(共36张PPT)
第九章 轴对称、平移与旋转
单元复习:小结与评价
01
教学目标
03
思考回顾
02
思维导图
04
典例精析
05
课堂巩固
06
作业布置
01
教学目标
1.熟练掌握轴对称、平移、旋转等图形变换的核心概念与性质,精准区分不同变换的特征,能够运用相关知识准确判断图形变换类型并说明依据.
2.深刻理解图形变换与全等图形的内在联系,熟练运用全等多边形性质解决线段长度、角度计算等简单几何问题,规范使用全等符号表示图形关系.
3.通过思维导图构建知识框架、对比分析典型案例等方式,系统梳理图形变换知识体系,提升归纳总结与逻辑推理能力,掌握从实际问题中抽象出数学模型并运用知识解决问题的方法.
4.在探究图形变换的过程中,感受其在建筑、艺术等领域的美学价值与实用价值,体会数学与生活的紧密联系,增强学习数学的兴趣与运用数学知识解决实际问题的信心.
02
思维导图
1.轴对称图形和关于直线成轴对称的区别是什么?
轴对称图形是一个图形自身的特性,沿某直线折叠后直线两旁部分能完全重合;关于直线成轴对称是两个图形的位置关系,沿某直线对折后两个图形能完全重合.
03
思考回顾
2.如何判断一个图形是轴对称图形?
看能否找到一条直线,使图形沿这条直线折叠后,直线两旁的部分完全重合.
3.平移的定义是什么?
在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动.
03
思考回顾
对应点所连的线段平行且相等,对应线段平行且相等,对应角相等
4.平移有哪些性质?
5:旋转由哪些要素确定?
由旋转中心、旋转方向和旋转角度确定.
6.旋转的性质有哪些?
旋转前后图形全等,对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角.
03
思考回顾
7:中心对称图形与中心对称的联系是什么?
都绕某点旋转 180° 后能重合,且都有对称中心.中心对称图形是针对一个图形,中心对称针对两个图形.
对称点所连线段都经过对称中心且被对称中心平分,对应线段平行(或在同一直线上)且相等.
8.成中心对称的两个图形有什么性质?
03
知识回顾
这三种变换都是全等变换,变换后的图形与原图形全等,只改变图形位置,不改变形状和大小.
9.平移、轴对称、旋转与图形全等有什么关系?
确定两个图形间的变换关系,找到对应点、对应线段和对应角,依据变换性质证明.
10.怎样利用这三种变换证明两个图形全等?
1. 本章从日常生活中常见的一些图形的位置关系, 得出图形的轴对称、 平移与旋转以及旋转对称、 中心对称的概念. 通过动手操作, 探索图形在轴对称、 平移与旋转的过程中有关点、 线段、 角的变化情况.
2. 轴对称、 平移与旋转都是由现实世界广泛存在的某些现象而抽象得到的基本变换, 反映了图形与图形之间的变化关系. 在这样的变换下, 图形中任意两点间的距离保持不变, 从而使得线段的长度、 角的大小乃至整个图形的形状和大小不发生变化. 正因为这样, 我们把可以通过轴对称、 平移与旋转这些基本变换以后互相完全重合的两个图形称为全等图形.
03
思考回顾
3. 我们利用尺规作图作出线段的垂直平分线、 角平分线, 以及过一点作出已知直线的垂线, 连同七年级上册中的作一条线段等于已知线段、 作一个角等于已知角, 完成了五种基本的尺规作图. 今后还将继续利用尺规作图这一有效工具, 解决更多的几何作图问题.
4. 今后我们还将继续运用动态变换的方法, 研究其他的几何图形, 得到各种有用的结论和关系.
03
思考回顾
例2.如图,将长方形纸片折叠,使点D与点B重合,点C落在点处,折痕为.若,则的度数为 .
例1下列图形中是轴对称图形的是( )
04
典例精析
C
55°
折叠的本质就是轴对称
例3.如图,长方形草坪中,,现需要修两条形状、大小完全相同的便道,若便道的宽为,则这两条便道的面积是( )
A. B. C. D.
04
典例精析
C
例4.如图,将沿方向平移至的位置,若,则的长是( )
A.13 B.8 C.3 D.4
A
例6.如图,在中,,将绕点顺时针旋转后得到的(点的对应点是点,点的对应点是点),连结,若,则的大小是( )
A.32° B.64° C.77° D.87°
04
典例精析
例5.下列美丽的图案中,不是旋转对称图形的是( )
A
C
例7.剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是( )
04
典例精析
A
例8.如图,直线垂直相交于点O,曲线C关于点O成中心对称,点A的对称点是点A',于点B,于点D.若,则阴影部分的面积之和为 .
6
04
典例精析
例9.如图,将绕点A顺时针旋转30°后得到,将沿直线翻折得到.
(1)问与有何关系?
(2)若,求的度数.
解:.
(2)是由绕点顺时针旋转所得的,
,
,
.
解:(1):,
与是对应边,,
,即,
.
(2)先将向左平移,使点与点重合,然后将以所在直线为轴向下翻折,然后将绕着点按顺时针旋转就能与重合.
04
典例精析
10. 如图,.
(1)求的长:
(2)怎样运动才能和重合?
