中小学教育资源及组卷应用平台
苏科版2024—2025学年七年级下学期数学期末考试模拟试卷(一)
考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟
第I卷
一、选择题(每题只有一个正确选项,每小题3分,满分30分)
1.下面给出的每幅图形中的两个图案成轴对称的是( )
A. B. C. D.
2.若a=0.32,b=﹣3﹣2,c,d,则( )
A.a<b<c<d B.b<a<d<c C.a<d<c<b D.c<a<d<b
3.若2a=5,2b=3,则2a﹣b的值为( )
A. B.2 C.4 D.15
4.若(y﹣3)(y+2)=y2+my+n,则m,n的值分别为( )
A.m=1,n=﹣6 B.m=﹣1,n=﹣6 C.m=5,n=6 D.m=﹣5,n=6
5.若(m+1)x|m|+2>0是关于x的一元一次不等式,则该不等式的解集为( )
A.x=0 B.x<﹣3 C.x>﹣1 D.x<﹣1
6.关于x、y的方程组的解中x﹣y≥5,则k的取值范围为( )
A.k≥3 B.k≤3 C.k≥8 D.k≥9
7.若关于x,y的二元一次方程组的解也是二元一次方程2x﹣y=﹣7的解,则k的值是( )
A.﹣1 B.0
C.1 D.2
8.如图,将△ABC绕点A顺时针旋转40°得到△ADE,点B的对应点D恰好落在边BC上,则∠ADE的度数为( )
A.40° B.70°
C.80° D.75°
9.我国明代《算法统宗》一书中有这样一题:“一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托(一托按照5尺计算).”大意是:现有一根竿和一条绳索,如果用绳索去量竿,绳索比竿长5尺;如果将绳索对折后再去量竿,就比竿短5尺,则绳索长几尺?设竿长x尺,绳索长y尺,根据题意可列方程组为( )
A. B.
C. D.
10.已知a=2023x+2022,b=2023x+2023,c=2023x+2024,则a2+b2+c2﹣ab﹣ac﹣bc的值是( )
A.0 B.1 C.2 D.3
二、填空题(6小题,每题3分,共18分)
11.已知式子(2x+3)(x﹣a)的计算结果中不含x的一次项,则a的值为 .
12.目前世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,将数0.000000076用科学记数法表示为 .
13.已知a2+ab+b2=6,a2﹣ab+b2=10,则a+b= .
14.如图,在△ABC中,∠B=90°,AB=6,将△ABC沿着BC的方向平移至△DEF,若四边形ADFC的面积为24,则平移的距离为 .
15.结合“(a b)n=anbn(n是正整数),即积的乘方等于乘方的积”计算22025= .
16.已知有甲、乙两个长方形,它们的边长如图所示(m为正整数),甲、乙的面积分别为S1,S2.若满足条件|S1﹣S2|<n≤2023的整数n有且只有4个,则m的值为 .
第II卷
苏科版2024—2025学年七年级下学期数学期末考试模拟试卷(一)
姓名:____________ 学号:____________准考证号:___________
一、选择题
题号 1 2 3 4 5 6 7 8 9 10
答案
二、填空题
11、_______ 12、______13、_______ 14、______15、_______ 16、______
三、解答题解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明
17.先化简,再求值:(a+b)(a﹣b)+(a+b)2﹣2a2,其中a=3,b.
18.小明在解方程组时,得到的解是,小英同样解这个方程组,由于把c抄错而得到的解是,求a,b,c的值.
19.已知(m+2)x|m+3|﹣1>2是关于x的一元一次不等式.
(1)求m的值.
(2)求出原一元一次不等式的解集.
20.如图,将△ABC绕点A按顺时针方向旋转90°,得到△ADE,点B的对应点为点D,点C的对应点E落在BC边上,连接BD.
(1)求证:DE⊥BC;
(2)若,BC=6,求线段BD的长.
21.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣1,2),B(﹣3,1),C(0,﹣1).
(1)将△ABC先向右沿平移3个单位长度,再向下平移1个单位长度得到△A1B1C1,请在如图中作出平移后的△A1B1C1.
