第1讲 功和功率
■目标要求
1.理解功的公式和功的正负,会计算力做的功。2.理解功率的定义,并会对功率进行分析和计算。3.会分析和计算机车启动问题。
考点1 恒力做功的分析和计算
必|备|知|识
1.做功的两个要素。
(1)作用在物体上的 。
(2)物体在力的方向上发生的 。
2.公式:W=Flcos α,α代表力F的方向和位移l方向间的夹角。
3.功是标量:只有大小,没有 ,但有正负。
4.功的正负。
(1)当0°≤α<90°时,W>0,力对物体做 ,力是动力,物体获得能量。
(2)当90°<α≤180°时,W<0,力对物体做 ,或者说物体 这个力做了功。力是阻力,物体失去能量。
(3)当α=90°时,W=0,力对物体 。
(1)只要物体受力的同时又发生了位移,则一定有力对物体做功 ()
(2)一个力对物体做负功,则说明这个力阻碍物体的运动()
(3)力对物体做功的正负是由力和位移间的夹角大小决定的()
(4)作用力做正功,其反作用力一定做负功()
关|键|能|力
合力做功的计算。
方法一:先求合外力F合,再用W合=F合lcos α求功。
方法二:先求各个力做的功W1、W2、W3…,再应用W合=W1+W2+W3+…求合外力做的功。
方法三:利用动能定理W合=Ek2-Ek1。
【典例1】 (多选)如图所示,质量为m=1 kg的物体静止在倾角为θ=37°的斜面上,物体与斜面的动摩擦因数为μ=0.8,现使物体与斜面相对静止并水平向左匀速移动距离l=10 m,取g=10 m/s2,sin 37°=0.6,cos 37°=0.8。下列选项正确的是( )
A.重力对物体做功为0
B.摩擦力对物体做功为-48 J
C.支持力对物体做功为-48 J
D.合力对物体做功为96 J
【典例2】 两个互相垂直的力F1和F2作用在同一物体上,使物体运动。物体通过一段位移时,力F1对物体做功4 J,力F2对物体做功3 J,则力F1与F2的合力对物体做功为( )
A.7 J B.1 J
C.5 J D.3.5 J
考点2 功率的计算
必|备|知|识
1.定义:功与完成这些功所用时间的 。
2.物理意义:描述力对物体做功的 。
3.公式:(1)P=,P为时间t内的 。
(2)P= (α为F与v的夹角)。若v为平均速度,则P为 ;若v为瞬时速度,则P为 。
4.额定功率:表示机器长时间 时最大的输出功率。
实际功率:表示机器 时的输出功率。
(1)由P=知,W越大,则功率越大()
(2)P=Fv既可以求某一时刻的瞬时功率,也可以求平均功率()
(3)汽车上坡时换成低挡位,其目的是减小速度得到较大的牵引力()
关|键|能|力
【典例3】 (多选)质量为m的物体从距地面h高处自由下落,重力加速度为g,经历时间t,则下列说法正确的是( )
A.t时间内重力对物体做功为mg2t2
B.t时间内重力的平均功率为mg2t
C.时刻重力的瞬时功率与t时刻重力的瞬时功率之比为1∶2
D.前时间内重力做功的平均功率与后时间内重力做功的平均功率之比为1∶3
计算平均功率时可用功率的定义式P=,也可用功率的计算式P=Fv(其中v为沿力F方向的平均速度);计算瞬时功率只能用功率的计算式P=Fv(其中v为沿力F方向的瞬时速度)。
【典例4】 (2024·浙江卷)一个音乐喷泉喷头出水口的横截面积为2×10-4 m2,喷水速度约为10 m/s,水的密度为1×103 kg/m3,则该喷头喷水的功率约为( )
A.10 W B.20 W
C.100 W D.200 W
命题特点:以喷泉喷水为背景考查功率的计算,选取Δt时间内喷出的水为研究对象,并计算其动能的增加量,再利用功率的定义式求解。
