8.1确定时间与随机事件同步强化练习(含解析)

文档属性

名称 8.1确定时间与随机事件同步强化练习(含解析)
格式 docx
文件大小 310.0KB
资源类型 试卷
版本资源 苏科版
科目 数学
更新时间 2025-05-20 13:32:15

图片预览

文档简介

中小学教育资源及组卷应用平台
8.1确定时间与随机事件
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.下列成语所描述的事件是必然事件的是( )
A.不期而遇 B.守株待兔 C.拔苗助长 D.水滴石穿
2.有标号分别为1,2,3,4,5的五张卡片,这些卡片除标号外其余都相同,从中随机抽取一张,下列事件是不可能事件的是( )
A.该卡片上的标号小于6 B.该卡片上的标号大于6
C.该卡片上的标号是奇数 D.该卡片上的标号是3
3.下列事件是必然事件的是( )
A.车辆随机到达一个路口遇到红灯 B.早上的太阳从西方升起
C.400人中有两人的生日在同一天 D.一枚质地均匀的硬币正面朝上
4.爸爸买彩票,( )中奖.
A.一定 B.可能 C.不可能 D.以上都不对
5.下列说法正确的是( )
A.不可能事件发生的概率为1 B.随机事件发生的概率为
C.概率很小的事件不可能发生 D.掷一枚质地均匀的硬币,正面朝上的概率为
6.下列事件中,属于随机事件的是(  )
A.通常水加热到100℃时沸腾
B.测量孝感某天的最低气温,结果为﹣150℃
C.一个袋中装有5个黑球,从中摸出一个是黑球
D.篮球队员在罚球线上投篮一次,未投中
7.小明刚走出家门,正巧碰上一个人,那么这个人一定是小明的( )
A.亲属 B.朋友或同学 C.不能确定 D.陌生人
8.下列事件中,是必然事件的为( )
A.3天内会下雨
B.打开电视,正在播放广告
C.367人中至少有2人公历生日相同
D.某妇产医院里,下一个出生的婴儿是女孩
9.下列事件中,是随机事件的是( )
A.通常加热到时,水沸腾
B.随意翻到一本书的某页,这页的页码是偶数
C.任意画一个三角形,其内角和是
D.明天太阳从东方升起
10.“a是实数,|a|≥0”这一事件是( )
A.必然事件 B.不确定事件 C.不可能事件 D.随机事件
11.下列成语中,表示不可能事件的是( )
A.缘木求鱼 B.杀鸡取卵
C.探囊取物 D.日月经天,江河行地
12.有两个事件,事件A:367人中至少有2人生日相同;事件B:抛掷一枚均匀的骰子,朝上的面点数为偶数.下列说法正确的是(  )
A.事件A、B都是随机事件
B.事件A、B都是必然事件
C.事件A是随机事件,事件B是必然事件
D.事件A是必然事件,事件B是随机事件
二、填空题
13.有A、B两个不透明口袋,每只口袋里装有两个相同的球,A袋中两球分别写上“细”、“致”的字样;B袋中两球分别写上“信”、“心”的字样;考试前,张山同学从这两个口袋中各取出一个球,刚好能组成“细心”字样的事件是什么事件?答
14.“任意打开一本200页的数学书,正好是第35页”,这是 事件(选填“不确定”或“确定”).
15.芬芬任意买一张电影票的座位号是偶数是 事件(填随机或必然或不可能)
16.一只不透明的袋子里装有4个黑球,2个白球.每个球除颜色外都相同,则事件“从中任意摸出1个球,是黑球”的事件类型是 填“随机事件”“不可能事件”或“必然事件”.
17.抛掷两枚分别标有1,2,3,4的四面体骰子,写出这个实验中的一个随机事件是 ;写出这个实验中的一个必然事件是 .
三、解答题
18.小明购买双色球福利彩票时,两次分别购买了1张和100张,均未获奖,于是他说:“购买1张和100张中奖的可能性相等.”小华说:“这两个事件都是不可能事件.”他们的说法对吗?请说明理由.
