首页
初中语文
初中数学
初中英语
初中科学
初中历史与社会(人文地理)
初中物理
初中化学
初中历史
初中道德与法治(政治)
初中地理
初中生物
初中音乐
初中美术
初中体育
初中信息技术
资源详情
初中数学
苏科版(2024)
九年级下册
第5章 二次函数
5.5 用二次函数解决问题
5.5用二次函数解决问题同步强化练习(含解析)
文档属性
名称
5.5用二次函数解决问题同步强化练习(含解析)
格式
docx
文件大小
803.4KB
资源类型
试卷
版本资源
苏科版
科目
数学
更新时间
2025-05-20 22:06:00
点击下载
图片预览
1
2
3
4
5
文档简介
中小学教育资源及组卷应用平台
5.5用二次函数解决问题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD最大面积是( )
A.60 m2 B.63 m2 C.64 m2 D.66 m2
2.烟花厂为扬州烟花三月经贸旅游节特别设计制作一种新型礼炮,这种礼炮的升空高度与飞行时间的关系式是,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( )
A. B. C. D.
3.某抛物线型拱桥的示意图如图所示,水面,拱桥最高处点C到水面的距离为,在该抛物线上的点E,F处要安装两盏警示灯(点E,F关于y轴对称),警示灯F距水面的高度是,则这两盏灯的水平距离是( )
A. B. C. D.
4.如图1,△ABC是直角三角形,∠A=90°,AB=8cm,AC=6cm点P从点A出发,沿AB方向以2cm/s的速度向点B运动;同时点Q从点A出发,沿AC方向以1cm/s的速度向点C运动,其中一个动点到达终点,则另一个动点也停止运动,则三角形APQ的最大面积是( )
A.8cm2 B.16cm2 C.24cm2 D.32cm2
5.出售某种文具盒,若每个可获利x元,一天可售出(6-x)个.当一天出售该种文具盒的总利润y最大时,x的值为( )
A.1 B.2 C.3 D.4
6.某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y(万元)与销售量x(辆)之间分别满足:,,若该公司在甲、乙两地共销售15辆该品牌的汽车,则能获得的最大利润为( )
A.30万元 B.38万元 C.46万元 D.48万元
7.从地面竖直向上抛出一小球,小球的高度(单位:)与小球运动时间(单位:)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度时,.其中正确的是( )
A.①④ B.①② C.②③④ D.②③
8.如图,在Rt△ABC中,∠C=90°,AC=BC,E是AB的中点,过点E作AC和BC的垂线,垂足分别为D和点F,四边形CDEF沿着CA方向匀速运动,点C与点A重合时停止运动,设运动时间为t,则S关于t的函数图象大致为( )
A. B.
C. D.
9.如图,某大门的形状是一抛物线形建筑,大门的地面宽8 m,在两侧距地面3.5 m高处有两个挂单位名牌匾用的铁环,两铁环的水平距离是6 m.若按图所示建立平面直角坐标系,则抛物线的解析式是( ).(建筑物厚度忽略不计)
A. B. C. D.
10.在晋中市中考体育训练期间,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度(米)与水平距离(米)之间的关系式为,由此可知该生此次实心球训练的成绩为( )
A.米 B.米 C.米 D.米
11.定点投篮是同学们喜爱的体育项目之一,某位同学投出篮球的飞行路线可以看作是抛物线的一部分,篮球飞行的竖直高度(单位:)与水平距离(单位:)近似满足函数关系(a≠0).下表记录了该同学将篮球投出后的与的三组数据,根据上述函数模型和数据,可推断出篮球飞行到最高点时,水平距离为( )
x (单位:m)
y (单位:m) 3.05
A. B. C. D.
12.某超市销售一种商品,发现一周利润y(元)与销售单价x(元)之间的关系满足,由于某种原因,销售单价只能为,那么一周可获得最大利润是( )
A.1 558元 B.1 550元
C.1 508元 D.20元
二、填空题
13.如图,在中,,,,动点由点出发沿方向向点匀速移动,速度为,动点由点出发沿方向向点匀速移动,速度为.当一个点到达终点时,另一个点也停止运动.若动点P、Q同时从A、B两点出发, 时,的面积最大,最大面积是 .