复习建议:掌握物理概念的同时还要重视思想方法的运用,这里用到的微元法,即选取一小段时间Δt的水为研究对象。
考点3 机车的启动问题
关|键|能|力
1.机车的两种启动方式。
比较内容 以恒定功率启动 以恒定加速度启动
P-t图 和 v-t图
OA 段 过程 分析 v↑ F= ↓ a=↓ a=不变 F不变P=Fv↑直到P额=Fv1
运动 性质 加速度减小的加速直线运动 匀加速直线运动,维持时间t0=
AB 段 过程 分析 F=F阻 a=0 F阻= v↑ F=↓ a=↓
运动 性质 以vm做匀速直线运动 加速度减小的加速直线运动
BC段 无 F=F阻 a=0 以vm=匀速直线运动
2.三个重要关系式。
(1)无论哪种运行过程,机车的最大速度都等于其匀速运动时的速度,即vm==(式中Fmin为最小牵引力,其值等于阻力F阻)。
(2)机车以恒定加速度启动的运动过程中,匀加速过程结束时,功率最大,速度不是最大,即v=(3)机车以恒定功率运行时,牵引力做的功W=Pt。由动能定理Pt-F阻x=ΔEk。此式经常用于求解机车以恒定功率启动过程的位移大小。
考向1 恒定功率启动
【典例5】 (2025·枣庄模拟)某品牌汽车的质量m=1 600 kg,发动机的额定功率P额=80 kW,沿平直路面运动时所受阻力的大小不变。若汽车以额定功率由静止启动,运动过程中能达到的最大速度vm=40 m/s,当汽车的速度v=10 m/s时,其加速度的大小为( )
A.1.25 m/s2 B.2.5 m/s2
C.3.75 m/s2 D.5 m/s2
【典例6】 (2025·南通模拟)电瓶车在水平路面上以功率P1匀速行驶。某时刻将电瓶车的功率增大为P2并保持不变。则功率变化前后电瓶车的速度v随时间t变化的图像可能是( )
A B
C D
考向2 恒定加速度启动
【典例7】
一辆实验模型小车在水平路面上由静止启动,在前5 s内做匀加速直线运动,5 s末达到额定功率,之后保持额定功率运动,其v-t图像如图所示。已知汽车的质量为1 500 kg,重力加速度g取10 m/s2,汽车受到阻力为车重的0.15倍,则( )
A.小汽车前5 s内的位移大小75 m
B.小汽车在前5 s内的牵引力为4 500 N
C.小汽车额定功率为67.5 kW
D.小汽车的最大速度为45 m/s
把握高考微点,实现素能提升完成P341微练19
关|键|能|力
在高中物理教材中,计算做功的公式是W=Flcos α,但这个公式只适用于计算恒力做功的情况,而变力做功的问题,要根据不同的条件用特殊的方法计算。
考向1 微元法求变力做功
将物体的位移分割成许多小段,因每一小段很小,每一小段上作用在物体上的力可以视为恒力,这样就将变力做功转化为在无数多个位移上的恒力所做功的代数和。此法常用于求解大小不变、方向改变的变力做功问题。
【典例1】
水平桌面上,长6 m的轻绳一端固定于O点,如图所示(俯视图),另一端系一质量m=2.0 kg的小球。现对小球施加一个沿桌面大小不变的力F=10 N,F拉着物体从M点运动到N点,F的方向始终与小球的运动方向成37°角。已知小球与桌面间的动摩擦因数μ=0.2,不计空气阻力,取g=10 m/s2,sin 37°=0.6,cos 37°=0.8,则下列说法正确的是( )
A.拉力F对小球做的功为16π J
B.拉力F对小球做的功为8π J
C.小球克服摩擦力做的功为16π J
D.小球克服摩擦力做的功为4π J
考向2 利用平均力求变力做功
当物体受到的力方向不变,而大小随位移均匀变化时,则可以认为物体受到一大小为=的恒力作用,F1、F2分别为物体在初、末位置所受到的力,然后用公式W=lcos α求此变力所做的功。
