所以可以使OA与OC重合;又因为∠AOB =∠COD, OB=OD,所以点B与点D重合.这样△ABO与△CDO就完全重合.
(此外,还可以图1(1)中的△ACE绕着点A逆时针方向旋转∠CAB的度数,也将与△ABD重合.图1( 2)中的△ABC绕着点A旋转,使AB与AE重合,再把△ADE沿着AE(AB)翻折180°.两个三角形也可重合)
由此,我们得到启发:判定两个三角形全等,不需要三条边对应相等和三个角对应相等.而且,从上面的例子可以引起我们猜想:如果两个三角形有两边和它们的夹角对应相等,那么这两个三角形全等.
2.上述猜想是否正确呢?不妨按上述条件画图并作如下的实验:
(1)读句画图:①画∠DAE=45°,②在AD、AE上分别取 B、C,使 AB=3.1cm, AC=2.8cm.③连结BC,得△ABC.④按上述画法再画一个△A'B'C'.
(2)把△A'B'C'剪下来放到△ABC上,观察△A'B'C'与△ABC是否能够完全重合?
3.边角边公理.
有两边和它们的夹角对应相等的两个三角形全等(简称“边角边”或“SAS”)
三、例题与练习
1.填空:
(1)如图3,已知AD∥BC,AD=CB,要用边角边公理证明△ABC≌△CDA,需要三个条件,这三个条件中,已具有两个条件,一是AD=CB(已知),二是___________;还需要一个条件_____________(这个条件可以证得吗?).
(2)如图4,已知AB=AC,AD=AE,∠1=∠2,要用边角边公理证明△ABD≌ACE,需要满足的三个条件中,已具有两个条件:_________________________(这个条件可以证得吗?).
2、例1 已知: AD∥BC,AD= CB(图3).
求证:△ADC≌△CBA.
问题:如果把图3中的△ADC沿着CA方向平移到△ADF的位置(如图5),那么要证明△ADF≌ △CEB,除了AD∥BC、AD=CB的条件外,还需要一个什么条件(AF= CE或AE =CF)?怎样证明呢?
例2 已知:AB=AC、AD=AE、∠1=∠2(图4).求证:△ABD≌△ACE.
四、小 结:
1.根据边角边公理判定两个三角形全等,要找出两边及夹角对应相等的三个条件.
2.找使结论成立所需条件,要充分利用已知条件(包括给出图形中的隐含条件,如公共边、公共角等),并要善于运用学过的定义、公理、定理.
五、作 业:
1.已知:如图,AB=AC,F、E分别是AB、AC的中点.求证:△ABE≌△ACF.
2.已知:点A、F、E、C在同一条直线上, AF=CE,BE∥DF,BE=DF.
求证:△ABE≌△CDF.
课后作业:<<课堂感悟与探究>>
§11.2.3 三角形全等的条件(三)
教学目标
1.三角形全等的条件:角边角、角角边.
2.三角形全等条件小结.
3.掌握三角形全等的“角边角”“角角边”条件.
4.能运用全等三角形的条件,解决简单的推理证明问题.
教学重点
已知两角一边的三角形全等探究.
教学难点
灵活运用三角形全等条件证明.
教学过程
Ⅰ.提出问题,创设情境
1.复习:(1)三角形中已知三个元素,包括哪几种情况?
三个角、三个边、两边一角、两角一边.
(2)到目前为止,可以作为判别两三角形全等的方法有几种?各是什么?
三种:①定义;②SSS;③SAS.
2.在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢?
Ⅱ.导入新课
问题1:三角形中已知两角一边有几种可能?
1.两角和它们的夹边.
2.两角和其中一角的对边.
问题2:三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?
将所得三角形重叠在一起,发现完全重合,这说明这些三角形全等.
提炼规律:
两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).
问题3:我们刚才做的三角形是一个特殊三角形,随意画一个三角形ABC,能不能作一个△A′B′C′,使∠A=∠A′、∠B=∠B′、AB=A′B′呢?
①先用量角器量出∠A与∠B的度数,再用直尺量出AB的边长.
②画线段A′B′,使A′B′=AB.
③分别以A′、B′为顶点,A′B′为一边作∠DA′B′、∠EB′A,使∠D′AB=∠CAB,∠EB′A′=∠CBA.
④射线A′D与B′E交于一点,记为C′
即可得到△A′B′C′.
将△A′B′C′与△ABC重叠,发现两三角形全等.
两角和它们的夹边对应相等的两三角形全等(可以简写成“角边角”或“ASA”).
思考:在一个三角形中两角确定,第三个角一定确定.我们是不是可以不作图,用“ASA”推出“两角和其中一角的对边对应相等的两三角形全等”呢?
探究问题4:
如图,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?能利用角边角条件证明你的结论吗?
证明:∵∠A+∠B+∠C=∠D+∠E+∠F=180°
∠A=∠D,∠B=∠E
∴∠A+∠B=∠D+∠E
∴∠C=∠F
在△ABC和△DEF中
∴△ABC≌△DEF(ASA).
两个角和其中一角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”).
[例]如下图,D在AB上,E在AC上,AB=AC,∠B=∠C.
求证:AD=AE.
[分析]AD和AE分别在△ADC和△AEB中,所以要证AD=AE,只需证明△ADC≌△AEB即可.
证明:在△ADC和△AEB中
所以△ADC≌△AEB(ASA)
所以AD=AE.
Ⅲ.随堂练习
(一)课本P13练习1、2.
(二)补充练习
图中的两个三角形全等吗?请说明理由.
答案:图(1)中由“ASA”可证得△ACD≌△ACB.图(2)由“AAS”可证得△ACE≌△BDC.
Ⅳ.课时小结
至此,我们有五种判定三角形全等的方法:
1.全等三角形的定义
2.判定定理:边边边(SSS) 边角边(SAS) 角边角(ASA) 角角边(AAS)
推证两三角形全等时,要善于观察,寻求对应相等的条件,从而获得解题途径.
Ⅴ.作业
1.课本习题11.2─5、6、11题.