19.有6张扑克牌,点数分别为2、3、4、5、6、7,从中摸出2张牌.请你根据上述情况,写出必然事件、不可能事件、随机事件各1个.
20.从1,2,3,4,5这五个数中任意取两个相乘,问:
(1)积为偶数,属于哪类事件?有几种可能情况?
(2)积为奇数,属于哪类事件?有几种可能情况?
(3)积为无理数,属于哪类事件?
21.掷三个普通的正方体的骰子,把三个骰子的点数相加,请问下列事件哪些是必然发生的,哪些是不可能发生的,哪些是可能发生的,说说你的理由.
(1)和为2;(2)和为6;(3)和大于2;
(4)和等于18;(5)和小于19;(6)和大于18.
22.吴帆每天上学前,妈妈总是少不了一句话:“路上小心点,注意交通安全,不要被来往的车辆碰着.”为此吴帆每天很烦,心想:乐清市有100多万人口,每天交通事故也就那么几起,这样的事件轮到我是不可能的,大家觉得他的想法对吗?从今天所学的知识看,应该是什么事件?
23.在一个不透明的袋子里,装有9个大小和形状一样的小球,其中3个红球、3个白球、3个黑球,它们已在袋子中被搅匀,现在有一个事件:从袋子中任意摸出n个球,红球、白球、黑球至少各有一个.
(1)当n为何值时,这个事件必然发生?
(2)当n为何值时,这个事件不可能发生?
(3)当n为何值时,这个事件可能发生?
24.把一副扑克牌中的13张方块牌洗匀后正面朝下,从中任意抽取1张.判断下列事件中,哪些是必然事件?哪些是不可能事件?哪些是随机事件?
(1)抽到的牌是方块3;
(2)抽到的牌是方块;
(3)抽到的牌是红桃3.
《8.1确定时间与随机事件》参考答案
题号 1 2 3 4 5 6 7 8 9 10
答案 D B C B D D C C B A
题号 11 12
答案 A D
1.D
【分析】本题主要考查了必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下一定发生的事件,不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,根据必然事件就是一定发生的事件,即发生的概率是1的事件逐项判断,即可解题.
【详解】解:A. 不期而遇是随机事件,不符合题意;
B、守株待兔是随机事件,不符合题意;
C、拔苗助长是不可能事件,不符合题意;
D、水滴石穿是必然事件,符合题意;
故选:D.
2.B
【分析】直接利用随机事件以及必然事件和不可能事件的定义分析求出即可.
【详解】解:从标号分别为1,2,3,4,5的5张卡片中,随机抽取1张,
A、该卡片标号小于6,是必然事件,故此选项不合题意;
B、该卡片标号大于6,是不可能事件,故此选项符合题意;
C、该卡片标号是奇数,是随机事件,故此选项不合题意;
D、该卡片标号是3,是随机事件,故此选项不合题意;
故选:B.
【点睛】此题主要考查了随机事件的定义,正确把握相关定义是解题关键.
3.C
【分析】根据随机事件、不可能事件和必然事件的概念进行辨别即可.
【详解】解:A.车辆随机到达一个路口,可能遇到红灯,有可能遇到的不是红灯,因此是随机事件,所以选项不符合题意;
B.早上的太阳从西方升起,是不可能事件,所以选项不符合题意;
C.400人中有两个人的生日在同一天,是必然事件,因此选项符合题意;
D.一枚质地均匀的硬币正面朝上是随机事件,所以选项不符合题意;
故选:C.
【点睛】本题考查随机事件,随机事件是在一定条件下,可能发生也可能不发生的事件,而事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件.
4.B
【详解】对于买彩票,一定有人中奖,这是一个必然事件;但是对于是谁中奖,这是一个随机事件.所以“爸爸买彩票,中奖”这是一个随机事件.
故选B.
5.D
【详解】A. 不可能事件发生的概率为0,故错误;
B. 随机事件发生的概率介于0和1之间,不一定是,故错误;
C. 概率很小的事件不是不可能发生,而是发生的机会较小,故错误;
D. 抛一枚质地均匀的硬币,正面朝上和反面朝上的可能性相等,都是,故正确.
故选D.
