小升初典型奥数 追及问题
1.早晨,小张骑车从甲地出发去乙地.下午1点,小王开车也从甲地出发,前往乙地.下午2点时两人之间的距离是15千米.下午3点时,两人之间的距离还是15千米.下午4点时小王到达乙地,晚上7点小张到达乙地.小张是早晨几点出发?
2.静水中甲乙两船的速度分别是每小时22千米和每小时18千米,两船先后自港口顺水开出,乙比甲早出发2小时,若水速是每小时4千米,问甲开出后几小时可追上乙?
3.甲、乙两船在静水中的速度分别是每小时24千米和每小时32千米,两船从某河相距336千米的两港同时出发相向而行,几小时相遇?如果同向而行,甲船在前,乙船在后,几小时后乙船追上甲船?
4.爸爸和儿子跑步锻炼,爸爸的步子比较大,他跑5步的路程,儿子要跑9步,爸爸在儿子后面10米,为了追上儿子,爸爸加快动作,爸爸跑2步的时间,儿子能跑3步,问爸爸至少多少米才能追上儿子?
5.甲、乙、丙三辆车先后从A地开往B地,乙比丙晚出发5分,出发后45分追上丙;甲比乙晚出发15分,出发后1时追上乙.甲和丙的速度比是多少?
6.甲汽车每小时行64千米,乙汽车每小时行48千米,两车同时同地背向出发,半小时后,甲汽车掉头追乙汽车,问几小时后追上?
7.小明步行上学,每分钟行70米.离家12分钟后,爸爸发现小明的文具盒忘在家中,爸爸带着文具盒,立即骑自行车以每分钟280米的速度去追小明.问爸爸出发几分钟后追上小明?当爸爸追上小明时他们离家多远?
8.快车车速19米/秒,慢车车速15米/秒.现有慢车、快车同方向齐头行进,20秒后快车超过慢车,首尾分离.如两车车尾相齐行进,则15秒后快车超过慢车,求两列火车的车身长.
9.从花城到太阳城的公路长12公里.在该路的 2千米处有个铁道路口,是每关闭 3分钟又开放 3分钟的.还有在第 4千米及第 6 千米有交通灯,每亮 2分钟红灯后就亮 3分钟绿灯.小糊涂驾驶电动车从花城到太阳城,出发时道口刚刚关闭,而那两处交通灯也都刚刚切换成红灯.已知电动车速度是常数,小糊涂既不刹车也不加速,那么在不违反交通规则的情况下,他到达太阳城最快需要多少分钟?
10.甲、乙、丙三人从同一地点A地前往B地,甲、乙二人早上8点一起从A地出发,甲每小时走6千米,乙每小时走4千米,丙上午11点才从A地出发.晚上8点,甲、丙同时到达B地.求:丙在几点钟追上了乙?
11.甲、乙二人分别从A、B两地同时出发,如果两人同向而行,甲26分钟赶上乙;如果两人相向而行,6分钟可相遇,又已知乙每分钟行50米,求A、B两地的距离。
12.在双轨铁道上,速度为千米/小时的货车时到达铁桥,时分秒完全通过铁桥,后来一列速度为千米/小时的列车,时分到达铁桥,时分秒完全通过铁桥,时分秒列车完全超过在前面行驶的货车.求货车、列车和铁桥的长度各是多少米?
13.现有速度不变的甲、乙两车,如果甲车以现在速度的2倍去追乙车,5小时后能追上,如果甲车以现在速度的3倍去追乙车,3小时后能追上.那么甲车以现在的速度去追,几小时后能追上乙车?
14.甲、乙两船分别从A港逆水而上,静水中甲船每小时行15千米,乙船每小时行12千米,水速为每小时3千米,乙船出发2小时后,甲船才开始出发,当甲船追上乙船时,乙离开A港多少千米?
15.甲、乙二人都要从北京去天津,甲行驶10千米后乙才开始出发,甲每小时行驶10千米,乙每小时行驶15千米,问:乙经过多长时间能追上甲?
16.当甲在60m赛跑中冲过终点线时,比乙领先10m,比丙领先20m。如果乙和丙按各自原来的速度继续冲向终点,那么当乙到达终点时,将比丙领先几米?
17.甲、乙二人进行短跑训练,如果甲让乙先跑40米,则甲需要跑20秒追上乙;如果甲让乙先跑6秒,则甲仅用9秒就能追上乙.求:甲、乙二人的速度各是多少?
18.有一队伍以1.4米/秒的速度行军,末尾有一通讯员因事要通知排头,于是以2.6米/秒的速度从末尾赶到排头并立即返回排尾,共用了10分50秒.问:队伍有多长?
19.在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明.已知公共汽车从始发站每次间隔同样的时间发一辆车,问:相邻两车间隔几分?
20.甲、乙、丙三车同时从A地沿同一公路开往B地,途中有个骑摩托车的人也在同方向行进,这三辆车分别用7分钟、8分钟、14分钟追上骑摩托车人.已知甲车每分钟行1000米,丙车每分钟行800米,求乙车的速度是多少?
21.学校和部队驻地相距千米,小宇和小宙由学校骑车去部队驻地,小宇每小时行千米,小宙每小时行千米.当小宇走了千米后,小宙才出发.当小宙追上小宇时,距部队驻地还有多少千米?
22.一架飞机从甲地开往乙地,原计划每分钟飞行9千米,现在按每分钟12千米的速度飞行,结果比原计划提前半小时到达,甲、乙两地相距多少千米?