课后作业:<<课堂感悟与探究>>
板书设计
13.2.3 三角形全等的条件(三) 一、两角一边 二、三角形全等的条件 1.两角及其夹边对应相等的两三角形全等(ASA)2.两角和其中一角的对边对应相等的两三角形全等(AAS)
§11.2.3 三角形全等的条件---直角三角形全等的判定(四)
教学目标
1、经历探索直角三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程;
2、掌握直角三角形全等的条件,并能运用其解决一些实际问题。
3、在探索直角三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理。
教学重点
运用直角三角形全等的条件解决一些实际问题。
教学难点
熟练运用直角三角形全等的条件解决一些实际问题。
教学过程
Ⅰ.提出问题,复习旧知
1、判定两个三角形全等的方法: 、 、 、
2、如图,Rt△ABC中,直角边是 、 ,
斜边是
3、如图,AB⊥BE于C,DE⊥BE于E,
(1)若∠A=∠D,AB=DE,
则△ABC与△DEF (填“全等”或“不全等” )
根据 (用简写法)
(2)若∠A=∠D,BC=EF,
则△ABC与△DEF (填“全等”或“不全等” )
根据 (用简写法)
(3)若AB=DE,BC=EF,
则△ABC与△DEF (填“全等”或“不全等” )
根据 (用简写法)
(4)若AB=DE,BC=EF,AC=DF
则△ABC与△DEF (填“全等”或“不全等” )
根据 (用简写法)
Ⅱ.导入新课
(一)探索练习:(动手操作):
已知线段a ,c (aAB=c ,CB= a
1、按步骤作图: a c
1 作∠MCN=∠=90°,
2 在射线 CM上截取线段CB=a,
③以B 为圆心,C为半径画弧,交射线CN于点A,
④连结AB
2、与同桌重叠比较,是否重合?
3、从中你发现了什么?
斜边与一直角边对应相等的两个直角三角形全等.(HL)
(二)巩固练习:
1. 如图,△ABC中,AB=AC,AD是高,
则△ADB与△ADC (填“全等”或“不全等” )
根据 (用简写法)
2. 如图,CE⊥AB,DF⊥AB,垂足分别为E、F,
(1)若AC//DB,且AC=DB,则△ACE≌△BDF,
根据
(2)若AC//DB,且AE=BF,则△ACE≌△BDF,
根据
(3)若AE=BF,且CE=DF,则△ACE≌△BDF,
根据
(4)若AC=BD,AE=BF,CE=DF。则△ACE≌△BDF,
根据
(5) 若AC=BD,CE=DF(或AE=BF),则△ACE≌△BDF,
根据
3、判断两个直角三角形全等的方法不正确的有( )
(A) 两条直角边对应相等 (B)斜边和一锐角对应相等
(C)斜边和一条直角边对应相等 (D)两个锐角对应相等
4、如图,B、E、F、C在同一直线上,AF⊥BC于F,DE⊥BC于E,
AB=DC,BE=CF,你认为AB平行于CD吗?说说你的理由
答:
理由:∵ AF⊥BC,DE⊥BC (已知)
∴ ∠AFB=∠DEC= °(垂直的定义)
在Rt△ 和Rt△ 中
∴ ≌ ( )
∴∠ = ∠ ( )
∴ (内错角相等,两直线平行)
5、如图,广场上有两根旗杆,已知太阳光线AB与DE是平行的,经过测量这两根旗杆在太阳光照射下的影子是一样长的,那么这两根旗杆高度相等吗?说说你的理由。
(三)提高练习:
1、判断题:
(1)一个锐角和这个锐角的对边对应相等的两个直角三角形全等。( )
(2)一个锐角和锐角相邻的一直角边对应相等的两个直角三角形全等( )
(3)一个锐角与一斜边对应相等的两个直角三角形全等( )
(4)两直角边对应相等的两个直角三角形全等( )
(5)两边对应相等的两个直角三角形全等( )
(6)两锐角对应相等的两个直角三角形全等( )
(7)一个锐角与一边对应相等的两个直角三角形全等( )
(8)一直角边和斜边上的高对应相等的两个直角三角形全等( )
2、如图,∠D=∠C=90°,请你再添加一个条件,使△ABD≌△BAC,并在
添加的条件后的( )内写出判定全等的依据。
(1) ( )
(2) ( )
(3) ( )
(4) ( )
课时小结
至此,我们有六种判定三角形全等的方法:
1.全等三角形的定义
2.边边边(SSS)
3.边角边(SAS)
4.角边角(ASA)
5.角角边(AAS)
6.HL(仅用在直角三角形中)
作业
1.课本习题11.2─10、12题.
课后作业:<<课堂感悟与探究>>
§11.3.1 角的平分线的性质(一)
教学目标
1、应用三角形全等的知识,解释角平分线的原理.
2.会用尺规作一个已知角的平分线.
教学重点
利用尺规作已知角的平分线.
教学难点
角的平分线的作图方法的提炼.
教学过程
Ⅰ.提出问题,创设情境
问题1:三角形中有哪些重要线段.
问题2:你能作出这些线段吗?
Ⅱ.导入新课
在学直角三角形全等的条件时做过这样一个题:
在∠AOB的两边OA和OB上分别取OM=ON,MC⊥OA,NC⊥OB.MC与NC交于C点.
求证:∠MOC=∠NOC.
通过证明Rt△MOC≌Rt△NOC,即可证明∠MOC=∠NOC,所以射线OC就是∠AOB的平分线.
受这个题的启示,我们能不能这样做:
在已知∠AOB的两边上分别截取OM=ON,再分别过M、N作MC⊥OA,NC⊥OB,MC与NC交于C点,连接OC,那么OC就是∠AOB的平分线了.
思考:这个方案可行吗?
(学生思考、讨论后,统一思想,认为可行)
议一议:下图是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线.你能说明它的道理吗?
要说明AC是∠DAC的平分线,其实就是证明∠CAD=∠CAB.
∠CAD和∠CAB分别在△CAD和△CAB中,那么证明这两个三角形全等就可以了.
看看条件够不够.
所以△ABC≌△ADC(SSS).
所以∠CAD=∠CAB.
即射线AC就是∠DAB的平分线.
作已知角的平分线的方法:
已知:∠AOB.
求作:∠AOB的平分线.
作法:
(1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.
(2)分别以M、N为圆心,大于MN的长为半径作弧.两弧在∠AOB内部交于点C.
(3)作射线OC,射线OC即为所求.
议一议:
1.在上面作法的第二步中,去掉“大于MN的长”这个条件行吗?
2.第二步中所作的两弧交点一定在∠AOB的内部吗?
总结:
1.去掉“大于MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线.
2.若分别以M、N为圆心,大于MN的长为半径画两弧,两弧的交点可能在∠AOB的内部,也可能在∠AOB的外部,而我们要找的是∠AOB内部的交点,否则两弧交点与顶点连线得到的射线就不是∠AOB的平分线了.
