中小学教育资源及组卷应用平台
浙教版2024—2025学年八年级下学期数学第三次月考考试模拟试卷
满分:120分 时间:120分钟 范围:第一章二次根式与第五章特殊平行四边形
一、选择题(每题只有一个正确选项,每小题3分,满分30分)
1.甲、乙、丙、丁四位学生参加立定跳远训练,他们近期5次训练的平均成绩相同,设甲、乙、丙、丁这5次训练成绩的方差分别是S甲2,S乙2,S丙2,S丁2,且S甲2=2.1,S乙2=3.5,S丙2=5.6,S丁2=0.9,则四位学生中这5次训练成绩最稳定的是( )
A.甲 B.乙 C.丙 D.丁
2.为贯彻落实教育部《关于全面加强新时代大中小学劳动教育的意见》精神,把劳动教育纳入人才培养全过程,某校组织学生周末赴劳动教育实践基地开展锄地、除草、浇水、剪枝、捉鱼、采摘六项实践活动,已知六个项目参与人数(单位:人)分别是:35,38,40,42,42,43.则这组数据的众数和中位数分别是( )
A.38,39 B.42,40 C.42,41 D.42,42
3.志愿服务,传递爱心,传递文明,下列志愿服务标志为中心对称图形的是( )
A. B. C. D.
4.过某个多边形一个顶点的所有对角线,将这个多边形分成了5个三角形,则这个多边形是( )
A.五边形 B.六边形 C.七边形 D.八边形
5.方程x2﹣x﹣1=0的根的情况是( )
A.没有实数根 B.两个不相等的实数根
C.两个相等的实数根 D.无法确定
6.关于x的一元二次方程x2﹣2x+m﹣2=0有两个不相等的实数根,则m的取值范围是( )
A. B.m>3 C.m≤3 D.m<3
7.玲玲在用反证法证明“△ABC中至少有一个内角小于或等于60°”时,她应先假设这个三角形中( )
A.有一个内角大于60° B.有一个内角大于等于60°
C.每一个内角都大于60° D.每一个内角都小于60°
8.如图,在四边形ABCD中,已知AD∥BC.添加下列条件不能判定四边形ABCD是平行四边形的是( )
AD=BC B.AB∥DC
C.AB=DC D.∠A=∠C
9.如图,在菱形ABCD中,AC、BD交于O点,AC=24,BD=10,点P为线段AC上的一个动点.过点P分别作PM⊥AD于点M,作PN⊥DC于点N,则PM+PN的值为( )
A. B. C. D.
10.如图1,动点P从菱形ABCD的点A出发,沿边AB→BC匀速运动,运动到点C时停止.设点P的运动路程为x,PO的长为y,y与x的函数图象如图2所示,当点P运动到BC中点时,PO的长为( )
A.2 B.3 C. D.
二、填空题(每小题3分,满分18分)
11.二次根式在实数范围内有意义,则x的取值范围为 .
12.已知方程3x2+kx﹣2=0的一个根为2,则另一个根为 .
13.已知某组数据的方差为,则的值为 .
14.如图,在△ABC中,点D、E分别是边AB、AC的中点,连接DE,∠ABC的平分线BF交DE于点F,若AB=4,BC=6,则EF的长为 .
15.小益将平放在桌面上的正五边形磁力片和正六边形磁力片拼在一起(一边重合),示意图如图所示,则形成的∠1的度数是 .
16.如图1是由两个全等直角三角形和两个长方形组成的 ABCD,将其剪拼成不重叠,无缝隙的大正方形(如图2).记①,②,③,④的面积分别为S1,S2,S3,S4,已知S3=4S2,
(1)S1:S2= ;
(2)若 ABCD的周长比长方形③的周长大18,则BC为 .
浙教版2024—2025学年八年级下学期数学第三次月考考试模拟试卷
考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟
姓名:____________ 学号:_____________座位号:___________
一、选择题
题号 1 2 3 4 5 6 7 8 9 10
答案
二、填空题
11、_______ 12、______13、_______ 14、______15、_______ 16、______ ______
三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)
17.计算:
(1); (2).