23.小钱和小塘是同班同学且住在同一幢楼。早上7:40分,小钱出发骑车去学校,7:46分时追上一直匀速步行的小塘,这时想起未带马克笔,立即将速度提高到原来的2倍返回,到家拿好笔之后继续出发去学校,结果两人在8:00同时到达学校,已知小钱在家找笔花了6分钟,那么小塘是几时从家出发的?
24.学校组织学生步行去野外实习,每分钟走80米,出发9分钟后,班长发现有重要东西还在学校,就以原速度返回,找到东西再出发时发现又耽搁了18分钟,为了在到达目的地之前赶上队伍他改骑自行车,速度为260米/分,当他追上学生队伍时距目的地还有120米.求走完全程学生队伍步行需多长时间?
25.小明以每分钟50米的速度从学校步行回家,12分钟后小强从学校出发骑自行车去追小明,结果在距学校1000米处追上小明,求小强骑自行车的速度。
26.龟兔赛跑,全程共2000米.已知龟每分钟爬4米,兔子每分钟跑35米.兔自以为速度快,在途中睡了一觉,结果乌龟到终点时,兔子离终点还有250米,你知道兔子这一觉睡了多长时间吗?
27.甲、乙两车分别从、两地出发,同向而行,乙车在前,甲车在后.已知甲车比乙车提前出发小时,甲车的速度是千米/小时,乙车每小时行千米.甲车出发小时后追上乙车,求、两地间的距离.
28.一架飞机从机场出发到某地执行任务,原计划每分钟飞行8千米.为了争取时间,现将飞行速度提高到每分钟12千米,结果比计划早到了40分钟.问机场与目的地相距多远?
29.一辆长为12米的大客车以每秒8米的速度由A地开往B地,在距B地4000米处遇见一个行人,l秒后大客车经过这个行人.大客车到达B地休息了10分钟后返回A地,途中追上这个行人.大客车从遇到行人到追上行人共用了多少分钟?
30.铁路旁的一条与铁路平行的小路上,有一行人与骑车人同时向南行进,行人速度为3.6千米/时,骑车人速度为10.8千米/时,这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒,这列火车的车身总长是多少?
31.甲、乙两船分别从A港顺水而上,静水中甲船每小时行18千米,乙船每小时行15千米,水速为每小时3千米,乙船出发2小时后,甲船才开始出发,当甲船追上乙船时,乙离开A港多少千米?
32.A、B两地相距600米,甲乙两人同时分别从A、B两地向同一个方向行走,甲前乙后。甲每分钟行40米,6分钟后乙追上甲,乙的速度是多少?
33.小明从甲地步行去乙地,出发一段时间后,小亮有事去追赶他,若骑自行车,每小时行15千米,3小时可以追上;若骑摩托车,每小时行35千米,1小时可以追上;若开汽车,每小时行45千米,多少分钟能追上?
34.小王、小李共同整理报纸,小王每分钟整理份,小李每分钟整理份,小王迟到了分钟,当小王、小李整理同样多份的报纸时,正好完成了这批任务.一共有多少份报纸?
35.快、中、慢三车同时从地出发沿同一公路开往 地,途中有骑车人也在同方向行进,这三辆车分别用7分钟、8分钟、14分钟追上骑车人。已知快车每分钟行800米,慢车每分钟行600米,中速车的速度是多少?
36.甲、乙、丙三人每分钟分别行60米、50米和40米,甲从B地、乙和丙从A地同时出发相向而行,途中甲遇到乙后15分又遇到丙.求A,B两地的距离.
37.甲地和乙地相距千米,平平和兵兵由甲地骑车去乙地,平平每小时行千米,兵兵每小时行千米,当平平走了千米后,兵兵才出发,当兵兵追上平平时,距乙地还有多少千米?
38.静水中甲、乙两船的速度分别是每小时24千米和每小时20千米,两船先后从某港口逆水开出,乙船比甲船早出发2小时,若水速是每小时2千米,问甲船开出后几小时可以追上乙船?
39.甲、乙两人分别从A、B两地同时出发相向而行,他们在距中点160米处相遇。出发时,甲看了下手表,当时是下午六点多,时针与分针的夹角为;相遇时,甲又看了下手表,还没有到下午七点,但时针与分针的夹角仍然为。如果甲出发后在途中某地停留了一段时间,两人还是在距中点160米处相遇,且已知甲的速度为80米/分钟,问甲在途中停留了多少分钟?
40.甲从A,乙从B逆时针方向行走,甲速度65米/分,乙速度72米/分,正方形ABCD的边长为90,米,求乙第一次追上甲在哪条边上?
41.甲、乙两车同时同地出发去同一地点,甲车速度为42千米/小时,乙车速度为35千米/小时.途中甲车停车5小时,结果甲车比乙车迟1小时到达目的地,求两地间的距离?
42.小轿车每小时比面包车每小时多行6千米,它们同时同地出发,小轿车比面包车早10分钟到达城门,当面包车到达城门时,小轿车已超过城门9千米,求出发点到城门的距离.
43.小王8时整骑摩托车从甲地出发前往乙地,8时15分追上一个早已从甲地出发的骑车人。小李8时15分开大客车从甲地出发前往乙地,8时30分追上这个骑车人。9时整,小王、小李同时到达乙地。已知小王、小李、骑车人的速度始终不变,骑车人从甲地出发时是几时几分?
44.一辆汽车和一辆摩托车同时从甲、乙两地出发,向同一个方向前进,摩托车在前,每小时行千米,汽车在后,每小时行千米,经过小时汽车追上摩托车,甲乙两地相距多少千米?
45.甲、乙两车同时从某地出发背向而行,甲车以每小时88千米的速度行驶,乙车以每小时64千米的速度行驶,1.5小时后甲车掉头去追乙车,需要多少小时才能追上?