3.角的平分线是一条射线.它不是线段,也不是直线,所以第二步中的两个限制缺一不可.
4.这种作法的可行性可以通过全等三角形来证明.
练一练:
任意画一角∠AOB,作它的平分线.
探索活动
按以下步骤折纸
1、 在准备好的三角形的每个顶点上标好字母;A、B、C。把角A对折,使得这个角的两边重合。
2、 在折痕(即平分线)上任意找一点C,
3、 过点C折OA边的垂线,得到新的折痕CD,其中,点D是折痕与OA的交点,即垂足。
4、 将纸打开,新的折痕与OB边交点为E。
角平分线的性质:角平分线上的点到角的两边的距离相等.
下面用我们学过的知识证明发现:
如图,已知AO平分∠BAC,OE⊥AB,OD⊥AC。
求证:OE=OD。
Ⅲ.随堂练习
课本P22练习.
练后总结:
平角∠AOB的平分线OC与直线AB垂直.将OC反向延长得到直线CD,直线CD与AB也垂直.
Ⅳ.课时小结
本节课中我们利用已学过的三角形全等的知识,探究得到了角平分线仪器的操作原理,由此归纳出角的平分线的尺规画法,并进一步探究到角平分线的性质.
Ⅴ.课后作业
1.课本P22习题11.3─1、2.
课后作业:<<课堂感悟与探究>>
思考
1. 在一节数学课上,老师要求同学们练习一道题,题目的图形如图所示,图中的BD是∠ABC的平分线,在同学们忙于画图和分析题目时,小明同学忽然兴奋地大声说:“我有个发现!”原来他自己创造了一个在直角三角形中画锐角的平分线的方法.他的方法是这样的,在AB上取点E,使BE=BC,然后画DE⊥AB交AC于D,那么BD就是∠ABC的平分线.
有的同学对小明的画法表示怀疑,你认为他的画法对不对呢?请你来说明理由.
板书设计
§11.3 角的平分线的性质 一、角平分线仪器的操作原理 二、角平分线的尺规画法: 1.以O为圆心,适当长为半径作弧,分别交OA、OB于M、N. 2.分别以M、N为圆心,大于MN长为半径作弧.两弧在∠AOB内部交于C点. 3.连接OC,射线OC即为所求. 三、角平分线的性质.
§11.3.2 角的平分线的性质(二)
教学目标
1、 角的平分线的性质
2.会叙述角的平分线的性质及“到角两边距离相等的点在角的平分线上”.
3.能应用这两个性质解决一些简单的实际问题.
教学重点
角平分线的性质及其应用.
教学难点
灵活应用两个性质解决问题.
教学过程
Ⅰ.创设情境,引入新课
拿出课前准备好的折纸与剪刀,剪一个角,把剪好的角对折,使角的两边叠合在一起,再把纸片展开,看到了什么?把对折的纸片再任意折一次,然后把纸片展开,又看到了什么?
分析:第一次对折后的折痕是这个角的平分线;再折一次,又会出现两条折痕,而且这两条折痕是等长的.这种方法可以做无数次,所以这种等长的折痕可以折出无数对.
Ⅱ.导入新课
角平分线的性质即已知角的平分线,能推出什么样的结论.
折出如图所示的折痕PD、PE.
画一画:
按照折纸的顺序画出一个角的三条折痕,并度量所画PD、PE是否等长?
投影出下面两个图形,让学生评一评,以达明确概念的目的.
结论:同学乙的画法是正确的.同学甲画的是过角平分线上一点画角平分线的垂线,而不是过角平分线上一点作两边的垂线段,所以他的画法不符合要求.
问题1:如何用文字语言叙述所画图形的性质吗?
[生]角平分线上的点到角的两边的距离相等.
问题2:能否用符号语言来翻译“角平分线上的点到角的两边的距离相等”这句话.请填下表:
已知事项:OC平分∠AOB,PD⊥OA,PE⊥OB,D、E为垂足.
由已知事项推出的事项:PD=PE.
于是我们得角的平分线的性质:
在角的平分线上的点到角的两边的距离相等.
[师]那么到角的两边距离相等的点是否在角的平分线上呢?(出示投影)
问题3:根据下表中的图形和已知事项,猜想由已知事项可推出的事项,并用符号语言填写下表:
[生讨论]已知事项符合直角三角形全等的条件,所以Rt△PEO≌△PDO(HL).于是可得∠PDE=∠POD.
由已知推出的事项:点P在∠AOB的平分线上.
由此我们又可以得到一个性质:到角的两边距离相等的点在角的平分线上.这两个性质有什么联系吗?
分析:这两个性质已知条件和所推出的结论可以互换.
思考:
如图所示,要在S区建一个集贸市场,使它到公路、铁路距离相等,离公路与铁路交叉处500m,这个集贸市场应建于何处(在图上标出它的位置,比例尺为1:20000)?
1.集贸市场建于何处,和本节学的角平分线性质有关吗?用哪一个性质可以解决这个问题?
2.比例尺为1:20000是什么意思?
结论:
1.应该是用第二个性质.这个集贸市场应该建在公路与铁路形成的角的平分线上,并且要求离角的顶点500米处.
2.在纸上画图时,我们经常在厘米为单位,而题中距离又是以米为单位,这就涉及一个单位换算问题了.1m=100cm,所以比例尺为1:20000,其实就是图中1cm表示实际距离200m的意思.作图如下:
第一步:尺规作图法作出∠AOB的平分线OP.
第二步:在射线OP上截取OC=2.5cm,确定C点,C点就是集贸市场所建地了.
总结:应用角平分线的性质,就可以省去证明三角形全等的步骤,使问题简单化.所以若遇到有关角平分线,又要证线段相等的问题,我们可以直接利用性质解决问题.
III例题与练习
例 如图,△ABC的角平分线BM、CN相交于点P.
求证:点P到三边AB、BC、CA的距离相等.
分析:点P到AB、BC、CA的垂线段PD、PE、PF的长就是P点到三边的距离,也就是说要证:PD=PE=PF.而BM、CN分别是∠B、∠C的平分线,根据角平分线性质和等式的传递性可以解决这个问题.
证明:过点P作PD⊥AB,PE⊥BC,PF⊥AC,垂足为D、E、F.
因为BM是△ABC的角平分线,点P在BM上.
所以PD=PE.
同理PE=PF.
所以PD=PE=PF.