14.小汽车刹车距离s(m)与速度v(km/h)之间的函数关系式为s=v2,一辆小汽车速度为100km/h,在前方80m处停放一辆故障车,此时刹车 (填“会”或“不会”)有危险.
15.超市销售的某商品进价10元/件.在销售过程中发现,该商品每天的销售量y(件)与售价x(元/件)之间满足函数关系式y=-5x+150,该商品售价定为 元/件时,每天销售该商品获利最大.
16.两个数的和为6,这两个数的积最大可以达到 .
17.如图,一位篮球运动员投篮,球沿抛物线运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为,则他距篮筐中心的水平距离是 .
三、解答题
18.如图,在△AOB中,∠O=90°,AO=18cm,BO=30cm,动点M从点A开始沿边AO以1cm/s的速度向终点O移动,动点N从点O开始沿边OB以2cm/s的速度向终点B移动,一个点到达终点时,另一个点也停止运动.如果M、N两点分别从A、O两点同时出发,设运动时间为ts时四边形ABNM的面积为Scm2.
(1)求S关于t的函数关系式,并直接写出t的取值范围;
(2)判断S有最大值还是有最小值,用配方法求出这个值.
19.已知将二次函数的图像向上平移4个单位,再向左平移3个单位得到一新的二次函数,其图像与x轴交于A,B两点,与y轴交于C点,顶点为P点.解决下列问题
(1)求A、B、C的坐标;
(2)求⊿ABC和⊿ABP的面积;
(3)在新函数的图像上是否存在一点Q使得⊿ABQ的面积与⊿ABC的面积相等?若存在,求出Q点的坐标;若不存在,请说明理由.
20.影响刹车距离的最主要因素是汽车行驶的速度及路面的摩擦系数.有研究表明,晴天在某段公路上行驶时,速度v(km/h)的汽车的刹车距离s(m)可以由公式确定;雨天行驶时,这一公式为.
(1)如果行车速度是70 km/h,那么在雨天行驶和在晴天行驶相比,刹车距离相差多少米?
(2)如果行车速度分别是60 km/h与80 km/h,那么同在雨天行驶(相同的路面)相比,刹车距离相差多少?
(3)根据上述两点分析,你想对司机师傅说些什么?
21.李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.
(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;
(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?
22.如图,二次函数的图象经过坐标原点,与轴的另一个交点为A(-2,0).
(1)求二次函数的解析式
(2)在抛物线上是否存在一点P,使△AOP的面积为3,若存在请求出点P的坐标,若不存在,请说明理由.
23.如图,二次函数的图象与x轴交于两点,其中点,点,点都在抛物线上,M为抛物线的顶点.
求抛物线的函数解析式;
求的面积;
根据图形直接写出使一次函数值大于二次函数值的x的取值范围.
24.种植户王大伯的大棚种植了许多优质草莓.因受疫情影响,多地封村村路,无法正常销售,于是就进行了网上预订送货销售活动.在销售的30天中,第一天卖出20kg,为了扩大销售,采取了降价措施,以后每天比前一天多卖出4kg.第x天的售价为y元/kg,y关于x的解析式为.第12天的售价为32元/kg,第26天的售价为25元/kg.已知种植销售草莓的成本是18元/kg,设第x天的销售量为p kg,利润为W元(利润=销售收入-成本).
(1)k=______,b=______;
(2)请写出p关于x的函数关系式: ______;
(3)求销售草莓第几天,当天销售利润最大?最大利润是多少元?
《5.5用二次函数解决问题》参考答案
题号 1 2 3 4 5 6 7 8 9 10
答案 C B A B C C D C A C
题号 11 12
答案 C A
1.C
【详解】试题分析:设BC=xm,表示出AB,矩形面积为ym2,表示出y与x的关系式为y=(16﹣x)x=﹣x2+16x=﹣(x﹣8)2+64,,利用二次函数性质即可求出求当x=8m时,ymax=64m2,即所围成矩形ABCD的最大面积是64m2.故答案选C.