18.解方程:
(1)x2﹣6x=﹣9; (2)(x+1)(x﹣3)=6.
19.已知:,,分别求下列代数式的值:
(1)a2﹣b2;
(2)a2﹣3ab+b2.
20.某校七、八年级开展了一次综合实践知识竞赛,按10分制进行评分,成绩(单位:分)均为不低于6的整数.为了解这次活动的效果,现从这两个年级各随机抽取10名学生的活动成绩作为样本进行整理,并绘制成统计图表,部分信息如下:
八年级10名学生活动成绩统计表
成绩(分) 6 7 8 9 10
人数 1 2 a b 2
已知八年级10名学生成绩的中位数为8.5分.
请根据以上信息,解答下列问题:
(1)样本中,七年级活动成绩为7分的学生数是 ,七年级活动成绩的众数为 分.
(2)a= ,b= .
(3)若认定活动成绩不低于9分为“优秀”,则根据样本数据,判断本次活动中优秀率高的年级是否平均成绩也高,并说明理由.
21.某种商品的标价为200元/件,由于疫情的影响,销量不佳,店家经过两次降价后的价格为128元/件,并且两次降价的百分率相同.
(1)求该种商品每次降价的百分率;
(2)若该种商品进价为80元/件,若以128元/件售出,平均每天能售出20件,另外每天需支付其他各种费用100元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天盈利1475元,每件应降价多少元?
22.如图,平行四边形ABCD中,点E、F在对角线BD上,且BE=DF.求证:
(1)△ABE≌△CDF;
(2)四边形AECF是平行四边形.
23.已知关于x的一元二次方程x2﹣(m+2)x+m+1=0.
(1)求证:该方程总有两个实数根;
(2)若该方程两个实数根的差为2,求m的值.
24.阅读材料:
材料1:关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根x1,x2和系数a,b,c,有如下关系:x1+x2=﹣,x1x2=.
材料2:已知一元二次方程x2﹣x﹣1=0的两个实数根分别为m,n,求m2n+mn2的值.
解:∵m,n是一元二次方程x2﹣x﹣1=0的两个实数根,
∴m+n=1,mn=﹣1.
则 m2n+mn2=mn(m+n)=﹣1×1=﹣1.
根据上述材料,结合你所学的知识,完成下列问题:
应用:一元二次方程2x2+3x﹣1=0的两个实数根为x1,x2,则x1+x2= ,x1x2= .
(2)类比:已知一元二次方程2x2+3x﹣1=0的两个实数根为m,n,求m2+n2的值;
(3)提升:已知实数s,t满足2s2+3s﹣1=0,2t2+3t﹣1=0 且s≠t,求的值.
25.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于F,以EC、CF为邻边作平行四边形ECFG.
(1)证明:平行四边形ECFG是菱形;
(2)若∠ABC=120°,连接BD、CG,求∠BDG的度数;
(3)若∠ABC=90°,AB=6,AD=8,M是EF的中点,求DM的长.
参考答案
一、选择题
1—10:DCBCB DCCDC
二、填空题
11.【解答】解:∵二次根式在实数范围内有意义,
∴x+2≥0,解得x≥﹣2.
故答案为:x≥﹣2.
12.【解答】解:令方程的另一个根为m,
则2m,
所以m,
即方程的另一个根为.
故答案为:.
13.【解答】解:由题意知,这组数据为3、4、7、10,
所以这组数据的平均数为6,
故答案为:6.
14.【解答】解:∵点D、E分别为边AB、AC的中点,
∴DE∥BC,DEBC=3,
∴∠DFB=∠HBF,
∵BF平分∠ABC,
∴∠DBF=∠CBF,
∴∠DFB=∠DBF,
∴DB=DFAB=2,
∴EF=DE﹣DF=1,
故答案为:1.