即点P到三边AB、BC、CA的距离相等.
练习:
1.课本P22练习.
2.课本P22习题13.3─2.
强调:条件充足的时候应该直接利用角平分线的性质,无须再证三角形全等.
IV.课时小结
今天,我们学习了关于角平分线的两个性质:①角平分线上的点到角的两边的距离相等;②到角的两边距离相等的点在角的平分线上.它们具有互逆性,随着学习的深入,解决问题越来越简便了.像与角平分线有关的求证线段相等、角相等问题,我们可以直接利用角平分线的性质,而不必再去证明三角形全等而得出线段相等.
Ⅴ.课后作业
1、课本习题11.3─3、4、5题.
2、《课堂感悟与探究》
§12.1 轴对称
§12.1.1 轴对称(一)
教学目标
1.在生活实例中认识轴对称图.
2.分析轴对称图形,理解轴对称的概念.
教学重点
轴对称图形的概念.
教学难点
能够识别轴对称图形并找出它的对称轴.
教学过程
Ⅰ.创设情境,引入新课
我们生活在一个充满对称的世界中,许多建筑物都设计成对称形,艺术作品的创作往往也从对称角度考虑,自然界的许多动植物也按对称形生长,中国的方块字中些也具有对称性……对称给我们带来多少美的感受!初步掌握对称的奥秒,不仅可以帮助我们发现一些图形的特征,还可以使我们感受到自然界的美与和谐.
轴对称是对称中重要的一种,从这节课开始,我们来学习第十四章:轴对称.今天我们来研究第一节,认识什么是轴对称图形,什么是对称轴.
Ⅱ.导入新课
出示课本的图片,观察它们都有些什么共同特征.
这些图形都是对称的.这些图形从中间分开后,左右两部分能够完全重合.
小结:对称现象无处不在,从自然景观到分子结构,从建筑物到艺术作品,甚至日常生活用品,人们都可以找到对称的例子.现在同学们就从我们生活周围的事物中来找一些具有对称特征的例子.
我们的黑板、课桌、椅子等.
我们的身体,还有飞机、汽车、枫叶等都是对称的.
如课本的图14.1.2,把一张纸对折,剪出一个图案(折痕处不要完全剪断),再打开这张对折的纸,就剪出了美丽的窗花.观察得到的窗花和图14.1.1中的图形,你能发现它们有什么共同的特点吗?
窗花可以沿折痕对折,使折痕两旁的部分完全重合.不仅窗花可以沿一条直线对折,使直线两旁重合,上面图14.1.1中的图形也可以沿一条直线对折,使直线两旁的部分重合.
结论:如果一个图形沿一直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.
了解了轴对称图形及其对称轴的概念后,我们来做一做.
取一张质地较硬的纸,将纸对折,并用小刀在纸的中央随意刻出一个图案,将纸打开后铺平,你得到两个成轴对称的图案了吗?与同伴进行交流.
结论:位于折痕两侧的图案是对称的,它们可以互相重合.
由此可以得到轴对称图形的特征:一个图形沿一条直线折叠后,折痕两侧的图形完全重合.
接下来我们来探讨一个有关对称轴的问题.有些轴对称图形的对称轴只有一条,但有的轴对称图形的对称轴却不止一条,有的轴对称图形的对称轴甚至有无数条。
下列各图,你能找出它们的对称轴吗?
结果:图(1)有四条对称轴;图(2)有四条对称轴;图(3)有无数条对称轴;图(4)有两条对称轴;图(5)有七条对称轴.
(1) (2) (3) (4) (5)
展示挂图,大家想一想,你发现了什么?
像这样,把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.
Ⅲ.随堂练习
课本P30练习
Ⅳ.课时小结
这节课我们主要认识了轴对称图形,了解了轴对称图形及有关概念,进一步探讨了轴对称的特点,区分了轴对称图形和两个图形成轴对称.
Ⅴ.作业
(一)课本习题12.1─1、2、6、7、8题.
课后作业:<<课堂感悟与探究>>
Ⅵ.活动与探究
板书设计
§12.1.1 轴对称(一) 一、轴对称:如果一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,这个图形就叫轴对称图形,这条直线叫对称轴. 二、两个图形成轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.
§12.1.2 轴对称(二)
教学目标
1.了解两个图形成轴对称性的性质,了解轴对称图形的性质.
2.探究线段垂直平分线的性质.
3.经历探索轴对称图形性质的过程,进一步体验轴对称的特点,发展空间观察.
教学重点
1.轴对称的性质.
2.线段垂直平分线的性质.
教学难点
体验轴对称的特征.
教学过程
Ⅰ.创设情境,引入新课
上节课我们共同探讨了轴对称图形,知道现实生活中由于有轴对称图形,而使得世界非常美丽.那么大家想一想,什么样的图形是轴对称图形呢?
今天继续来研究轴对称的性质.
Ⅱ.导入新课
观看投影并思考.
如图,△ABC和△A′B′C′关于直线MN对称,点A′、B′、C′分别是点A、B、C的对称点,线段AA′、BB′、CC′与直线MN有什么关系?
图中A、A′是对称点,AA′与MN垂直,BB′和CC′也与MN垂直.
AA′、BB′和CC′与MN除了垂直以外还有什么关系吗?
△ABC与△A′B′C′关于直线MN对称,点A′、B′、C′分别是点A、B、C的对称点,设AA′交对称轴MN于点P,将△ABC和△A′B′C′沿MN对折后,点A与A′重合,于是有AP=A′P,∠MPA=∠MPA′=90°.所以AA′、BB′和CC′与MN除了垂直以外,MN还经过线段AA′、BB′和CC′的中点.
对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.我们把经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.
自己动手画一个轴对称图形,并找出两对称点,看一下对称轴和两对称点连线的关系.
我们可以看出轴对称图形与两个图形关于直线对称一样,对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.
归纳图形轴对称的性质:
如果两个图形关于某条直线对称,那么对称轴是任何一对对称点所连线段的垂直平分线.类似地,轴对称图形的对称轴是任何一对对称点所连线段的垂直平分线.
下面我们来探究线段垂直平分线的性质.
[探究1]
如下图.木条L与AB钉在一起,L垂直平分AB,P1,P2,P3,…是L上的点,分别量一量点P1,P2,P3,…到A与B的距离,你有什么发现?