考点:二次函数的应用.
2.B
【详解】解:h=-t2+20t+1=-(t-4)2+41
-<0
∴这个二次函数图象开口向下,
∴当t=4时,升到最高点,
故选B.
3.A
【分析】根据题意,可以设抛物线的解析式为,然后根据题意可得点A的坐标,再代入抛物线解析式,即可求得a的值,再将代入,即可求得相应的x的值,从而即可求解.
【详解】解:解:设该抛物线的解析式为,
由题意可得,点A的坐标为,
将代入得,,
解得,
∴抛物线的解析式为,
当时,,
解得,,
∴,,
∴这两盏灯的水平距离是:(米),
故选:A.
【点睛】本题考查二次函数的应用,解题的关键是明确题意,求出相应的函数解析式,利用数形结合的思想求解.
4.B
【详解】根据题意设运动时间为x秒,可得:AP=2xcm,AQ=xcm,
则S==,
则根据题意可知:当x=4cm时,面积有最大值,最大面积为16.
故选:B.
5.C
【分析】先根据题意列出二次函数关系式,再根据求二次函数最值的方法求解即可.
【详解】解:由题意可得函数式y=(6-x)x,
即y=x(6-x)=-x2+6x,
当x=-==3时,y有最大值.
当x=3元时,一天出售该种文具盒的总利润y最大.
故选:C.
【点睛】:本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.
6.C
【分析】首先根据题意得出总利润与x之间的函数关系式,进而求出最值即可.
【详解】解:设在甲地销售x辆,则在乙地销售辆,总利润为W万元,根据题意得出:
,
∴当时,取最大值,且最大值为46,
∴该公司在甲、乙两地共销售15辆该品牌的汽车,则能获得的最大利润为46万元,故C正确.
故选:C.
【点睛】此题主要考查了二次函数的应用,解题的关键是根据题意得出函数关系式,并将函数关系式化为顶点式.
7.D
【分析】根据函数的图象中的信息判断即可.
【详解】①由图象知小球在空中达到的最大高度是;故①错误;
②小球抛出3秒后,速度越来越快;故②正确;
③小球抛出3秒时达到最高点即速度为0;故③正确;
④设函数解析式为:,
把代入得,解得,
∴函数解析式为,
把代入解析式得,,
解得:或,
∴小球的高度时,或,故④错误;
故选D.
【点睛】本题考查了二次函数的应用,解此题的关键是正确的理解题意
8.C
【分析】根据已知条件得到△ABC是等腰直角三角形,推出四边形EFCD是正方形,设正方形的边长为a,当移动的距离
a时,如图2,,根据函数关系式即可得到结论.
【详解】解:∵在直角三角形ABC中,∠C=90°,AC=BC,
∴△ABC是等腰直角三角形,
∵EF⊥BC,ED⊥AC,
∴四边形EFCD是矩形,
∵E是AB的中点,
∴EF=AC,DE=BC,
∴EF=ED,
∴四边形EFCD是正方形,
设正方形的边长为a,如图1,当移动的距离
当移动的距离>a 时,如图2,,
∴S关于t的函数图象大致为C选项,故选:C.
【点睛】本题考查动点问题的函数图象,正方形的性质、勾股定理等知识,解题的关键是读懂题意,学会分类讨论的思想,属于中考常考题型.
9.A
【分析】先根据函数图象可得抛物线与轴的两个交点坐标为和,再设抛物线的解析式为,将点代入即可得.
【详解】解:由函数图象可知,抛物线与轴的两个交点坐标为和,且经过点,
设抛物线的解析式为,
将点代入得:,
解得,
则抛物线的解析式为,即为,
故选:A.
【点睛】本题考查了求抛物线的解析式,熟练掌握待定系数法是解题关键.