46.甲、乙的速度之比为5∶2,它们在相距6千米的位置同时出发,同向而行,甲追上乙的时候,乙走了多少千米?
47.甲、乙、丙三辆车同时从A地出发到B地去,出发后6分甲车超过了一名长跑运动员,2分后乙车也超过去了,又过了2分丙车也超了过去.已知甲车每分走1000米,乙车每分走800米,丙车每分钟走多少米?
48.铁路旁一条小路,一列长为110米的火车以每小时30千米的速度向南驶去,8点时追上向南行走的一名军人,15秒后离他而去,8点6分迎面遇到一个向北行走的农民,12秒后离开这个农民,问:军人与农民何时相遇?
49.钟敏家有一个闹钟,每时比标准时间快2分.星期天上午9点整,钟敏对准了闹钟,然后定上铃,想让闹钟在11点半闹铃,提醒她帮助妈妈做饭.钟敏应当将闹钟的铃定在几点几分上?
50.君君和丽丽沿着400米的环形跑道跑步,他们同时从同一地点出发,同向而行。20分钟后丽丽第一次追上君君。已知君君的速度是230米/分,丽丽的速度是多少?(用方程解)
51.骑车人以每分钟300米的速度,从8路汽车的始发站出发,沿8路车路线前进。骑车人离开出发地2100米时,一辆8路汽车开出了始发站,这辆汽车每分钟行500米,行5分钟到达一站并停1分钟,那么要用多少分钟汽车才能追上骑车人?
52.小胖早上步行从家出发去学校,速度为80米/分,小胖出发900米后,爸爸发现小胖语文书没带,以每分钟200米的速度去追。请问爸爸几分钟后能追上小胖?(列方程解决问题)
53.甲、乙两车同时从地向地开出,甲每小时行千米,乙每小时行千米,开出小时后,甲车因有紧急任务返回地;到达地后又立即向地开出追乙车,当甲车追上乙车时,两车正好都到达地,求、两地的路程.
54.甲、乙两架飞机同时从一个机场起飞,向同一方向飞行,甲机每小时行千米,乙机每小时行千米,飞行小时后它们相隔多少千米?这时候甲机提高速度用小时追上乙机,甲机每小时要飞行多少千米?
21世纪教育网(www.21cnjy.com)
21世纪教育网(www.21cnjy.com)
参考答案:
1.10点
【详解】由“下午2点时两人之间的距离是l5千米.下午3点时,两人之间的距离还是l5千米”可知:两人的速度差是每小时30千米,由3点开始计算,我们知:小王再有一小时就可走完全程,在这一小时当中,小王比小张多走30千米,那小张3小时多走千米,故小张的速度是15千米/小时,小王的速度是45千米/小时.全程是(千米),(小时),即上午10点出发.
2.11小时
【分析】先求出乙船顺水开出2小时行驶的路程,再根据追及问题求出甲船追上乙船的时间。
【详解】(18+4)×2÷(22-18)
=22×2÷4
=11(小时)
答:甲开出11小时可追上乙。
【点睛】本题考查流水行船中的追及问题,关键是求出相距路程和速度差,关于追及问题:
顺水速度=静水船速+水速
逆水速度=静水船速-水速
追及时间=路程÷速度差
3.6小时;42小时
【分析】由甲、乙两船同时出发,知它们相遇时共同走完了336千米,且两船行驶时间相同,根据相遇时间=路程÷速度和,可求出甲、乙两船的相遇时间;如果同向而行,则乙船追上甲船时多比甲船行驶了336千米,根据追及时间=路程差÷速度差,可求出乙船追上甲船的时间。
【详解】336÷(24+32)
=336÷56
=6(小时)
336÷(32-24)
=336÷8
=42(小时)
答:甲、乙两船相向而行,6小时相遇;如果同向而行,42小时后乙船追上甲船。
【点睛】本题考查简单的相遇与追及问题,理解并掌握相遇问题和追及问题中速度和(差)、时间和路程(差)之间的关系是解题关键。
4.60米
【分析】设爸爸每步跑9份,那么儿子每步跑5份,求出他们的速度比。那么爸爸与儿子的速度比就是(2×9)∶(3×5)=6∶5,不妨设爸爸的速度是6,儿子的速度是5,算出追及时间,然后用求出的追及时间乘上爸爸的速度即可。
【详解】解:设爸爸每步跑9份,那么儿子每步跑5份,那么爸爸与儿子的速度比就是(2×9)∶(3×5)=6∶5。
设爸爸的速度是6,儿子的速度是5,追及时间为10÷(6-5)=10,所以爸爸追上儿子至少要跑10×6=60(米)。
答:爸爸至少60米才能追上儿子。
【点睛】此题解答的关键在于巧妙地设出未知数,根据路程、速度和时间的关系列式解答。
5.25:18
【详解】根据题意可知,乙和丙的时间比为45:50 =9:10 ,即速度比为10:9.甲和乙的时间比为60:75 =4:5 ,即速度比为5:4,甲、乙和丙的速度比为 25:20:18.甲和丙的速度比为25:18
6.3.5小时
【分析】首先利用“路程和=速度和×时间”,速度和为千米,时间半小时即小时,用乘法即求出甲乙两车相距多少千米。再根据“追及时间=路程差÷速度差”,即可求出甲几小时追上乙。
【详解】半小时小时
(千米)
(小时)
答:3.5小时后追上乙。
7.4分钟.1120米
【详解】
当爸爸开始追小明时,小明已经离家:(米),即爸爸要追及的路程为840米,也就是爸爸与小明的距离是840米,我们把这个距离叫做“路程差”,爸爸出发后,两人同时走,每过1分,他们之间的距离就缩短(米),也就是爸爸与小明的速度差为 (米/分),爸爸追及的时间:(分钟).当爸爸追上小明时,小明已经出发(分钟),此时离家的距离是:(米)
8.快车车身长为80米,慢车车身长60米
【详解】当两车同时同向齐头行进,快车超过慢车时,两车的路程差相当于一个快车的车身长.
