本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
圆柱体积计算公式的推导
教学目标:
1.在经历观察、操作、讨论等活动过程中,使同学们理解圆柱体积计算公式的推导过程,并会正确地计算圆柱的体积。
2.在图形的变换中,培养同学们的迁移能力、逻辑思维能力,并进一步发展其空间观念。
3.引导同学们探索和解决问题,体验转化极限的初步思想。
教学重、难点:
使同学们理解并掌握圆柱体积计算的公式推导方法。
教学过程:
一、激疑引入。
谈话:同学们,你们看,老师家里的水龙头坏了,这是水龙头一天下来集积的水,你能帮老师想个办法来算一算这一个月能流多少水吗?
1.出示装了水的圆柱容器。
⑴启发学生思考:
容器里面的水形成了什么形状?你能用以前学过的办法求出这些水的体积吗?
⑵讨论后汇报:把它倒入长方体容器中,量出数据后再计算。
⑶操作中体验:组织学生分组操作,倒水、测量、计算。
2.出示橡皮泥捏成的圆柱。21世纪教育网 http://21世纪教育网/
提问:你有办法求出这个圆柱形橡皮泥的体积吗?
二、探究新知。
1.回顾旧知,帮助迁移。
同学们在学习圆的面积时,是怎样把圆转化成已学的图形,来推导圆面积的计算公式的?你能说一说吗?
学生回答,教师引导学生一起回忆。
2.小组合作,实践迁移。
⑴启发:现在该怎样来计算圆柱的体积呢?能不能把圆柱转化成我们已学过的立体图形,来计算它的体积?
⑵操作:学生操作学具,进行拼组。
让学生明确:21世纪教育网 http://21世纪教育网/
分成的扇形越多,拼成的立体图形就越接近于长方体。
⑶讨论:圆柱与所拼成的近似长方体之间有什么联系?
⑷汇报:近似长方体的体积等于圆柱的体积;近似长方体的底面积等于圆柱的底面积;所以长方体的高就是圆柱的高。
⑸概括:试着让学生根据圆柱与近似长方体的关系,推导公式:
长方体的体积=底面积×高
↓ ↓ ↓
圆柱的体积=底面积×高
引导学生用字母表示计算公式:V=Sh。
3.运用新知,尝试解答例题。
⑴尝试:学生理解题意后,自己尝试解答。
⑵展示:将学生可能出现的三种情况展示于平台上。
①50×2.1=105(立方厘米)
②2.1米=210厘米 50×210=10500(平方厘米)
③2.1米=210厘米 50×210=10500(平方厘米)
⑶辨析:同学们看哪个同学的解答是完全正确的?为什么?
组织学生讨论,明确必须先统一单位后再计算及计算体积应用体积单位。
⑷拓展:如果已知圆柱底面的半径r和高h,该怎么来计算圆柱的体积呢?自己先写出计算公式,再相互交流。
V=πr2h
如果已知的是底面直径d和高h呢?让学生讨论,思考。
三、巩固练习。21世纪教育网 http://21世纪教育网/
1.完成练习二十一的第1题。
学生先独立填表,而后全班汇报。
2.求下面圆柱的体积。(单位:厘米)
四、小结。
同学们,今天你都学会了什么知识?能说给大家听一听吗?
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网