1.用平面图将上述问题进行转化,先作出线段AB,过AB中点作AB的垂直平分线L,在L上取P1、P2、P3…,连结AP1、AP2、BP1、BP2、CP1、CP2…
2.作好图后,用直尺量出AP1、AP2、BP1、BP2、CP1、CP2…讨论发现什么样的规律.
探究结果:
线段垂直平分线上的点与这条线段两个端点的距离相等.即AP1=BP1,AP2=BP2,…
证明.
证法一:利用判定两个三角形全等.
如下图,在△APC和△BPC中,
△APC≌△BPC PA=PB.
证法二:利用轴对称性质.
由于点C是线段AB的中点,将线段AB沿直线L对折,线段PA与PB是重合的,因此它们也是相等的.
带着探究1的结论我们来看下面的问题.
[探究2]
如右图.用一根木棒和一根弹性均匀的橡皮筋,做一个简易的“弓”,“箭”通过木棒中央的孔射出去,怎么才能保持出箭的方向与木棒垂直呢?为什么?
活动:
1.用平面图形将上述问题进行转化.作线段AB,取其中点P,过P作L,在L上取点P1、P2,连结AP1、AP2、BP1、BP2.会有以下两种可能.
2.讨论:要使L与AB垂直,AP1、AP2、BP1、BP2应满足什么条件?
探究过程:
1.如上图甲,若AP1≠BP1,那么沿L将图形折叠后,A与B不可能重合,也就是∠APP1≠∠BPP1,即L与AB不垂直.
2.如上图乙,若AP1=BP1,那么沿L将图形折叠后,A与B恰好重合,就有∠APP1=∠BPP1,即L与AB重合.当AP2=BP2时,亦然.
探究结论:
与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.也就是说在[探究2]图中,只要使箭端到弓两端的端点的距离相等,就能保持射出箭的方向与木棒垂直.
[师]上述两个探究问题的结果就给出了线段垂直平分线的性质,即:线段垂直平分线上的点与这条线段两个端点的距离相等;反过来,与这条线段两个端点距离相等的点都在它的垂直平分线上.所以线段的垂直平分线可以看成是与线段两端点距离相等的所有点的集合.
Ⅲ.随堂练习
课本P34练习 1、2.
Ⅳ.课时小结
这节课通过探索轴对称图形对称性的过程,了解了线段的垂直平分线的有关性质,同学们应灵活运用这些性质来解决问题.
Ⅴ.课后作业
(一)课本习题12.1─3、4、9题.
课后作业:<<课堂感悟与探究>>
Ⅵ.活动与探究
如图甲,△ABC和△A′B′C′关于直线L对称,延长对应线段AB和A′B′,两条延长线相交吗?交点与对称轴L有什么关系?延长其他对应线段呢?在图乙中,AC与A′C′又如何呢?再找几个成轴对称的图形观察一下,能发现什么规律吗?
过程:在图甲中,AB与A′B′不平行,所以它们肯定会相交.下面来研究交点与对称轴L的关系.
问题1:点和直线有几种位置关系?
有两种.一种是点不在直线上,另一种是点在直线上.
问题2:先来假设一下交点不在对称轴L上,看是否成立.
如果交点(P)不在对称轴L上,那么在L的另一侧一定有另外一点(P′)与交点(P)关于直线L对称,且该点(P′)也是两延长线的交点.但是由于两条直线相交只可能有一个交点,所以这两点是重合的.即交点(P)只能在对称轴L上.所以交点一定在对称轴上.延长其他的对应线段,结果也一样.
再看图乙,我们来讨论下一个问题.
AC与A′C′是平行的,它们的两条延长线也不会相交.
结论:成轴对称的两个图形,对应线段的延长线如果相交,交点一定在对称轴上;对应线段的延长线如果不相交,也就是对应线段所在的直线平行,那么它们也与对称轴平行.
板书设计
§12.1.2 轴对称(二) 一、复习:轴对称图形. 二、线段垂直平分线的定义:经过线段中点并且垂直于这条线段的直线,叫做线段的垂直平分线. 三、图形轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对称点所连线段的垂直平分线.类似地,轴对称图形的对称轴是任何一对对称点所连线段的垂直平分线. 四、线段垂直平分线的性质:线段垂直平分线的点到这条线段两个端点的距离相等;反过来,与这条线段两个端点距离相等的点都在它的垂直平分线上.
§12.2 轴对称变换
教学目标
1.通过实际操作,了解什么叫做轴对称变换.
2.如何作出一个图形关于一条直线的轴对称图形.
教学重点
1.轴对称变换的定义.
2.能够按要求作出简单平面图形经过轴对称后的图形.
教学难点
1.作出简单平面图形关于直线的轴对称图形.
2.利用轴对称进行一些图案设计.
教学过程
Ⅰ.设置情境,引入新课
在前一个章节,我们学习了轴对称图形以及轴对称图形的一些相关的性质问题.在上节课的作业中,我们有个要求,让同学们自己思考一种作轴对称图形的方法,现在来看一下同学们完成的怎么样.
将一张纸对折后,用针尖在纸上扎出一个图案,将纸打开后铺平,得到的两个图案是关于折痕成轴对称的图形.
准备一张质地较软,吸水性能好的纸或报纸,在纸的一侧上滴上一滴墨水,将纸迅速对折,压平,并且手指压出清晰的折痕.再将纸打开后铺平,位于折痕两侧的墨迹图案也是对称的.
这节课我们就是来作简单平面图形经过轴对称后的图形.
Ⅱ.导入新课
由我们已经学过的知识知道,连结任意一对对应点的线段被对称轴垂直平分.
类似地,我们也可以由一个图形得到与它成轴对称的另一个图形,重复这个过程,可以得到美丽的图案.
对称轴方向和位置发生变化时,得到的图形的方向和位置也会发生变化.大家看大屏幕,从电脑演示的图案变化中找出对称轴的方向和位置,体会对称轴方向和位置的变化在图案设计中的奇妙用途.
下面,同学们自己动手在一张纸上画一个图形,将这张纸折叠描图,再打开看看,得到了什么?改变折痕的位置并重复几次,又得到了什么?同学们互相交流一下.
结论:由一个平面图形呆以得到它关于一条直线L对称的图形,这个图形与原图形的形状、大小完全相同;新图形上的每一点,都是原图形上的某一点关于直线L的对称点;
连结任意一对对应点的线段被对称轴垂直平分.
我们把上面由一个平面图形得到它的轴对称图形叫做轴对称变换.