那么快车车身长=速度差×追及时间=(l9-15)×20=80(米)
当两车车尾相齐同向行进,快车超过慢车时,多行的路程即路程差,相当于一个慢车的车身长.则慢车的车身长(19-15)×15=60(米)
答:快车车身长为80米,慢车车身长60米.
9.24
【详解】画出反映交通灯红绿情况的 s t-图,可得出小糊涂的行车图像不与实线相交情况下速度最大可以是 0.5 千米/分钟,此时恰好经过第 6千米的红绿灯由红转绿的点,所以他到达太阳城最快需要 24分钟.
10.下午2点
【分析】此题看起来很复杂,实际上只含有一个丙追乙这一个追及关系.我们先将这个追及关系放在一边.首先看由甲和丙同时到达这个条件可以求出哪些关于这个追及问题可以利用的结论.甲在早8点出发,晚8点到达,而且甲速已知,那A、B间距离可知:6×12=72(千米),而丙走这段路所用时间比甲少3小时,那么可知丙速为:72÷(12-3)=8(千米/小时).在丙从A地出发时,乙已经先走了3小时,可知路程差:4×3=12(千米),那么追及问题中速度差、路程差可知,追及时间易求.
【详解】A、B两地间距离:6×12=72(千米)
丙的速度:726(12-3)=8(千米/小时)
丙追上乙的追及时间:4×(11-8)÷(8-4)=3(小时)
11+3=14(点)即下午2点
答:丙在下午2点钟追上乙.
【点睛】当题的表述很复杂,一时找不到解题关键时,可先由题中已有的条件求出可以得到的结论,然后再寻找解题的出路.
11.780米
【分析】先画图如下:
若设甲、乙二人相遇地点为C,甲追及乙的地点为D,则由题意可知甲从A到C用6分钟。而从A到D则用26分钟,因此,甲走C到D之间的路程时,所用时间应为:26-6=20(分)。同时,由上图可知,C、D间的路程等于BC加BD。即等于乙在6分钟内所走的路程与在26分钟内所走的路程之和,为:50×(26+6)=1600(米)。所以,甲的速度为1600÷20=80(米/分),再根据相遇问题:相遇路程=速度和×相遇时间,可求出A、B间的距离。
【详解】先画图如下:
根据分析:
甲从C走到D所用时间:26-6=20(分)
乙从C走到D所用时间:26+6=32(分)
CD表示的路程为:50×(26+6)=1600(米)
甲的速度:1600÷20=80(米/分)
相遇路程:(80+50)×6=780(米)
答:A、B两地的距离是780米。
【点睛】本题主要考查行程问题中的相遇与追及问题,准确找出对应路程,对应速度,对应时间是解题的关键。
12.480 280 780
【详解】先统一单位:千米/小时米/秒,千米/小时米/秒,
分秒秒,分秒分分秒秒.
货车的过桥路程等于货车与铁桥的长度之和,为:(米);
列车的过桥路程等于列车与铁桥的长度之和,为:(米).
考虑列车与货车的追及问题,货车时到达铁桥,列车时分到达铁桥,在列车到达铁桥时,货车已向前行进了12分钟(720秒),从这一刻开始列车开始追赶货车,经过2216秒的时间完全超过货车,这一过程中追及的路程为货车12分钟走的路程加上列车的车长,所以列车的长度为(米),那么铁桥的长度为(米),货车的长度为(米).
13.15小时
【详解】设甲车现在的速度为每小时行单位“1”,那么乙车的速度为:(2×5-3×3)÷(5-3)=0.5
乙车原来与甲车的距离为:2×5-0.5×5=7.5
所以甲车以现在的速度去追,追及的时间为:7.5÷(1-0.5)=15(小时)
14.72千米
【分析】先求出乙船逆水行驶2小时的路程,再由追及时间=路程÷速度差求出甲船追上乙船的时间,再根据路程=逆水速度×时间,求出甲船行驶的路程,就是乙船的离岗距离。
【详解】乙船出发2小时的路程:
(12-3)×2
=9×2
=18(千米)
甲船追上乙船所用时间:
18÷(15-12)
=18÷3
=6(小时)
乙船行驶总路程:
(15-3)×6
=12×6
=72(千米)
答:当甲船追上乙船时,乙船离开A港72千米。
【点睛】本题考查追及问题,关键是理解并灵活运用公式:逆水船速=静水船速-水速,追及时间=路程÷速度差,路程=速度×时间。
15.2小时
【详解】出发时甲、乙二人相距10千米,以后两人的距离每小时都缩短15-10=5(千米),即两人的速度的差(简称速度差),所以10千米里有几个5千米就是几小时能追上.10÷(15-10)=10÷5=2(小时),还需要2个小时.
16.12米
【分析】先求出乙和丙的速度比,再根据速度比列出比例解答即可。
【详解】乙和丙的速度比为(60-10)∶(60-20)=5∶4
解:设乙到达终点时,比丙领先x m。
5∶4=10∶(20-x)
5(20-x)=40
100-5x=40
5x=60
x=12
答:将比丙领先12米。
【点睛】本题考查了比例应用题,求出乙和丙的速度比是关键。
17.甲速:5米/秒 乙速:3米/秒
【分析】如果甲让乙先跑40米,然后甲出发追乙,这40米就是二人间的路程差,甲用20秒追上乙是追及时间,根据速度差=路程差÷追及时间,可求甲、乙二人的速度差,即40÷20=2(米/秒).如果甲让乙先跑6秒,则甲需要9秒追上乙,这一过程中追及时间是9秒,由上一过程的结论可求路程差: 2X9=18(米),这18米就是乙先跑6秒所跑过的路程,所以可求出乙的速度是18÷6=3(米/秒),那么甲速可求.