(2)点A1的坐标为 ,△A1B1C1的面积为 .
22.学校计划为“百年党史,红色传承”演讲比赛购买奖品,已知购买3个A种奖品和4个B种奖品共需170元;购买4个A种奖品和3个B种奖品共需180元.
(1)求A,B两种奖品的单价;
(2)学校准备购买A,B两种奖品共25个,且A种奖品的数量不少于B种奖品数量的,购买奖品的花费不得高于600元,请设计出最省钱的购买方案,并说明理由.
23.已知方程组的解满足x为非正数,y为负数.
(1)求m的取值范围;
(2)在m的取值范围内,当m取何整数时,不等式2mx+x>2m+1的解集为x<1?
24.【定义】若一元一次方程的解在一元一次不等式组的解集范围内,则称该一元一次方程为该不等式组的“子方程”.例如:2x+4=2的解为的解集为﹣3≤x<4,不难发现x=﹣1在﹣3≤x<4的范围内,所以2x+4=2是的“子方程”.
【问题解决】(1)在方程①4x﹣5=x+7,②,③2x+3(x+2)=21中,不等式组的“子方程”是 (填序号);
(2)者关于x的方程2x﹣k=4是不等式组的“子方程”,求k的取值范围;
(3)若方程4x+4=0是关于x的不等式组的“子方程”,直接写出m的取值范围.
25.阅读下列文字,请仔细体会其中的数学思想:
(1)已知方程组的解为,如何解大于m,n的方程组呢,我们可以把分别m+5,n+3看成一个整体,设m+5=x,n+3=y,则原方程组的解为 ;
(2)若方程组的解是,求方程组的解.
(3)已知m,n为定值,关于x的方程,无论k为何值,它的解总是x=2,求m+n的值.
参考答案
一、选择题
1—10:ABABCCABAD
二、填空题
11.【解答】解:∵多项式(2x+3)(x﹣a)=2x2+(3﹣2a)x﹣3a不含x的一次项,
∴3﹣2a=0,
解得a.
故答案为:.
12.【解答】解:0.000000076=7.6×10﹣8.
故答案为:7.6×10﹣8.
13.【解答】解:两式相减,得2ab=﹣4,
解得ab=﹣2,
∴(a+b)2=a2+2ab+b2=6+ab=6﹣2=4,
∴a+b=2或﹣2.
故答案为:2或﹣2.
14.【解答】解:由平移得:AD∥CF,AD=CF,
∴四边形ADFC是平行四边形,
∵四边形ADFC的面积为24,∠B=90°,
∴CF AB=24,
∵AB=6,
∴CF=4,
∴平移的距离为4,
故答案为:4.
15.【解答】解:22025
=()202322025
=()2023×(2)×22024
=(2)2023×3×2
=6.
故答案为:6.
16.【解答】解:∵,
,
∴S1﹣S2=2m﹣1,
∵满足条件|S1﹣S2|<n≤2023的整数n有且只有4个,
∴n可取正整数为2023,2022,2021,2020,
∴2019≤|S1﹣S2|<2020,
即2019≤|2m﹣1|<2020,
∵m为正整数,
∴2m﹣1>0
∴2019≤2m﹣1<2020,
解得:1010≤m<1010.5,
∴m=1010,
故答案为:1010.
三、解答题
17.【解答】解:(a+b)(a﹣b)+(a+b)2﹣2a2,
=a2﹣b2+a2+2ab+b2﹣2a2,
=2ab,
当a=3,b时,
原式=2×3×()=﹣2.
18.【解答】解:
把代入cx﹣3y=﹣2可得:c+3=﹣2,解得c=﹣5,
把代入ax+by=2可得a﹣b=2①,
把代入ax+by=2可得2a﹣6b=2,即a﹣3b=1②,
由①②可得方程组,解这个方程组可得,
所以a、b、c的值分别为:a,b,c=﹣5.
19.【解答】解:(1)根据题意|m+3|=1且m+2≠0,解得m+3=±1且m≠﹣2,
所以m=﹣4.