成轴对称的两个图形中的任何一个可以看作由另一个图形经过轴对称变换后得到.一个轴对称图形也可以看作以它的一部分为基础,经轴对称变换扩展而成的.
取一张长30厘米,宽6厘米的纸条,将它每3厘米一段,一正一反像“手风琴”那样折叠起来,并在折叠好的纸上画上字母E,用小刀把画出的字母E挖去,拉开“手风琴”,你就可以得到以字母E为图案的花边.回答下列问题.
(1)在你所得的花边中,相邻两个图案有什么关系?相间的两个图案又有什么关系?说说你的理由.
(2)如果以相邻两个图案为一组,每一组图案之间有什么关系?三个图案为一组呢?为什么?
(3)在上面的活动中,如果先将纸条纵向对折,再折成“手风琴”,然后继续上面的步骤,此时会得到怎样的花边?它是轴对称图形吗?先猜一猜,再做一做.
注:为了保证剪开后的纸条保持连结,画出的图案应与折叠线稍远一些.
Ⅲ.随堂练习
(一)如图(1),将一张正六边形纸沿虚线对折折3次,得到一个多层的60°角形纸,用剪刀在折叠好的纸上随意剪出一条线,如图(2).
(1)猜一猜,将纸打开后,你会得到怎样的图形?
(2)这个图形有几条对称轴?
(3)如果想得到一个含有5条对称轴的图形,你应取什么形状的纸?应如何折叠?
答案:(1)轴对称图形.
(2)这个图形至少有3条对称轴.
(3)取一个正十边形的纸,沿它通过中心的五条对角线折叠五次,得到一个多层的36°角形纸,用剪刀在叠好的纸上任意剪出一条线,打开即可得到一个至少含有5条对称轴的轴对称图形.
(二)回顾本节课内容,然后小结.
Ⅳ.课时小结
本节课我们主要学习了如何通过轴对称变换来作出一个图形的轴对称图形,并且利用轴对称变换来设计一些美丽的图案.在利用轴对称变换设计图案时,要注意运用对称轴位置和方向的变化,使我们设计出更新疑独特的美丽图案.
Ⅴ.动手并思考
(一)如下图所示,取一张薄的正方形纸,沿对角线对折后,得到一个等腰直角三角形,再沿斜边上的高线对折,将得到的角形沿黑色线剪开,去掉含90°角的部分,拆开折叠的纸,并将其铺平.
(1)你会得怎样的图案?先猜一猜,再做一做.
(2)你能说明为什么会得到这样的图案吗?应用学过的轴对称的知识试一试.
(3)如果将正方形纸按上面方式折3次,然后再沿圆弧剪开,去掉较小部分,展开后结果又会怎样?为什么?
(4)当纸对折2次后,剪出的图案至少有几条对称轴?3次呢?
答案:(1)得到一个有2条对称轴的图形.
(2)按照上面的做法,实际上相当于折出了正方形的2条对称轴;因此(1)中的图案一定有2条对称轴.
(3)按题中的方式将正方形对折3次,相当于折出了正方形的4条对称轴,因此得到的图案一定有4条对称轴.
(4)当纸对折2次,剪出的图案至少有2条对称轴;当纸对折3次,剪出的图案至少有4条对称轴.
(二)自己设计并制作一个花边.
课后作业:<<课堂感悟与探究>>
Ⅵ.活动与探究
如果想剪出如下图所示的“小人”以及“十字”,你想怎样剪?设法使剪的次数尽可能少.
过程:学生通过观察、分析设计自己的操作方法,教师提示学生利用轴对称变换的应用.
结果:“小人”可以先折叠一次,剪出它的一半即可得到整个图.
“十字”可以折叠两次,剪出它的四分之一即可.
板书设计
§12.2.1.1 轴对称变换(一) 一、轴对称变换 由一个平面图形得到它的轴对称图形叫做轴对称变换. 二、利用轴对称变换设计图案
12.2 .2 用坐标表示轴对称
教学目标
在平面直角坐标系中,确定轴对称变换前后两个图形中特殊点的位置关系,再利用轴对称的性质作出成轴对称的图形
教学重点
用坐标表示轴对称
教学难点
利用转化的思想,确定能代表轴对称图形的关键点
教学过程:
一、复习轴对称图形的有关性质
二、新授:
1.学生探索:
点(x,y)关于x轴对称的点的坐标(x,-y);点(x,y)关于y轴对称的点的坐标(-x,y);点(x,y)关于原点对称的点的坐标(-x,-y)
2.例3 四边形ABCD的四个顶点的坐标分别为A(-5,1)、B(-2,1)、C(-2,5)、D(-5,4),分别作出与四边形ABCD关于x轴和y轴对称的图形.
(1)归纳:与已知点关于y 轴或x轴对称的点的坐标的规律;
(2)学生画图
(3)对于这类问题,只要先求出已知图形中的一些特殊点的对应点的坐标,描出并顺次连接这些特殊点,就可以得到这个图形的轴对称图形.
3、探究问题
分别作出△PQR关于直线x=1(记为m)和直线y=-1(记为n)对称的图形,你能发现它们的对应点的坐标之间分别有什么关系吗?
(1)学生画图,由具体的数据,发现它们的对应点的坐标之间的关系
(2)若△PQR中P(x,y)关于x=1(记为m)轴对称的点的坐标P (x,y) ,
则,y= y.
若△PQR中P(x,y)关于y=-1(记为n)轴对称的点的坐标P (x,y) ,
则x= x,=n.
三、小结本节内容
四、训练:课本45页的第1~3题
五、作业:课本45页的第5~7题
课后练习〈课堂感悟与探究〉
§12.3.1.1 等腰三角形
教学目标
1.等腰三角形的概念.
2.等腰三角形的性质.
3.等腰三角形的概念及性质的应用.
教学重点
1.等腰三角形的概念及性质.
2.等腰三角形性质的应用.
教学难点
等腰三角形三线合一的性质的理解及其应用.
教学过程
Ⅰ.提出问题,创设情境
在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?
有的三角形是轴对称图形,有的三角形不是.
问题:那什么样的三角形是轴对称图形?
满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.
我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.
Ⅱ.导入新课
要求学生通过自己的思考来做一个等腰三角形.
作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形.
等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.
思考:
1.等腰三角形是轴对称图形吗?请找出它的对称轴.
2.等腰三角形的两底角有什么关系?
3.顶角的平分线所在的直线是等腰三角形的对称轴吗?
4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?
结论:等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.
要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.
沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.