【详解】甲、乙两人的速度差:40÷20=2(米/秒)
乙速:2×9÷6=3(米/秒)
甲速:3+2=5(米/秒).
答:甲、乙二人的速度分别为5米/秒和3米/秒.
18.600米
【详解】这是一道“追及又相遇”的问题,通讯员从末尾到排头是追及问题,他与排头所行路程差为队伍长;通讯员从排头返回排尾是相遇问题,他与排尾所行路程和为队伍长.如果设通讯员从末尾到排头用了秒,那么通讯员从排头返回排尾用了秒,于是不难列方程.设通讯员从末尾赶到排头用了秒,依题意得解得,推知队伍长为(米).
19.8分
【详解】设车速为a,小光的速度为b,则小明骑车的速度为3b.根据追及问题“追及时间×速度差=追及距离”,可列方程10(a-b)=20(a-3b),解得a=5b,即车速是小光速度的5倍.小光走10分相当于车行2分,由每隔10分有一辆车超过小光知,每隔8分发一辆车.
20.950米/分
【详解】摩托车在各时间点行驶的位置是甲、乙、丙三车行驶距离的度量,所以本题的关键是求出摩托车的速度.
解:甲与丙行驶7分钟的距离差为:(1000-800)×7=1400(米)
当甲追上骑摩托车人的时候,丙用了14-7=7(分)
追上1400米,丙车和骑摩托车人的速度差为:1400÷(14-7)=200(米/分)
骑摩托车人的速度为:800-200=600(米/分)
三辆车与骑摩托车人的初始距离为:(1000-600)×7=2800(米)
乙车的速度为:2800÷8+600=950(米/分).
21.1千米
【详解】追及时间为:(小时),此时距部队驻地还有:(千米).
22.1080千米
【分析】速度×时间=路程,那么可用原计划每分钟飞行9千米乘30分钟即可得到原计划比现在慢飞行的路程,然后再用慢飞行的路程除以现在每分钟比原计划每分钟快飞行的速度可得到现在飞行所需要的时间,最后再用现在飞行的时间乘现在飞行的速度即可得到甲、乙两地相距的距离.
【详解】(30×9)÷(12﹣9)×12
=270÷3×12
=90×12
=1080(千米)
答:甲、乙两地相距1080千米.
23.7:25
【分析】先求出小钱后面从家到学校需要的时间,再减去原来追上一直匀速步行的小塘的那一段路的时间,就可以得到从追上小塘那里开始到学校小钱需要花的时间,然后再求出小塘从那里开始到学校所花的时间,就可以得到同样的路程小塘用的时间是小钱的几倍,进而可以求出小塘从家到学校的时间。
【详解】原来小钱的速度∶现在小钱的速度=1∶2
原来用的时间:现在用的时间=2∶1
7时46分-7时40分=6(分钟)
取马克笔路上用的时间:6÷2=3(分钟)
小钱在路上的时间:8时-7时40分-6分=14(分钟)
拿好笔回学校的时间:14-6-3=5(分钟)
第一次遇见小塘的地方到学校的时间:5-3=2(分钟)
从第一次遇见小塘到学校的时间:8时-7时46分=14(分钟)
14÷2=7
5×7=35(分钟)
8时-35分=7:25
小塘从家里出发的时间:7:25
答:小塘是7:25从家里出发的。
【点睛】此题需要学生读懂题意,缕清思路,逐步分析。
24.53.5分钟
【分析】此题中的追及问题发生在班长返回后,从学校出发追学生队伍,此时学生队伍已走出一段距离.这段距离即路程差.由路程=速度×时间,学生行走速度已知,学生先走的时间:9+9+18=36(分钟),因为以原速返回,则返回学校这段路程所用时间也是9分钟.可求路程差=80×36=2880(米).由追及时间=路程差÷速度差,可知班长用2880÷(260-80)=16(分钟)追上学生队伍.那么全程可求,学生队伍走这段路所用的时间易知.
【详解】班长从学校出发时与学生队伍的距离:80×(9+9+18)=2880(米)
追上学生队伍所用的时间:2880÷(260-80)=16(分钟)
从学校到实习目的地全程:260×16+120=4280(米)
学生队伍行走所需时间:4280÷80=53.5(分钟)
答:学生走完全程需53.5分钟.
25.125米/分钟
【详解】(米)
=400÷5
=8(分钟)
(米/分钟)。
答:小强骑自行车的速度是125米/分钟。
26.450分钟
【详解】乌龟跑完全程所需时间:2000÷4=500(分钟)
兔子跑的路程:2000-250=1750(米)
兔子跑的时间:1750÷35=50(分钟)
兔子睡觉的时间:500-50=450(分钟)
答:兔子一觉睡了450分钟.
27.160千米
【详解】由已知可求出甲、乙两车的追及时间,利用追及问题的公式求解.追及时间为:(小时),追及路程为:(千米),、两地间的距离为:(千米)
28.960千米
【分析】将此题可看作是追及问题.一架每分钟飞行8千米的飞机,飞行40分钟后,另一架每分钟飞行12千米的飞机,沿第一架飞机的飞行路线从后面赶来,两架飞机同时到达目的地.