04
典例精析
例11.如图,在每个小正方形的边长为1个单位的网格中,的顶点均在格点(网格线的交点)上
(1)将向右平移5个单位得到,画出△;
(2)将(1)中的,绕点逆时针旋转得到,画出.
解:如图
1.如图,与关于直线对称,则的度数为( )
A.30° B.50° C.90° D.100°
05
课堂练习
【知识技能类作业】必做题:
C
2.如图,在中,,将沿直线向右平移2个单位长度得到,连结,有下列结论:①;②;③四边形的周长是;④.请判断其中正确的结论(用序号表示),并说明理由.
05
课堂练习
【知识技能类作业】必做题:
解:正确的结论为①②③④.
理由:将沿直线BC向右平移2个单位长度得到,
,
,①和②都正确.
四边形的周长=,∴③正确.
,④正确.
∴正确的结论为①②③④.
04
课堂练习
【知识技能类作业】必做题:
解:根据旋转的特征得.
,
.
,
,
.
3.如图,将绕点逆时针旋转得到,若点恰好在的延长线上,求的度数.
4.下列图形中,既是轴对称图形又是中心对称图形的是 ( )
04
课堂练习
【知识技能类作业】选做题:
B
5.如图,点在上,且.若.
(1)求的长.
(2)求的度数.
04
课堂练习
【综合拓展类作业】
解:(1),
,
,.
,,
.
(2),.
,,
04
课堂练习
【综合拓展类作业】
解:(1)因为,
所以,
所以,
所以.
(2)绕点顺时针旋转能与重合.
6.如图,.
(1)求的度数.
(2)怎样运动能与重合
06
课堂小结
一、三大变换的概念与性质
轴对称:
平移:
旋转:
二、全等图形概念及性质
三、全等三角形的性质与判定
例题精讲:
1.下列图形中,对称轴条数最少的图形是( ).
A.等边三角形 B.正方形 C.圆 D.角
2.已知:如图,,若,则( ).
A.3 B.4 C.5 D.8
06
作业布置
【知识技能类作业】必做题:
D
A
3.对于两个图形,给出下列结论:①两个图形的周长相等;②两个图形的面积相等;③两个图形的周长和面积都相等;④两个图形的形状相同,大小也相等.其中能获得这两个图形全等的结论共有( ).
A.1个 B.2个 C.3个 D.4个
A
4.如图所示,把沿直线翻折后得到,如果,那么 度.
06
作业布置
【知识技能类作业】选做题:
72
5.已知四边形,图①将沿折叠,点C落于处,交于G,为正方形,再将纸片展开,图②沿折叠,点落于上,两条折痕所成夹角为 度.
45
06
作业布置
【知识技能类作业】选做题:
6.画出小旗先绕点O顺时针旋转90°,再向右平移3格后的图.
解:作图如下:
5.如图,在△ABC中,∠A=60°,BD平分∠ABC交AC于点D,DE∥BC交AB于点E,∠BDC=85°,则∠BDE的度数为 .
06
作业布置
【知识技能类作业】选做题:
25°
6.如图,在△ABC中,∠A=20°,CD是∠BCA的平分线,在△CDA中,DE是边CA上的高,如果∠EDA=∠CDB,求∠B的度数.
解:∵DE 是 CA 边上的高,
∴∠DEA=∠DEC=90°.∵∠A=20°,∴∠EDA=90°-20° =70°.
∵∠EDA= ∠CDB,∴∠CDE=180° -70°×2=40°.
在 Rt△CDE中,∠DCE=90°-40°=50°.
∵CD是∠BCA的平分线,∴∠BCA=2∠DCE=2×50°=100°.
∴∠B=180°-∠BCA-∠A=60°.
06
作业布置
【综合拓展类作业】
【详解】(1)证明:,
,
.
7.如图,三点在同一条直线上,且.
(1)求证:;
(2)当满足什么条件时,?并说明理由.
06
作业布置
【综合拓展类作业】
(2)解:当时,.理由如下:
,
.
,
,,
,
,
,
,
.
06
作业布置
【综合拓展类作业】
8.如图,在边长为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.
(1)在图中画出与关于直线l成轴对称的;
(2)线段被直线l______;
(3)在直线l上找一点P,使的长最短;
(4)的面积=______.
(1)解:如图.
06
作业布置
【综合拓展类作业】
8.如图,在边长为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.
(1)在图中画出与关于直线l成轴对称的;
(2)线段被直线l__________;
(3)在直线l上找一点P,使的长最短;
(4)的面积=__________.
(2)解:由轴对称可知,线段被直线l垂直平分.
故答案为:垂直平分;
垂直平分
06
作业布置
【综合拓展类作业】
8.如图,在边长为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.
(1)在图中画出与关于直线l成轴对称的;
(2)线段被直线l__________;
(3)在直线l上找一点P,使的长最短;
(4)的面积=__________.
(3)解:如图,点P即为所求.
06
作业布置
【综合拓展类作业】
8.如图,在边长为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.
(1)在图中画出与关于直线l成轴对称的;
(2)线段被直线l__________;
(3)在直线l上找一点P,使的长最短;
(4)的面积=__________.
(4)解:的面积=.
故答案为:.
Thanks!
https://www.21cnjy.com/recruitment/home/fine