由此可以得到等腰三角形的性质:
1.等腰三角形的两个底角相等(简写成“等边对等角”).
2.等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”).
由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).
如右图,在△ABC中,AB=AC,作底边BC的中线AD,因为
所以△BAD≌△CAD(SSS).
所以∠B=∠C.
]如右图,在△ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为
所以△BAD≌△CAD.
所以BD=CD,∠BDA=∠CDA=∠BDC=90°.
[例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,
求:△ABC各角的度数.
分析:
根据等边对等角的性质,我们可以得到
∠A=∠ABD,∠ABC=∠C=∠BDC,
再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.
再由三角形内角和为180°,就可求出△ABC的三个内角.
把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷.
解:因为AB=AC,BD=BC=AD,
所以∠ABC=∠C=∠BDC.
∠A=∠ABD(等边对等角).
设∠A=x,则
∠BDC=∠A+∠ABD=2x,
从而∠ABC=∠C=∠BDC=2x.
于是在△ABC中,有
∠A+∠ABC+∠C=x+2x+2x=180°,
解得x=36°.
在△ABC中,∠A=35°,∠ABC=∠C=72°.
[师]下面我们通过练习来巩固这节课所学的知识.
Ⅲ.随堂练习
(一)课本P141练习 1、2、3.
(二)阅读课本P138~P140,然后小结.
Ⅳ.课时小结
这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.
我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.
Ⅴ.作业
(一)课本P56─1、3、4、8题.
课后作业:<<课堂感悟与探究>>
板书设计
12.3.1.1 等腰三角形(一) 一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一
参考练习
一、选择题
1.如果△ABC是轴对称图形,则它的对称轴一定是( )
A.某一条边上的高; B.某一条边上的中线
C.平分一角和这个角对边的直线; D.某一个角的平分线
2.等腰三角形的一个外角是100°,它的顶角的度数是( )
A.80° B.20° C.80°和20° D.80°或50°
答案:1.C 2.C
二、已知等腰三角形的腰长比底边多2cm,并且它的周长为16cm.
求这个等腰三角形的边长.
解:设三角形的底边长为xcm,则其腰长为(x+2)cm,根据题意,得
2(x+2)+x=16.
解得x=4.
所以,等腰三角形的三边长为4cm、6cm和6cm.
§12.3.1.2 等腰三角形(二)
教学目标
1、 理解并掌握等腰三角形的判定定理及推论
2、 能利用其性质与判定证明线段或角的相等关系.
教学重点
等腰三角形的判定定理及推论的运用
教学难点
正确区分等腰三角形的判定与性质.
能够利用等腰三角形的判定定理证明线段的相等关系.
教学过程:
一、复习等腰三角形的性质
二、新授:
I提出问题,创设情境
出示投影片.某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(B点)为B标,然后在这棵树的正南方(南岸A点抽一小旗作标志)沿南偏东60°方向走一段距离到C处时,测得∠ACB为30°,这时,地质专家测得AC的长度就可知河流宽度.
学生们很想知道,这样估测河流宽度的根据是什么?带着这个问题,引导学生学习“等腰三角形的判定”.
II引入新课
1.由性质定理的题设和结论的变化,引出研究的内容——在△ABC中,苦∠B=∠C,则AB= AC吗?
作一个两个角相等的三角形,然后观察两等角所对的边有什么关系?
2.引导学生根据图形,写出已知、求证.
2、小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”(板书定理名称).
强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”.
4.引导学生说出引例中地质专家的测量方法的根据.
III例题与练习
1.如图2
其中△ABC是等腰三角形的是 [ ]
2.①如图3,已知△ABC中,AB=AC.∠A=36°,则∠C______(根据什么?).
②如图4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根据什么?).
③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判断图5中等腰三角形有______.
④若已知 AD=4cm,则BC______cm.
3.以问题形式引出推论l______.
4.以问题形式引出推论2______.
例: 如果三角形一个外角的平分线平行于三角形的一边,求证这个三角形是等腰三角形.
分析:引导学生根据题意作出图形,写出已知、求证,并分析证明.
练习:5.(l)如图6,在△ABC中,AB=AC,∠ABC、∠ACB的平分线相交于点F,过F作DE//BC,交AB于点D,交AC于E.问图中哪些三角形是等腰三角形?
(2)上题中,若去掉条件AB=AC,其他条件不变,图6中还有等腰三角形吗?
IV课堂小结
1.判定一个三角形是等腰三角形有几种方法?
2.判定一个三角形是等边三角形有几种方法?
3.等腰三角形的性质定理与判定定理有何关系?
4.现在证明线段相等问题,一般应从几方面考虑?
V布置作业
1.阅读教材
2.书面作业:教材第58页第12题
3、《课堂感悟与探究》
14.3.2.1 等边三角形(一)
教学目的
1. 使学生熟练地运用等腰三角形的性质求等腰三角形内角的角度。
2. 熟识等边三角形的性质及判定.
2.通过例题教学,帮助学生总结代数法求几何角度,线段长度的方法。
教学重点、
等腰三角形的性质及其应用。
教学难点
简洁的逻辑推理。
教学过程
一、复习巩固
1.叙述等腰三角形的性质,它是怎么得到的
等腰三角形的两个底角相等,也可以简称“等边对等角”。把等腰三角形对折,折叠两部分是互相重合的,即AB与AC重合,点B与点 C重合,线段BD与CD也重合,所以∠B=∠C。
等腰三角形的顶角平分线,底边上的中线和底边上的高线互相重合,简称“三线合一”。由于AD为等腰三角形的对称轴,所以BD= CD,AD为底边上的中线;∠BAD=∠CAD,AD为顶角平分线,∠ADB=∠ADC=90°,AD又为底边上的高,因此“三线合一”。
2.若等腰三角形的两边长为3和4,则其周长为多少
二、新课
在等腰三角形中,有一种特殊的情况,就是底边与腰相等,这时,三角形三边都相等。我们把三条边都相等的三角形叫做等边三角形。
等边三角形具有什么性质呢
1.请同学们画一个等边三角形,用量角器量出各个内角的度数,并提出猜想。
2.你能否用已知的知识,通过推理得到你的猜想是正确的
等边三角形是特殊的等腰三角形,由等腰三角形等边对等角的性质得到∠A=∠B=C,又由∠A+∠B+∠C=180°,从而推出∠A=∠B=∠C=60°。
3.上面的条件和结论如何叙述
等边三角形的各角都相等,并且每一个角都等于60°。
等边三角形是轴对称图形吗 如果是,有几条对称轴
等边三角形也称为正三角形。
例1.在△ABC中,AB=AC,D是BC边上的中点,∠B=30°,求∠1和∠ADC的度数。
分析:由AB=AC,D为BC的中点,可知AB为 BC底边上的中线,由“三线合一”可知AD是△ABC的顶角平分线,底边上的高,从而∠ADC=90°,∠l=∠BAC,由于∠C=∠B=30°,∠BAC可求,所以∠1可求。
问题1:本题若将D是BC边上的中点这一条件改为AD为等腰三角形顶角平分线或底边BC上的高线,其它条件不变,计算的结果是否一样
问题2:求∠1是否还有其它方法
三、练习巩固
1.判断下列命题,对的打“√”,错的打“×”。
a.等腰三角形的角平分线,中线和高互相重合( )
b.有一个角是60°的等腰三角形,其它两个内角也为60°( )
2.如图(2),在△ABC中,已知AB=AC,AD为∠BAC的平分线,且∠2=25°,求∠ADB和∠B的度数。
四、小结
由等腰三角形的性质可以推出等边三角形的各角相等,且都为60°。“三线合一”性质在实际应用中,只要推出其中一个结论成立,其他两个结论一样成立,所以关键是寻找其中一个结论成立的条件。
五、作业
1.课本P57─7,9
2、补充:如图(3),△ABC是等边三角形,BD、CE是中线,求∠CBD,∠BOE,∠BOC,
∠EOD的度数。
(一)课本P57─1、3、4、8题.