【详解】路程差:8×40=320(千米)
追及时间:320÷(12-8)=80(分钟),即第二架飞机的飞行时间.
则这段路程:12×80=960(千米)
答:机场与目的地相距960千米.
29.53分钟20秒
【分析】大客车在距B地4000米处遇见一个行人,l秒钟后大客车经过这个行人,是一个相遇问题.由速度和=全程÷相遇时间,可知客车与行人速度和:12÷1=12(米/秒),则行人速度可知:12-8=4(米/秒),当客车到达B地10分钟后返回时,再追上行人是一个追及问题.追及时间可求.大客车从第一次遇到行人到第二次追上行人的时间可分为3段:一段是从距B地4000米处到B地,一段是休息10分钟,一段是追及时间.
【详解】行人的速度:12÷1-8=4(米/秒)
大客车行驶4000米需时间:4000÷8=500(秒)
10分钟相当于60×10=600(秒)
大客车从B地出发,大客车与行人的路程差:4000+4×(500+600)=8400(米)
大客车追上行人所需时间:8400÷(8-4)=2100(秒)
故大客车从遇到行人到追上行人共需:500+600+2100=3200(秒)=53分钟20秒.
答:大客车从遇到行人到追上行人共用了53分钟20秒.
【点睛】此题中的整个过程综合了相遇问题和追及问题,要注意不同的问题选用不同的公式.此题目还要注意时间单位的换算.
30.286米
【详解】本题属于追及问题,行人的速度为千米/时=米/秒,骑车人的速度为千米/时=米/秒.火车的车身长度既等于火车车尾与行人的路程差,也等于火车车尾与骑车人的路程差.如果设火车的速度为米/秒,那么火车的车身长度可表示为或,由此不难列出方程.设这列火车的速度是米/秒,依题意列方程,得,解得.所以火车的车身长为(米).
31.252千米
【分析】此题为追及问题,追及时间=路程÷速度差,要求追及时间,需要知道甲船开始出发时与乙船的距离和两船的速度差,两船距离是乙船顺水行驶2小时的路程,即(15+3)×2=36(千米),因为都是顺水行驶,速度差为18-15=3(千米/小时),据此求出追及时间,再将甲船的顺水速度乘追及时间求出甲船行驶的路程,就是乙船离开A港的距离。
【详解】甲船追上乙船所用时间:
(15+3)×2÷(18-15)
=18×2÷3
=36÷3
=12(小时)
乙船离开A港的距离:
(18+3)×12
=21×12
=252(千米)
答:甲船追上乙船时,乙离开A港252千米。
【点睛】本题考查流水行船中的追及问题,易错点是求乙船离开A港的距离不能直接用追及时间乘乙船的顺水速度求出,还需再加上乙船早出发2小时行驶的路程,或者用甲的顺水速度乘追及时间。关于流水行船问题:
顺水速度=静水船速+水速
逆水速度=静水船速-水速
追及时间=路程÷速度差
相遇时间=路程÷速度和
32.140米/分
【分析】可以设乙的速度是x米/分,由于分别向同一个方向走,当乙走的路程比甲多走600米时,能够追上,即用乙的路程-甲的路程=600,据此即可列方程,再根据等式的性质解方程即可。
【详解】解:设乙的速度是x米/分。
6x-40×6=600
6x-240=600
6x=600+240
6x=840
x=840÷6
x=140
答:乙的速度是140米/分。
【点睛】本题主要考查列方程解应用题,关键是找准等量关系是解题的关键。
33.45分钟
【详解】本题是“牛吃草”和行程问题中的追及问题的结合.小明在小时内走了千米,那么小明的速度为(千米/时),追及距离为(千米).汽车去追的话需要:(小时)(分钟).
34.720份
【详解】本题可用追及问题思路解题,类比如下:路程差:小王迟到分钟这段时间,小李整理报纸的份数(份),速度差:(份/分钟).此时可求两人整理同样多份报纸时,小王所用时间,即追及时间是(分钟).共整理报纸:(份)
35.750米/分
【分析】通读题意,由两个未知量,即骑人的速度、汽车出发时骑车人与A点的距离.只要求出这个两个未知量,便可解答本题。先求出快车与慢车的距离;再求出汽车人的速度,然后求出快车出发时与骑车人的距离,即可求出中速车速度。
【详解】(1)快车与慢车的距离为:
(800-600)×7
=200×7
=1400(米);
(2)骑车人的速度:
600-1400÷(14-7)
=600-1400÷7
=600-200
=400(米);
(3)快车出发时与骑车人的距离:
(800-400)×7
=400×7
=2800(米);
(4)中速车速度:
400+2800÷8
=400+350
=750(米)
答:中速车的速度是750米。
【点睛】此题巧妙地安排了三个追及事件,需要考生灵活获取信息。
36.16500米
【分析】从已知条件中唯一的时间量入手,明确甲、乙、丙之间的距离变化关系,逐步求解.
【详解】解:(60+40)×15=1500(米)
1500÷(50-40)=150(分)
A、B之间的距离为:(60+50)×150=16500(米).
答:A、B两地的距离是16500米.
【点睛】此题实质上有着三个行程基本问题:两个相遇问题和一个追及问题.而且这三个问题之间有着相互的联系,甲和丙的相遇路程就是丙和乙的追及路程,丙和乙的追及时间就是甲和乙的相遇时间.利用这些关系层层推进即可解出答案.