15.【解答】解:如图所示:
∵正五边形的内角度数为:(5﹣2)×180°=108°,
∴∠2=108°,
∵正六边形的内角度数为:(6﹣2)×180°=120°,
∴∠3=120°,
∵∠1+∠2+∠3=360°,
∴∠1=360°﹣∠2﹣∠3=360°﹣108﹣120=132°.
故答案为:132°.
16.【解答】解:(1)如图,
由题意设PE=x,则FG=EH=4x,PH=3x,HQ=QG=2x,
∵,,
∴S1:S2=3:2,
故答案为:3:2;
(2)如图,由勾股定理可得,
∵AD=BC=8x,EF=FG=GH=EH=4x,
又∵平行四边形的周长比长方形③的周长大18,
∴,
∴,
∴,
故答案为:.
三、解答题
17.【解答】解:(1)原式
=0;
(2)
.
18.【解答】解:(1)x2﹣6x=﹣9,
x2﹣6x+9=0,
(x﹣3)2=0,
∴x1=x2=3;
(2)(x+1)(x﹣3)=6,
x2+x﹣3x﹣3=6,
x2﹣2x﹣3=6,
∴x2﹣2x=9,
∴(x﹣1)2=9+1,
∴x﹣1,
∴x1=1,x2=1.
19.【解答】解:(1)∵,,
∴,,
∴;
(2)∵,,
∴,,
∴a2﹣3ab+b2
=(a2+2ab+b2)﹣5ab
=(a+b)2﹣5ab
=0.
20.【解答】解:(1)由扇形统计图可得,成绩为8分人数为10×50%=5 (人),
成绩为9分的人数为10×20%=2(人),
成绩为10分的人数为10×20%=2(人),
则成绩为7分的学生数为10﹣5﹣2﹣2=1(人)
∵出现次数最多的为8分,
∴七年级活动成绩的众数为8分
故答案为:1;8.
(2)将八年级的活动成绩从小到大排列后,它的中位数应是第5个和第6个数据的平均数,
∵八年级10名学生活动成绩的中位数为8.5分,
∴第5个和第6个数据的和为8.5×2=17=8+9,
∴第5个和第6个数据分别为8分,9分,
∵成绩为6分和7分的人数为1+2=3(人),
∴成绩为8分的人数为5﹣3=2(人),
成绩为9分的人数为10﹣5﹣2=3(人)
即a=2,b=3,
故答案为:2;3;
(3)不是,理由如下:
结合(1)(2)中所求可得七年级的优秀率为,
八年级的优秀率,
七年级的平均成绩为(分)
八年级的平均成绩为(分)
∵40%<50%,8.5>8.3,
∴本次活动中优秀率高的年级并不是平均成绩也高.
21.【解答】解:(1)设该种商品每次降价的百分率为x,
依题意,得:200(1﹣x)2=128,
解得:x1=0.2=20%,x2=1.8(不合题意,舍去),
答:该种商品每次降价的百分率为20%;
(2)设每件商品应降价x元,根据题意,得:
(128﹣80﹣x)(20+5x)﹣100=1475,
解方程得x1=41,x2=3,
∵在降价幅度不超过10元的情况下,
∴x=41不合题意舍去.
答:每件商品应降价3元.
22.【解答】证明(1)∵四边形ABCD是平行四边形,
∴AB∥CD AB=CD,
∴∠ABE=∠CDF,
∵BE=DF,
∴△ABE≌△CDF (SAS);
(2)证明:∵由(1)知,△ABE≌△CDF,
∴AE=CF,∠AEB=∠DFC,
∴∠AEF=∠CFE,
∴AE∥FC,
∴四边形AECF是平行四边形.