课后作业:<<课堂感悟与探究>>
§12.3.2.2 等边三角形(二)
教学目标
掌握等边三角形的性质和判定方法.
培养分析问题、解决问题的能力.
教学重点
等边三角形的性质和判定方法.
教学难点
等边三角形性质的应用
教学过程
I创设情境,提出问题
回顾上节课讲过的等边三角形的有关知识
1.等边三角形是轴对称图形,它有三条对称轴.
2.等边三角形每一个角相等,都等于60°
3.三个角都相等的三角形是等边三角形.
4.有一个角是60°的等腰三角形是等边三角形.
其中1、2是等边三角形的性质;3、4的等边三角形的判断方法.
II例题与练习
1.△ABC是等边三角形,以下三种方法分别得到的△ADE都是等边三角形吗,为什么
①在边AB、AC上分别截取AD=AE.
②作∠ADE=60°,D、E分别在边AB、AC上.
③过边AB上D点作DE∥BC,交边AC于E点.
2.已知:如右图,P、Q是△ABC的边BC上的两点,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.
分析:由已知显然可知三角形APQ是等边三角形,每个角都是60°.又知△APB与△AQC都是等腰三角形,两底角相等,由三角形外角性质即可推得∠PAB=30°.
III课堂小结
1、 等腰三角形和性质
2、 等腰三角形的条件
V布置作业
1.教科书第56页练习
2.选做题:
(1)教科书第58页习题第ll题.
(2)已知等边△ABC,求平面内一点P,满足A,B,C,P四点中的任意三点连线都构成等腰三角形.这样的点有多少个
(3)《课堂感悟与探究》
§14.3.2.3 等边三角形(三)
教学过程
1、 复习等腰三角形的判定与性质
2、 新授:
1.等边三角形的性质:三边相等;三角都是60°;三边上的中线、高、角平分线相等
2.等边三角形的判定:
三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形;
在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半
注意:推论1是判定一个三角形为等边三角形的一个重要方法.推论2说明在等腰三角形中,只要有一个角是600,不论这个角是顶角还是底角,就可以判定这个三角形是等边三角形。推论3反映的是直角三角形中边与角之间的关系.
3.由学生解答课本148页的例子;
4.补充:已知如图所示, 在△ABC中, BD是AC边上的中线, DB⊥BC于B,
∠ABC=120o, 求证: AB=2BC
分析 由已知条件可得∠ABD=30o, 如能构造有一个锐角是30o的直角三角形, 斜边是AB,30o角所对的边是与BC相等的线段,问题就得到解决了.
B
证明: 过A作AE∥BC交BD的延长线于E
∵DB⊥BC(已知)
∴∠AED=90o (两直线平行内错角相等)
在△ADE和△CDB中
∴△ADE≌△CDB(AAS)
∴AE=CB(全等三角形的对应边相等)
∵∠ABC=120o,DB⊥BC(已知)
∴∠ABD=30o
在Rt△ABE中,∠ABD=30o
∴AE=AB(在直角三角形中,如果一个锐角等于30o,
那么它所对的直角边等于斜边的一半)
∴BC=AB 即AB=2BC
点评 本题还可过C作CE∥AB
5、训练:如图所示,在等边△ABC的边的延长线上取一点E,以CE为边作等边△CDE,使它与△ABC位于直线AE的同一侧,点M为线段AD的中点,点N为线段BE的中点,求证:△CNM是等边三角形.
分析 由已知易证明△ADC≌△BEC,得BE=AD,∠EBC=∠DAE,而M、N分别为BE、AD的中点,于是有BN=AM,要证明△CNM是等边三角形,只须证MC=CN,∠MCN=60o,所以要证△NBC≌△MAC,由上述已推出的结论,根据边角边公里,可证得△NBC≌△MAC
证明:∵等边△ABC和等边△DCE,
∴BC=AC,CD=CE,(等边三角形的边相等)
∠BCA=∠DCE=60o(等边三角形的每个角都是60)
∴∠BCE=∠DCA
∴△BCE≌△ACD(SAS)
∴∠EBC=∠DAC(全等三角形的对应角相等)
BE=AD(全等三角形的对应边相等)
又∵BN=BE,AM=AD(中点定义)
∴BN=AM
∴△NBC≌△MAC(SAS)
∴CM=CN(全等三角形的对应边相等)
∠ACM=∠BCN(全等三角形的对应角相等)
∴∠MCN=∠ACB=60o
∴△MCN为等边三角形(有一个角等于60o的等腰三角形是等边三角形)
解题小结
1.本题通过将分析法和综合法并用进行分析,得到了本题的证题思路,较复杂的几何问题经常用这种方法进行分析
2.本题反复利用等边三角形的性质,证得了两对三角形全等,从而证得△MCN是一个含60o角的等腰三角形,在较复杂的图形中,如何准确地找到所需要的全等三角形是证题的关键.
三、小结本节知识
四、作业:课本59页第13,14题