【典例2】 用铁锤把小铁钉钉入木板,设木板对钉子的阻力与钉进木板的深度成正比。已知铁锤第一次将钉子钉进d,如果铁锤第二次敲钉子时对钉子做的功与第一次相同,那么,第二次钉子进入木板的深度为( )
A.(-1)d B.(-1)d
C. D.d
考向3 用F-x图像求变力做功
在F-x图像中,图线与x轴所围“面积”的代数和表示力F在这段位移内所做的功,且位于x轴上方的“面积”为正功,位于x轴下方的“面积”为负功,但此方法只适用于便于求图线所围面积的情况(如三角形、矩形、圆等规则的几何图形)。
【典例3】
质量为2 kg的物体在水平面上沿直线运动,受阻力大小恒定。经某点开始沿运动方向的水平拉力F与运动距离x的关系如图所示,0~3 m物体做匀速直线运动。下列对图示过程的说法正确的是( )
A.在x=5 m处物体加速度大小为3 m/s2
B.0~7 m阻力对物体做功为28 J
C.0~7 m拉力对物体做功为40 J
D.0~7 m合力对物体做功为68 J
考向4 化变力为恒力求变力做功
有些变力做功问题通过转换研究对象,可转化为恒力做功,用W=Flcos α求解。此法常用在轻绳通过定滑轮拉物体做功的问题中。
【典例4】
如图所示,在光滑的水平面上,物块在恒力F=50 N作用下从A点运动到B点,不计滑轮的大小,不计绳、滑轮的质量及绳与滑轮间的摩擦,H=1.2 m,α=37°,β=53°,sin 37°=0.6,sin 53°=0.8。则绳子对物块的拉力做的功为( )
A.20 J B.25 J
C.37.5 J D.60 J
考向5 利用动能定理求变力做功
利用公式W=Flcos α不容易直接求功时,尤其对于曲线运动或变力做功问题,可考虑由动能的变化来间接求功,所以动能定理是求变力做功的首选。
【典例5】
(2025·邯郸模拟)如图所示,一质量为m的质点在半径为R的半球形容器中(容器固定)由静止开始自边缘上的A点滑下,到达最低点B时,它对容器的正压力为FN。重力加速度为g,则质点自A滑到B的过程中,摩擦力对其所做的功为( )
A.R(FN-3mg) B.R(2mg-FN)
C.R(FN-mg) D.R(FN-2mg)
微|点|训|练
1.早在两千多年前,我国劳动人民就发明了汉石磨盘,它是一种可使谷物脱壳、粉碎的加工工具,凝聚着人类的高度智慧。后来人们通常用驴来拉磨把谷物磨成面粉,如图所示。假设驴对磨杆的拉力F为500 N,拉力沿圆周切线方向,磨盘半径r为0.4 m,磨杆长也为0.4 m,驴对磨杆的拉力作用在磨杆末端,磨盘转动一周的时间为5 s,则( )
A.驴拉磨转动一周拉力所做的功为400π J
B.驴拉磨转动一周拉力的平均功率为160π W
C.磨盘边缘的线速度大小为π m/s
D.磨杆末端的向心加速度大小为0.64π2 m/s2
2.
某工地建房时用小车将细沙从一楼提到七楼(高度为20 m),小车和细沙总质量为10 kg。由于小车漏沙,在被匀速提升至七楼的过程中,小车和细沙的总质量随着上升距离的变化关系如图所示。小车可以看成质点,不计空气阻力,重力加速度g取10 m/s2。由图像可知,在提升的整个过程中,拉力对小车做的功为( )
A.2 000 J B.1 800 J
C.1 600 J D.180 J
3.
一物体所受的力F随位移x变化的图像如图所示,求在这一过程中,力F对物体做的功为( )
A.3 J B.6 J
C.7 J D.8 J
4.如图所示,一根绳子绕过高4 m的滑轮(大小、摩擦均不计),绳的一端拴一质量为10 kg的物体m,另一侧沿竖直方向的绳被人拉住。若人拉住绳子向右运动了3 m,使物体匀速上升,g取10 m/s2。则人拉绳所做的功为(忽略人的高度对问题的影响)( )
A.500 J B.300 J
C.100 J D.50 J
5.