10.C
【分析】根据铅球落地时,高度y=0,把实际问题可理解为当y= 0时,求x的值即可.
【详解】解:当y=0时, y=-x2+x+ =0,
解得:x1= -2(舍去),x2= 10,
由此可知该生此次实心球训练的成绩为10 米;
故选:C.
【点睛】本题考查了二次函数的实际应用,解析式中自变量与函数表达的实际意义;结合题意,选取函数或自变量的特殊值,列出方程求解是解题关键.
11.C
【分析】用待定系数法可求二次函数的表达式,从而可得出答案.
【详解】将代入中得
解得
∴
∵
∴当时,
故选C
【点睛】本题主要考查待定系数法求二次函数的解析式及二次函数的最大值,掌握二次函数的图象和性质是解题的关键.
12.A
【分析】本题考查二次函数的最值,根据二次函数的图象与性质可得当时,y取最大值,即一周可获得最大利润,即可求解.
【详解】解:∵,
∴抛物线的开口向下,
∵对称轴为,
∴当时,二次函数图象中,y随x的增大而增大;当时,y随x的增大而减小,
∴当时,y取最大值,即一周可获得最大利润,最大利润是1558,
故选:A.
13. 3 9
【分析】本题考查的是二次函数的实际应用,直接利用面积公式建立二次函数,再利用二次函数的性质可得答案.
【详解】解:设点P、Q移动的时间为,则,,
∴,
∴,
∴当时,的面积最大,最大面积为.
故答案为:3,9
14.会
【分析】由题意把代入即可求得s的值,与80比较即可判断.
【详解】解:在中,当时,
则此时刹车会有危险.
【点睛】本题考查二次函数的应用是初中数学的重点和难点,因而是中考的热点,尤其在压轴题中极为常见,一般难度不大,需熟练掌握.
15.20
【分析】根据利润=单件利润×销售量可得W=(x-10)(-5x+150),再根据二次函数的性质,用配方法算出售价即可;
【详解】设获利W元,则W=(x-10)·y
∴W=(x-10)(-5x+150)
=-5x2+200x-1500
当x===20时,W的值最大
∴当x=20时,每天销售该商品获利最大.
故答案为:20.
【点睛】本题考查二次函数的实际应用.熟练掌握配方法和二次函数的性质是解决本题的关键.
16.9
【详解】试题分析:设其中一个数为x,则另一个数为(6-x),则x(6-x)=,则这两个数的积最大可以达到9.
17.4
【分析】将代入中可求出x,结合图形可知,即可求出OH.
【详解】解:当时,,解得:或,
结合图形可知:,
故答案为:4
【点睛】本题考查二次函数的实际应用:投球问题,解题的关键是结合函数图形确定x的值.
18.(1)S=t2﹣18t+270(0<t≤15);(2)S有最小值,这个值是189
【分析】(1)根据题意和三角形的面积公式求出S关于t的函数关系式;
(2)利用配方法把一般式化为顶点式,根据二次函数的性质解答.
【详解】解:(1)由题意得,AM=t,ON=2t,则OM=OA-AM=18-t,
四边形ABNM的面积S=△AOB的面积-△MON的面积
=×18×30-×(18-t)×2t
=t2-18t+270(0<t≤15);
(2)S=t2-18t+270
=t2-18t+81-81+270
=(t-9)2+189,
∵a=1>0,
∴S有最小值,这个值是189.
【点睛】本题考查的是二次函数的最值,正确列出二次函数的解析式、掌握二次函数的性质是解题的关键.