(2)原一元一次不等式为﹣2x﹣1>2,
移项得﹣2x>2+1,
合并同类项得﹣2x>3,
解得.
20.【解答】(1)证明:将△ABC绕点A按顺时针方向旋转90°得到△ADE,
∴AC=AE,∠CAE=90°,∠AED=∠C,
∴∠C=∠AEC=45°=∠AED,
∴∠DEC=∠DEA+∠AEC=90°,
∴DE⊥BC;
(2)解:∵,
∴根据旋转可知:,
∴在Rt△AEC中,,
∴BE=BC﹣EC=2,
由旋转可知DE=BC=6,
∴.
21.【解答】解:(1)如图,△A1B1C1即为所求作.
(2)点A1的坐标为(2,1),S△ABC=3×33×1﹣21×23×2=3.5.
故答案为:(2,1),3.5.
22.【解答】解:(1)设A种奖品的单价为x元,B种奖品的单价为y元,
依题意,得:,
解得:.
答:A种奖品的单价为30元,B种奖品的单价为20元.
(2)设购买A种奖品m个,则购买B种奖品(25﹣m)个,
依题意,得:,
解得:m≤10.
∵m为整数,
∴m=7,8,9,10,
∴25﹣m=18,17,16,15.
∴学校有四种购买方案,
∵A种奖品的单价为30元,B种奖品的单价为20元,
∴m=7时,花费最少,
即购买A奖品7个,购买B奖品18个,花费最少.
23.【解答】解:(1)解关于x、y的方程组,得,
∵x为非正数,y为负数,
∴,
∴﹣2<m≤3;
(2)∵不等式2mx+x>2m+1即(2m+1)x>2m+1的解集为x<1,
∴2m+1<0,
∴m,
又∵﹣2<m≤3,
∴﹣2<m,
又∵m为整数,
∴当m=﹣1时该不等式的解集为x<1.
24.【解答】解:(1)解方程4x﹣5=x+7得:x=4,
解方程得:,
解方程2x+3(x+2)=21得:x=3,
解不等式组得:3<x≤5,
所以不等式组 的“子方程”是①②.
故答案为:①②;
(2)解不等式5x﹣7>11﹣x,得:x>3,
解不等式2x≥3x﹣6,得:x≤6,
则不等式组的解集为3<x≤6,
解方程2x﹣k=4,得,
由题意,得,
∴6<k+4≤12,
解得:2<k≤8;
(3)解方程4x+4=0,得:x=﹣1,
解不等式组得:,
∴不等式组得解集为,
∴x=﹣1在范围内,
∴,
解得:m≤6.
25.【解答】解:(1)根据题意|m+3|=1且m+2≠0,解得m+3=±1且m≠﹣2,
所以m=﹣4.
(2)原一元一次不等式为﹣2x﹣1>2,
移项得﹣2x>2+1,
合并同类项得﹣2x>3,
解得.
18.【解答】解:(1)解方程4x﹣5=x+7得:x=4,
解方程得:,
解方程2x+3(x+2)=21得:x=3,
解不等式组得:3<x≤5,
所以不等式组 的“子方程”是①②.
故答案为:①②;
(2)解不等式5x﹣7>11﹣x,得:x>3,
解不等式2x≥3x﹣6,得:x≤6,
则不等式组的解集为3<x≤6,
解方程2x﹣k=4,得,
由题意,得,
∴6<k+4≤12,
解得:2<k≤8;
(3)解方程4x+4=0,得:x=﹣1,
解不等式组得:,
∴不等式组得解集为,
∴x=﹣1在范围内,
∴,
解得:m≤6.
24.【解答】解:(1)由题意可得,
∴,
故答案为:;
(2)原方程组可化为:,
令x=3m﹣2,y=2n﹣1,则,
解得:;
(3)去分母得:2kx+2m=6﹣x﹣nk,
把x=2代入,得4k+2m=6﹣2﹣nk,
∴(n+4)k+2m﹣4=0恒成立,
∴,
即,
∴m+n=﹣2.
21世纪教育网(www.21cnjy.com)