如图所示,质量为m的物块放在水平转台上,物块与转轴相距R,物块随转台由静止开始转动。当角速度增至ω时,转台开始做匀速转动,整个过程物块与转台总是保持相对静止,则( )
A.在角速度增至ω的过程中,物块所受的摩擦力方向总是指向转轴
B.转台匀速转动时,物块所受的摩擦力大小为mωR
C.在角速度增至ω的过程中,摩擦力对物块做的功是mω2R2
D.在角速度增至ω的过程中,摩擦力对物块做的功是0
第1讲 功和功率
考点1
必备知识
1.(1)力 (2)位移 3.方向
4.(1)正功 (2)负功 克服 (3)不做功
微点辨析 (1)× (2)√ (3)√ (4)×
关键能力
【典例1】 AB 解析 物体水平向左运动,物体的高度不变,则重力对物体做功为0,A项正确;根据平衡条件有Ff=mgsin θ=6 N,根据功的定义式可知,摩擦力做功为Wf=Fflcos(180°-θ),解得Wf=-48 J,B项正确;根据平衡条件有FN=mgcos θ=8 N,根据功的定义式可知,支持力做功为WN=FNlcos(90°-θ),解得WN=48 J,C项错误;物体做匀速直线运动,所受外力的合力为0,则合力对物体做功为0,D项错误。对于合外力做功也可以用各外力做功的代数和求解,即W合=WN+Wf+WG=0。
【典例2】 A 解析 功是标量,其运算法则为代数运算,合力对物体做的功W=3 J+4 J=7 J,A项正确。
考点2
必备知识
1.比值 2.快慢 3.(1)平均功率 (2)Fvcos α
平均功率 瞬时功率 4.正常工作 实际工作
微点辨析 (1)× (2)√ (3)√
关键能力
【典例3】 ACD 解析 物体自由下落,t时间内物体下落h=gt2,重力做功WG=mgh=mg2t2,A项正确;t时间内重力的平均功率P==mg2t,B项错误;由速度公式v=gt得,时刻与t时刻物体的速度之比为1∶2,结合P=Fv 得,时刻重力的瞬时功率与t时刻重力的瞬时功率之比为1∶2,C项正确;前时间内与后时间内的位移之比为1∶3,则重力做功之比为1∶3,故重力做功的平均功率之比为1∶3,D项正确。
【典例4】 C 解析 设Δt时间内从喷头流出的水的质量为m=ρSv·Δt,喷头喷水的功率等于Δt时间内喷出的水的动能增加量,即P===ρSv3,代入数据解得P=100 W,C项正确。
考点3
【典例5】 C 解析 汽车具有最大速度时,牵引力与阻力平衡,可得P额=fvm,解得f=2 000 N,当汽车的速度v=10 m/s时,有P额=Fv,解得F=8 000 N,由牛顿运动定律,可得F-f=ma,,解得a=3.75 m/s2,C项正确。
【典例6】 A 解析 设电动车受到的阻力为f,电瓶车在水平路面上以功率P1匀速行驶,则有P1=F1v,F1=f,某时刻将电瓶车的功率增大为P2并保持不变,则有P2=F2v,根据牛顿第二定律F2-f=ma,汽车做加速运动,由于速度增加,所以F2变小,加速度随之减小,故速度v随时间t变化的图像的斜率变小,A项正确。
【典例7】 D 解析 根据v-t图像与横轴围成的面积表示位移,可知小汽车前5 s内的位移大小为x1=×15×5 m=37.5 m,A项错误;小汽车在前5 s内的加速度大小为a== m/s2=3 m/s2,根据牛顿第二定律可得F-f=ma,牵引力大小为F=f+ma=0.15×1 500×10 N+1 500×3 N=6 750 N,B项错误;小汽车在5 s时功率达到额定功率,则有P额=Fv5=6 750×15 W=101.25 kW,C项错误;当牵引力等于阻力时,小汽车速度达到最大,则有vm== m/s=45 m/s,D项正确。
微点突破2 变力做功的分析和计算
关键能力