19.(1)A(-5,0)、B(-1,0)、C(0,-5);(2)10,8;(3)存在,Q(-6,-5)
【分析】(1)根据二次函数图象平移左加右减,上加下减即可得到新的二次函数的解析式,再令x为0求出C的坐标,令y为0求出A、B的坐标;
(2)根据二次函数求出其顶点坐标,根据三角形面积公式求解即可;
(3)由△ABQ于△ABC的面积相等可知两个三角形的底都是AB,所以点Q的纵坐标应和点C的纵坐标一样,由此可找出点Q的坐标;
【详解】(1)∵ 图象向上平移4个单位,向左平移3个单位,
∴ 新的二次函数解析式为: ,
∵ 点C为二次函数与y轴的交点,
∴ ,即y=-5,
∴ C(0,-5),
∵点A、B为二次函数与x轴的交点,
∴ ,即, ,
∴ A(-5,0)、B(-1,0);
(2)∵A(-5,0)、B(-1,0),
∴ AB=4 ,
又∵ C(0,-5),
∴ ,
∵二次函数:,
∴顶点坐标P(-3,4),
∴,
(3)存在;
假设 ,AB=AB,
∴ 点Q的纵坐标为-5,
∴ ,
∴ (舍去) 或 ,
∴ Q(-6,-5),
∴存在一点Q使得
【点睛】本题主要考查了二次函数图象左加右减,上加下减、三角形的面积公式,以及面积相等时求动点的坐标;掌握二次函数的性质是解题的关键;
20.(1)49(2)56(3)请司机师傅一定要注意天气情况与车速
【详解】试题分析:
(1)由题意把(km/h)分别代入两个公式计算,并求差可得结果;
(2)把(km/h)和(km/h)分别代入:中计算,再求二者的差即可得到答案;
(3)根据(1)、(2)两问中的结果提出建议即可.
试题解析:
(1)当v=70km/h时,
S晴= 1100v2= 1100×702=49(m),S雨= 150v2=×702=98(m),
∴S雨-S晴=98-49=49(m).
(2)当v1=80km/h, S1= 150v12=×802=128(m),
当v2=60km/h,S2=v22=×602=72(m),
刹车距离相差:S1-S2=128-72=56(m).
(3)由(1)中的计算结果可知:在汽车速度相同的情况下,雨天的刹车距离要大于晴大的刹车距离;由(2)中的计算结果可知:在同是雨天的情况下,汽车速度越大,刹车距离也就越大.
因此请司机师傅在行车时一定要注意天气情况与车速.
21.(1)且x为整数.
(2)李大爷每天应购进这种水果7箱,获得的利润最大,最大利润是140元.
【分析】(1)根据题意列出,得到结果.
(2)根据销售利润=销售量(售价-进价),利用(1)结果,列出销售利润w与x的函数关系式,即可求出最大利润.
【详解】(1)解:由题意得
∴批发价y与购进数量x之间的函数关系式是,且x为整数.
(2)解:设李大爷销售这种水果每天获得的利润为w元
则
∵
∴抛物线开口向下
∵对称轴是直线
∴当时,w的值随x值的增大而增大
∵x为正整数,∴此时,当时,
当时,w的值随x值的增大而减小
∵x为正整数,∴此时,当时,
∵
∴李大爷每天应购进这种水果7箱,获得的利润最大,最大利润是140元.
【点睛】本题考查了二次函数的性质在实际生活中的应用,最大销售利润的问题常利用二次函数的增减性来解答,解题关键是理解题意,确定变量,建立函数模型,然后结合实际选择最优方案进行解决.
22.(1)y=-x2-2x;(2)(3,-3),(1,-3).
【分析】(1)把点(0,0)和点A(-2,0)分别代入函数关系式来求b、c的值;
(2)设点P的坐标为(x,-x2-2x),利用三角形的面积公式得到-x2-2x=±3,通过解方程来求x的值,则易求点P的坐标.
【详解】解:(1)∵二次函数y=-x2+bx+c的图象经过坐标原点(0,0)
∴c=0.
又∵二次函数y=-x2+bx+c的图象过点A(-2,0)
∴-(-2)2-2b+0=0,
∴b=-2.
∴二次函数的解析式:y=-x2-2x;
(2)存在一点P,满足S△AOP=3.
设点P的坐标为(x,-x2-2x)
∵S△AOP=3
∴×2×|-x2-2x|=3
∴-x2-2x=±3.
当-x2-2x=3时,此方程无解;
当-x2-2x=-3时,
解得 x1=-3,x2=1.