6.D
【详解】A一定会发生,是必然事件;
B一定不会发生,是不可能事件;
C一定会发生,是必然事件;
D 在罚球线上投篮一次未投中是随机事件.
故选D.
7.C
【分析】根据随机事件的概念即可解答.
【详解】此事件为随机事件,走出家门正巧碰见的人不能确定.
故答案选C.
【点睛】本题考查随机事件(不确定事件),随机事件即不确定事件是指可能发生也可能不发生的事件.
8.C
【详解】试题分析:必然事件是一定能够发生的事件,选项A、B、D的结果是不确定的,是随机事件;选项C,一年最多有366天,所以367人中至少有2人公历生日相同是确定能够发生的,是必然事件,故答案选C.
考点:必然事件.
9.B
【分析】根据确定事件和随机事件的定义来区分判断即可,必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件.
【详解】A. 通常加热到时,水沸腾,是必然事件,故该选项不符合题意;
B. 随意翻到一本书的某页,这页的页码是偶数,是随机事件,故该选项符合题意;
C. 任意画一个三角形,其内角和是,是不可能事件,故该选项不符合题意;
D. 明天太阳从东方升起,是必然事件,故该选项不符合题意;
故选B
【点睛】本题考查了确定事件和随机事件的定义,熟悉定义是解题的关键.
10.A
【分析】根据必然事件、不确定事件、不可能事件、随机事件的定义判断即可.
【详解】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,由a是实数,得|a|≥0恒成立,因此,这一事件是必然事件.故选A.
【点睛】本题考查必然事件、不确定事件、不可能事件、随机事件的判定.熟练掌握定义是解题的关键.
11.A
【分析】不可能事件,就是一定不会发生的事件,必然事件是一定会发生的事件.
【详解】缘木求鱼,是不可能事件,符合题意;
杀鸡取卵,是必然事件,不符合题意;
探囊取物,是必然事件,不符合题意;
日月经天,江河行地,是必然事件,不符合题意.
故答案为A.
【点睛】本题考查的知识点是可能事件与不可能事件的判断,解题关键是熟记可能时间和不可能事件的定义.
12.D
【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.首先判断两个事件是必然事件、随机事件,然后找到正确的答案.
【详解】解:事件A、一年有365天,所以367人中必有2人的生日相同,是必然事件;
事件B、抛掷一枚均匀的骰子,朝上的面点数为1、2、3、4、5、6共6种情况,点数为偶数是随机事件.
故选:D.
【点睛】该题考查的是对必然事件的概念的理解;解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题.用到的知识点为:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
13.随机事件
【分析】本题考查了事件的分类:随机事件、必然事件与不可能事件;随机事件是指可能发生也可能不发生的事件,必然事件是一定发生的事件,不可能事件是一定不发生的事件;根据三类事件的意义作答即可.
【详解】解:从这两个口袋中各取出一个球,刚好能组成“细心”字样可能发生也可能不发生,因而是随机事件.
故答案为:随机事件.
14.不确定
【分析】此题主要考查了随机事件的概念,解决本题需要正确理解不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,依据定义即可解决.
【详解】解:根据随机事件的概念直接得出答案;任意打开一本200页的数学书,正好是第35页,
虽然几率很小,但也存在可能,故此事件是随机事件.
故答案为:不确定.
15.随机
【分析】根据必然事件、不可能事件、随机事件的概念,即可求解.
【详解】解:芬芬任意买一张电影票的座位号是偶数是随机事件.
故答案为:随机
【点睛】本题主要考查的是必然事件、不可能事件、随机事件的概念,熟练掌握必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件是解题的关键.
16.随机事件
【分析】直接利用随机事件的定义得出答案.
【详解】解:袋子里装有4个黑球,2个白球,
从中任意摸出1个球,可能是黑球,有可能是白球,
事件“从中任意摸出1个球,是黑球”的事件类型是随机事件,
故答案为:随机事件.
【点睛】此题主要考查了随机事件,正确掌握相关定义是解题关键.