【典例1】 A 解析 将圆弧分成很多小段l1,l2,…,ln,拉力F在每小段上做的功为W1,W2,…,Wn,因拉力F大小不变,方向始终与小球的运动方向成37°角,所以W1=Fl1cos 37°,W2=Fl2cos 37°,…,Wn=Flncos 37°,故WF=W1+W2+…+Wn=Fcos 37°(l1+l2+…+ln)=Fcos 37°·=10×0.8××6 J=16π J,A项正确,B项错误;同理可得小球克服摩擦力做的功Wf=μmg·=8π J,C、D两项错误。
【典例2】 B 解析 铁锤每次敲钉子时对钉子做的功等于钉子克服阻力做的功。由于阻力与深度成正比,可用阻力的平均值求功,据题意可得W=d=d,W=d'=d',联立解得d'=(-1)d,B项正确。
【典例3】 C 解析 由于在0~3 m物体做匀速直线运动,拉力与阻力大小相等,因此物体所受的阻力大小为Ff=4 N,由题图可知,在x=5 m处,物体所受的拉力为7 N,根据牛顿第二定律F-Ff=ma可知在该位置的加速度a=1.5 m/s2,A项错误;阻力对物体做功Wf=-Ffx=-4×7 J=-28 J,B项错误;根据题图可知,拉力对物体做的功等于图像与横轴围成的面积,即WF=4×3 J+×(7-3) J=40 J,C项正确;合力对物体做的功W=WF+Wf=12 J,D项错误。
【典例4】 B 解析 根据几何关系可得沿力F方向上的位移x=-,绳子对物块的拉力做功等于拉力F所做的功W=Fx,代入数据解得W=25 J,B项正确。
【典例5】 A 解析 质点在最低点B时,由牛顿第二定律,有FN-mg=m,质点在B点的动能为EkB=mv2=(FN-mg)R。质点自A滑到B的过程中,由动能定理得mgR+Wf=EkB-0,解得Wf=R(FN-3mg),A项正确。
微点训练
1.B 解析 驴对磨的拉力沿圆周切线方向,拉力作用点的速度方向也在圆周切线方向,故可认为拉磨过程中拉力方向始终与速度方向相同,由微元法,拉力对磨盘所做的功等于拉力的大小与拉力作用点沿圆周运动弧长的乘积,则磨转动一周,弧长L=2π(2r)=1.6π m,所以拉力所做的功W=FL=500×1.6π J=800π J,A项错误;根据功率的定义得P== W=160π W,B项正确;磨盘边缘的线速度为v== m/s=0.16π m/s,C项错误;磨杆末端的向心加速度为an=2·2r=2×0.8 m/s2=0.128π2 m/s2,D项错误。
2.B 解析 由于小车匀速上升,故拉力大小等于小车和细沙的总重力,由于小车和细沙的总质量随位移均匀减小,故拉力与位移满足线性关系,所以可用平均力法求解变力做功。结合题图可知,F1=m1g=100 N,F2=m2g=80 N,则在提升的整个过程中,拉力对小车做的功为W拉=h=1 800 J,B项正确。
3.B 解析 力F对物体做的功等于x轴上方梯形“面积”所表示的正功与x轴下方三角形“面积”所表示的负功的代数和。W1=×(3+4)×2 J=7 J,W2=-×(5-4)×2 J=-1 J,所以力F对物体做的功为W=7 J-1 J=6 J,B项正确。
4.C 解析 拉力是变力,但拉力做的功等于物体克服重力做的功,所以求拉力做的功可以转化为求重力做的功。物体上升的位移h=-4 m=1 m,重力做的功W=-mgh=-10×10×1 J=-100 J,所以人拉绳所做的功W'=-W=100 J,C项正确。
5.C 解析 在角速度增至ω过程中,即物块加速转动,则物块所受的摩擦力方向与速度夹角为锐角,不是总是指向转轴,A项错误;转台匀速转动时,物块所受的摩擦力充当向心力,则摩擦力大小为Ff=mω2R,B项错误;根据动能定理,在角速度增至ω的过程中,摩擦力对物块做的功是W=ΔEk=mv2=mω2R2,C项正确,D项错误。(共30张PPT)
第1讲
第六章 机械能守恒定律
功和功率
目
标
要
求
1.理解功的公式和功的正负,会计算力做的功。2.理解功率的定义,并会对功率进行分析和计算。3.会分析和计算机车启动问题。