37.6千米
【详解】平平走了千米后,兵兵才出发,这千米就是平平和兵兵相距的路程.由于兵兵每小时比平平多走(千米),要求兵兵几小时可以追上千米,也就是求千米里包含着几个千米,用(小时).因为甲地和乙地相距千米,兵兵每小时行千米,小时走了(千米),所以兵兵追上平平时,距乙地还有(千米)
38.9小时
【分析】先求出乙船比甲船早出发的2小时内行驶的路程,由于是逆水行驶,实际船速=静水船速-水速,路程=实际船速×时间;再求甲船开出追乙船的过程中的速度差,由于都是逆行,所以每小时甲船比乙船多行驶24-20=4(千米/小时);最后根据追及时间=路程÷速度差即可得解。
【详解】(20-2)×2÷(24-20)
=18×2÷4
=9(小时)
答:甲船开出后9小时可以追上乙船。
【点睛】本题考查流水行船中的追及问题,关键是理解并掌握公式:逆水船速=静水船速-水速,追及时间=路程差÷速度差。
39.分钟
【分析】在时钟的表盘上,有12个大格,时针走一圈是360°,则每小时时针走一个大格,也就是走30°。一小时=60分钟,则时针每分钟走0.5°,分针转动一圈是60分钟转了360°,分针每分钟转动6°。
由题意可知,两次相遇都是距离中点160米处相遇,但是第二次是甲在停留的情况下,即甲的速度比乙的速度快。在第一次的相遇的过程中,甲行驶的路程比乙行驶的路程多320米。一小时内两次出现夹角为110°,一定是分针先落后110°,后来又超前110°,分针和时针的路程差是为220°。每一分钟,时针和分针的差是5.5°,220°就是40分钟相差的。多出的40分钟的路程差是320米,即每分钟的路程差,也就是速度差是8米。因为甲的速度为80米/分钟,即乙的速度=甲的速度-8。
第二次相遇,两人还是在距中点160米处相遇,这时甲走的路程少,对于第一次相遇,甲走的路程是超过中点160米,第二次相遇甲走的路程是少于中点160米,则甲少走的了320米,每分钟是80米,即少走了4分钟。乙则多走了分钟。
甲在途中的停留的时间=甲少走的时间+乙多走的时间。
【详解】160×2=320(米)
220÷(6-0.5)
=220÷5.5
=40(分钟)
320÷40=8(米)
80-8=72(米)
320÷80=4(分钟)
320÷72=(分钟)
4+=(分钟)
答:甲在途中停留了分钟。
【点睛】钟表的夹角的度数,可以将时针和分针想成一个追及的问题。追及问题中,行驶的路程差=速度差×时间。
40.cd边上或ad边上
【详解】甲乙开始的距离(此处距离要分类讨论,最好作图)除以甲乙的速度差,从而求出追及时间,再根据路程等于速度乘时间算出所行路程,再算出具体是在哪条边.
(1)甲乙的路程差为90米,速度差为
所以追及时间为
分
甲所行路程约为835.7米,周长为360米,
,即两圈还多0.3圈,最终在边上.
(2)甲乙的路程差为270米,
追及时间为 分
甲所行路程为约2507米
圈,最终在ad边上.
【点睛】行程问题中的追及问题
41.840千米
【分析】此题也可被看做是追及问题,甲车在中途停留5小时,比乙车迟1小时到达.说明走这段路程甲车比乙车少用5-l=4(小时).因为甲车的车速比乙车快42-35=7(千米/小时),那么将此题转化为追及问题的形式为,乙车先开出4小时,然后甲车开出,甲、乙两车同时到达目的地.路程差:35×4=140(千米),速度差为7千米/小时,因此追及时间可求,即140÷7=20(小时),也是甲车行驶完全程所需的时间.则两地间的距离可求.
【详解】追及路程:35×(5-1)=140(千米)
追及时间:140÷(42-35)=20(小时)
两地之间的距离:42×20=840千米)
答:两地间的距离是840千米.
【点睛】此题目求解的关键是将题目中的条件转化成追及问题来考虑.由时间差进而确定路程差之后,问题就容易解决了.
42.72千米
【详解】先计算,从学校开出,到面包车到达城门用了多少时间.此时,小轿车比面包车多走了9千米,而小轿车与面包车的速度差是6千米/小时,因此所用时间=9÷6=1.5(小时).小轿车比面包车早10分钟到达城门,面包车到达时,小轿车离城门9千米,说明小轿车的速度是9÷=54(千米),面包车速度是:54-6=48(千米/小时).城门离出发点的距离是48×1.5,计算即可.
解答:解:10分钟=小时,
当面包车到达城门用的时间是:
9÷6=1.5(小时).
小轿车的速度是:
9÷=54(千米),
面包车速度是:
54-6=48(千米/小时).
城门离学校的距离是:
48×1.5=72(千米).
答:从出发点到城门的距离是72千米.