17. 一枚骰子4朝上,一枚骰子3朝上 任意两个骰子面朝上的数字和不小于2
【分析】随机事件是有时会发生,有时不会发生;必然事件是每次一定发生.根据随机事件和必然事件的定义即可得解.
【详解】解:随机事件:如一枚骰子4朝上,一枚骰子3朝上;(答案不唯一)
必然事件:如任意两个骰子面朝上的数字和不小于2.
故答案为一枚骰子4朝上,一枚骰子3朝上;任意两个骰子面朝上的数字和不小于2.
【点睛】本题考查了随机事件和必然事件的定义.随机事件是有时会发生,有时不会发生;必然事件是每次一定发生,不可能不发生.
18.小明和小华的说法都错误,理由见解析.
【详解】试题分析:分别根据随机事件的意义分析得出即可.
试题解析:小明的说法错误,因为买100张中奖的可能性比买1张的中奖可能性大;小华的说法错误,这两个事件都是随机事件,不能因为事件发生的可能性小就认为它是不可能事件.
19.见解析(答案不唯一)
【分析】本题考查事件的分类,一定条件下一定发生的是必然事件,一定不会发生的是不可能事件,可能发生也可能不发生的是随机事件,据此进行作答即可.
【详解】解:必然事件:摸出2张牌的点数之和大于4;
不可能事件:摸出2张牌的点数之和小于2;
随机事件:摸出2张牌的点数之和为5.
20.(1)随机事件,7;(2)随机事件,3;(3)不可能事件
【详解】(1)积为偶数的有2,4,6,8,10,12,20共7种可能,是随机事件;
(2)积为奇数的有3,5,15,共3种可能,是随机事件;
(3)∵这五个数都是整数,
∴积为整数,不可能是无理数,
∴积为无理数,属于不可能事件.
【点睛】必然事件指在一定条件下一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
21.(3)(5)是必然发生的;(1)(6)是不可能发生的;(2)(4)是可能发生的.
【分析】不确定事件就是可能发生也可能不发生的事件,必然事件就是一定会发生的事件,不可能事件就是一定不会发生的事件,依据定义即可作出判断.
【详解】∵三个骰子的点数相加,和最小为3,最大为18,
∴(3)(5)是必然发生的;(1)(6)是不可能发生的;(2)(4)是可能发生的.
故答案为(3)(5)是必然发生的;(1)(6)是不可能发生的;(2)(4)是可能发生的.
【点睛】本题考查随机事件,解题的关键是理解不确定事件、不可能事件以及必然事件的概念,.
22.不对,是随机事件,理由见解析.
【分析】由于频率总是介于0和1之间,从概率的统计定义可知,对任意事件A,皆有0≤P(A)≤1.
【详解】解:不对,被来往车辆碰着是随机事件,随机事件可能发生,可能不发生,因此也要注意安全.
【点睛】本题主要考查事情发生的可能性,关键是理解概率是反映事件的可能性大小的量.概率小的有可能发生,概率大的有可能不发生,注意随机事件发生的概率不为0,不可能发生事件的概率为0.
23.(1)或8或9;(2)或2;(3)或4或5或6
【分析】(1)当至少摸出七个球时,红球、白球、黑球至少各有一个;
(2)当摸球个数不足3个时,不可能出现红球、白球、黑球至少各一个;
(3)当摸球个数不小于3个,不超过6个时,这个事件可能发生.
【详解】(1)当时,即或8或9时,这个事件必然发生.
(2)当时,即或2时,这个事件不可能发生.
(3)当时,即或4或5或6时,这个事件可能发生.
【点睛】本题主要考查了事件的分类,明确必然事件,不可能事件以及随机事件的概念是解题的关键.
24.(1)随机事件;(2)必然事件;(3)不可能事件
【分析】本题考查了事件的分类,熟练掌握随机事件和确定事件的定义是解题的关键.根据随机事件和确定事件的定义,逐个分析即可判断.
【详解】解:(1)抽到的牌是方块3是随机事件;
(2)抽到的牌是方块是必然事件;
(3)抽到的牌是红桃3是不可能事件.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)