∴点P的坐标为(-3,-3)或(1,-3).
【点睛】本题考查了抛物线与x轴的交点,解(1)题时,实际上利用待定系数法来求抛物线的解析式.
23.(1);(2)15;(3)或.
【详解】试题分析:
(1)将所A、C、D的坐标代入列出方程组,解方程组求得a、b、c的值,即可得到抛物线的解析式;
(2)先根据(1)中所得解析式求出点B和点M的坐标,连接OM,即可由S△MCB=S△MOC+S△MOB-S△BOC求得△MCB的面积;
(3)由图形结合点M和点C的坐标写出一次函数图象在二次函数图象上方时所对应的x的取值范围即可.
试题解析:
(1)∵二次函数的图象经过点,点,点,
∴ ,解得: ,
∴该二次函数的解析式为:;
(2)在中,当时,有,解得:,
∴点B的坐标为(5,0),
∵,
∴二次函数图象的顶点M的坐标为:(2,9),
如图,连接OM,BM,则:
S△BMC=S△OMC+S△OMB-S△BOC
=
=15.
(3)由图可知在点C的左侧和点M的右侧时,一次函数的图象在二次函数图象的上方,
∴当一次函数的值大于二次函数的值时,所对应的的取值范围是:或.
点睛:解第2小题时,连接OM、BM,通过S△MCB=S△MOC+S△MOB-S△BOC来间接求得△MCB的面积是解题的方法之一;也可过点M作x轴的垂线交BC于点N,通过求得点N的坐标来求得MN的长度,这样由S△BMC=OB·MN也可求得△BMC的面积;
24.(1),25
(2)p=4x+16
(3)第18天利润最大,最大利润为968元
【分析】(1)根据题意,得12k-76k=32,计算即可,根据b是常数,b就是第26天的售价.
(2)根据以后每天比前一天多4kg,第x天的销售量就是20+(x-1)×4,整理得4x+16,这就是所求.
(3)分两个时间段,分别求出最值,比较两个最值的大小,下结论即可.
【详解】(1)根据题意,得
12k-76k=32,
解得k= ;
∵ b是常数,b就是第26天的售价,
∴b=25,
故答案为:,25.
(2)∵ 以后每天比前一天多4kg,
∴第x天的销售量就是20+(x-1)×4,整理得4x+16,
∴p=4x+16,
故答案为:p=4x+16.
(3)当1≤x<20时,
W= (4x+16)( )-(4x+16)×18
=,
故当x=18时,W有最大值,且最大值为968,
即第18天的利润最大,最大利润为968元;
当20≤x≤30时,
W= (4x+16)×25- (4x+16)×18
=28x+112,
根据一次函数的性质,y随x的增大而增大,
故当x=30时,W有最大值,且最大值为840+112=952,
即第30天的利润最大,最大利润为952元;
∵968>952,
∴第18天的利润最大,最大利润为968元.
【点睛】本题考查了一次函数的应用,二次函数的应用,熟练掌握一次函数的性质和抛物线的性质是解题的关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)
点击下载
同课章节目录
第5章 二次函数
5.1 二次函数
5.2 二次函数的图象和性质
5.3 用待定系数法确定二次函数表达式
5.4 二次函数与一元二次方程
5.5 用二次函数解决问题
第6章 图形的相似
6.1 图上距离与实际距离
6.2 黄金分割
6.3 相似图形
6.4 探索三角形相似的条件
6.5 相似三角形的性质
6.6 图形的位似
6.7用相似三角形解决问题
第7章 锐角函数
7.1 正切
7.2 正弦、余弦
7.3 特殊角的三角函数
7.4 由三角函数值求锐角
7.5 解直角三角形
7.6 用锐角三角函数解决问题
第8章 统计和概率的简单应用
8.1 中学生的视力情况调查
8.2 货比三家
8.3 统计分析帮你做预测
8.4 抽签方法合理吗
8.5 概率帮你做估计
8.6 收取多少保险费合理
点击下载
VIP下载