43.7时30分
【分析】小王8时出发,9时整到达乙地共用60分,而追上骑车人用15分,因此小王追上骑车人时行了全程的;
小李8时15分出发,9时整到达乙地共用了45分,而追上骑车人用15分,因此小李追上骑车人时,行了全程的;
骑车人在甲到乙方向处被小王追上,15分钟后在甲到乙方向处被小李追上,因此骑车人15分钟行了甲到乙的距离的,即骑车人每行驶甲到乙的距离的时需要15分钟,则当汽车人到达甲到乙的距离的时,里面有3个,也就是3个15分钟,即骑车人从甲出发走到全程处时已用了45分钟,而此时正好是8时15分,可得出骑车人7点30分从甲地出发。
【详解】9时-8时=1(小时)
1小时=60(分)
8时15分-8时=15(分钟)
15÷60=
8时30分-8时15分=15(分钟)
9时-8时15分=45(分钟)
15÷45=
(分钟)
8时15分-45=7时30分。
答:骑车人从甲地出发时是7时30分。
【点睛】找出每个时间点小王和小李行驶的全程的几分之几,再得出相差的时间点骑车人行驶了全程的几分之几所用的时间,即可得出骑车人出发的时间。
44.148千米
【详解】方法一:根据题意,画出线段示意图:
从图中可知,甲、乙两地间的距离就是汽车与摩托车所行的路程差.先求出汽车追上摩托车时,两车分别行驶的路程,再求出两地的路程,即(千米)方法二:先求出汽车每小时比摩托车多行驶的路程(速度差),再求出两地相距的路程,即:(千米)
45.9.5小时
【分析】根据路程=速度×时间,先求出1.5小时之后两车相距的路程,再用减法求出两车的速度差,最后用相距的路程除以速度差,即可求出需要多少小时才能追上。
【详解】(88+64)×1.5
=152×1.5
=228(千米)
228÷(88-64)
=228÷24
=9.5(小时)
答:需要9.5小时才能追上。
【点睛】本题考查行程问题的计算及应用,先理解题意,再找出数量关系,列式计算即可。
46.4千米
【分析】甲、乙的速度之比为5∶2,则假设甲的速度为每小时走5千米,乙的速度每小时走2千米,甲每小时比乙多走3千米,则甲要追上乙得多走6千米,甲追上乙的时候用时2小时,据此求出乙走了多少千米即可。
【详解】
(千米)
答:甲追上乙的时候,乙走了4千米。
【点睛】本题考查行程问题、比的意义,解答本题的关键是利用假设法解题。
47.680
【详解】根据题意可知,甲车走了1000×6=6000米
乙车走了800×8=6400米
长跑运动员的速度(6400-6000)÷2=200米/分
丙车速度(200×2+6400)÷10=680米/分
48.8点30分
【分析】涉及火车的行程问题中,火车的长度不能忽略,解题关键是找出15秒(12秒)内,火车行驶和人步行与火车车长之间的数量关系。
【详解】火车速度:30×1000÷60=500(米/分)
火车速度与军人速度的差为:110÷(15÷60)=440(米/分)
军人的速度:500-440==60(米/分)
农民的速度:110÷(12÷60)-500=50(米/分)
8点时火车头与农民的距离为:(500+50)×6=3300(米)
军人与农民相遇:3300÷(60+50)=30(分)
此时的时间为8点30分。
答:军人与农民8点30分相遇。
【点睛】1、此题中有着三个基本问题。火车追及军人,火车农民相遇,军人和农民相遇,找到三者之间的关系就是解决题目的关键。
2、解决行程问题的关键是三步:
a:正确画出示意图;
b:把复杂的行程问题分解为每一个基本的相遇或追及问题;
c:找到这些相遇或追及问题之间的数量关系,包括路程关系,时间关系与速度关系。
49.11点35分
【详解】闹钟与标准时间的速度比是62:60="31:30," 11点半与9点相差 150分, 根据十字交叉法,闹钟走了 150×31÷30=155(分),所以 闹钟的铃应当定在11点35分上.
50.250米/分
【分析】设丽丽的速度是x米/分,根据等量关系:丽丽的速度×行驶的时间-君君的速度×行驶的时间=400米,列方程解答即可。
【详解】解:设丽丽的速度是x米/分。
20x-230×20=400
20x-4600=400
20x-4600+4600=400+4600
20x=5000
20x÷20=5000÷20
x=250
答:丽丽的速度是250米/分。
【点睛】本题主要考查了列方程解应用题,关键是找等量关系。
51.15.5分钟
【分析】如果汽车不停,则根据路程差÷速度差=追及时间,用2100÷(500-300)即可求出汽车追上骑车人的时间,也就是10.5分钟,10.5分钟里面有2个5分钟,已知行5分钟到达一站并停1分钟,也就是汽车要停2分钟,此时2分钟骑车人多走了(2×300)米,汽车还要追(2×300)米,根据路程差÷速度差=追及时间,用(2×300)÷(500-300)即可求出追上(2×300)米的时间,也就是3分钟,最后用10.5+2+3即可求出汽车追上骑车人的总时间。
【详解】2100÷(500-300)
=2100÷200
=10.5(分钟)
10.5÷5=2……0.5
(2×300)÷(500-300)
=600÷200
=3(分钟)
10.5+2+3=15.5(分钟)
答:要用15.5分钟汽车才能追上骑车人。
【点睛】此题主要考查学生对追及问题公式的掌握情况。解题关键是要读懂题目的意思,会根据题目给出的条件,找出其中的数量关系,求出答案。
52.7.5分钟
【分析】设爸爸x分钟后能追上小胖;爸爸每分钟200米,x分钟走200x米;小胖速度为80米/分,x分钟走80x米,再加上900米就是小胖走的路程,爸爸走的路程=小胖走的路程,列方程:200x=900+80x,解方程,即可解答。
【详解】解:设爸爸x分钟后能追上小胖。
200x=900+80x
200x-80x=900
120x=900
x=900÷120
x=7.5
答:爸爸7.5分钟后能追上小胖。
53.646千米
【详解】根据题意画出线段图:
从图中可以看出,当甲开始追乙的时候两车的路程差正好是乙车已经行驶的小时的路程,那么根据追及路程和速度差可以求出追及时间,而追及时间正好是甲车从地到地所用的时间,由此可以求出、两地的路程,追及路程为:(千米),追及时间为:(小时),、两地的路程为:(千米).
54.相隔160千米.飞行420千米.
【详解】①小时后相差多少千米:(千米).②甲机提高速度后每小时飞行多少千米:(千米).
答案第1页,共2页
答案第1页,共2页