23.【解答】解:(1)关于x的一元二次方程x2﹣(m+2)x+m+1=0的根的判别式Δ=[﹣(m+2)]2﹣4×1×(m+1)=m2+4m+4﹣4m﹣4=m2,
不论m取任何实数,都有m2≥0即Δ≥0成立;
当Δ>0时,方程有两个不相等的实数根,
当Δ=0时,方程有两个相等的实数根;
故该方程总有两个实数根;
(2)不妨设方程的两实数根为x1,x2且x1>x2,
则x1﹣x2=2,
∴,
又∵x1+x2=m+2,x1x2=m+1,
∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=(m+2)2﹣4(m+1)=4,
∴m=2或m=﹣2,
故m的值为2或﹣2.
24.【解答】解:(1)∵一元二次方程2x2+3x﹣1=0的两个根为x1,x2,
∴x1+x2=﹣,x1x2=﹣;
故答案为:﹣,﹣;
(2)∵一元二次方程2x2+3x﹣1=0的两根分别为m,n,
∴m+n=﹣,mn=﹣,
∴m2+n2=(m+n)2﹣2mn=+1=;
(3)∵实数s,t满足2s2+3s﹣1=0,2t2+3t﹣1=0,且s≠t,
∴s,t是一元二次方程2x2+3x﹣1=0的两个实数根,
∴s+t=﹣,st=﹣,
∵(t﹣s)2=(t+s)2﹣4st=(﹣)2﹣4×(﹣)=,
∴t﹣s=±,
∴===±.
25.【解答】解:(1)证明:
∵AF平分∠BAD,
∴∠BAF=∠DAF,
∵四边形ABCD是平行四边形,
∴AD∥BC,AB∥CD,
∴∠DAF=∠CEF,∠BAF=∠CFE,
∴∠CEF=∠CFE,
∴CE=CF,
又∵四边形ECFG是平行四边形,
∴四边形ECFG为菱形;
(2)∵四边形ABCD是平行四边形,
∴AB∥DC,AB=DC,AD∥BC,
∵∠ABC=120°,
∴∠BCD=60°,∠BCF=120°
由(1)知,四边形CEGF是菱形,
∴CE=GE,∠BCG∠BCF=60°,
∴CG=GE=CE,∠DCG=120°,
∵EG∥DF,
∴∠BEG=120°=∠DCG,
∵AE是∠BAD的平分线,
∴∠DAE=∠BAE,
∵AD∥BC,
∴∠DAE=∠AEB,
∴∠BAE=∠AEB,
∴AB=BE,
∴BE=CD,
∴△BEG≌△DCG(SAS),
∴BG=DG,∠BGE=∠DGC,
∴∠BGD=∠CGE,
∵CG=GE=CE,
∴△CEG是等边三角形,
∴∠CGE=60°,
∴∠BGD=60°,
∵BG=DG,
∴△BDG是等边三角形,
∴∠BDG=60°;
(3)如图2中,连接BM,MC,
∵∠ABC=90°,四边形ABCD是平行四边形,
∴四边形ABCD是矩形,
又由(1)可知四边形ECFG为菱形,
∠ECF=90°,
∴四边形ECFG为正方形.
∵∠BAF=∠DAF,
∴BE=AB=DC,
∵M为EF中点,
∴∠CEM=∠ECM=45°,
∴∠BEM=∠DCM=135°,
在△BME和△DMC中,
∵,
∴△BME≌△DMC(SAS),
∴MB=MD,
∠DMC=∠BME.
∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,
∴△BMD是等腰直角三角形.
∵AB=6,AD=8,
∴BD=10,
∴DMBD=5.
方法二:∵∠ABC=90°,四边形ABCD是平行四边形,
∴四边形ABCD是矩形,
又由(1)可知四边形ECFG为菱形,
∠ECF=90°,
∴四边形ECFG为正方形.
∵∠BAF=∠DAF,
∴BE=AB=DC=6,
过M作MH⊥CF于H,
则△MHF是等腰直角三角形,
∵△ADF是等腰直角三角形,
∴DF=AD=8,
∵CF=CE=2,
∴MH=FH=1,
∴DM5.
21世纪教育网(www.21cnjy.com)