考点1 恒力做功的分析和计算
考点2 功率的计算
内容
索引
考点3 机车的启动问题
恒力做功的分析和计算
考点1
必|备|知|识
1.做功的两个要素。
(1)作用在物体上的_____。
(2)物体在力的方向上发生的________。
2.公式:W=Flcos α,α代表力F的方向和位移l方向间的夹角。
3.功是标量:只有大小,没有________,但有正负。
力
位移
方向
4.功的正负。
(1)当0°≤α<90°时,W>0,力对物体做_________,力是动力,物体获得能量。
(2)当90°<α≤180°时,W<0,力对物体做_________,或者说物体_______这个力做了功。力是阻力,物体失去能量。
(3)当α=90°时,W=0,力对物体__________。
正功
负功
克服
不做功
(1)只要物体受力的同时又发生了位移,则一定有力对物体做功
( )
(2)一个力对物体做负功,则说明这个力阻碍物体的运动( )
(3)力对物体做功的正负是由力和位移间的夹角大小决定的( )
(4)作用力做正功,其反作用力一定做负功( )
关|键|能|力
合力做功的计算。
方法一:先求合外力F合,再用W合=F合lcos α求功。
方法二:先求各个力做的功W1、W2、W3…,再应用W合=W1+W2+W3
+…求合外力做的功。
方法三:利用动能定理W合=Ek2-Ek1。
【典例1】 (多选)如图所示,质量为m=1 kg的物体静止在倾角为θ=37°的斜面上,物体与斜面的动摩擦因数为μ=0.8,现使物体与斜面相对静止并水平向左匀速移动距离l=10 m,取g=10 m/s2,sin 37°
=0.6,cos 37°=0.8。下列选项正确的是( )
A.重力对物体做功为0
B.摩擦力对物体做功为-48 J
C.支持力对物体做功为-48 J
D.合力对物体做功为96 J
物体水平向左运动,物体的高度不变,则重力对物体做功为0,A项正确;根据平衡条件有Ff=mgsin θ=6 N,根据功的定义式可知,摩擦力做功为Wf=Fflcos(180°-θ),解得Wf=-48 J,B项正确;根据平衡条件有FN=mgcos θ=8 N,根据功的定义式可知,支持力做功为WN=FNlcos(90°-θ),解得WN=48 J,C项错误;物体做匀速直线运动,所受外力的合力为0,则合力对物体做功为0,D项错误。对于合外力做功也可以用各外力做功的代数和求解,即W合=WN+Wf+WG=0。
解析
【典例2】 两个互相垂直的力F1和F2作用在同一物体上,使物体运动。物体通过一段位移时,力F1对物体做功4 J,力F2对物体做功
3 J,则力F1与F2的合力对物体做功为( )
A.7 J B.1 J C.5 J D.3.5 J
功是标量,其运算法则为代数运算,合力对物体做的功W=3 J+4 J
=7 J,A项正确。
解析
功率的计算
考点2
必|备|知|识
1.定义:功与完成这些功所用时间的_______。
2.物理意义:描述力对物体做功的________。
3.公式:(1)P=,P为时间t内的__________。
(2)P=________(α为F与v的夹角)。若v为平均速度,则P为________;若v为瞬时速度,则P为___________。
4.额定功率:表示机器长时间_________时最大的输出功率。
实际功率:表示机器__________时的输出功率。
比值
快慢
平均功率
Fvcos α
平均功率
瞬时功率
正常工作
实际工作
(1)由P=知,W越大,则功率越大( )
(2)P=Fv既可以求某一时刻的瞬时功率,也可以求平均功率( )
(3)汽车上坡时换成低挡位,其目的是减小速度得到较大的牵引力
( )
关|键|能|力
【典例3】 (多选)质量为m的物体从距地面h高处自由下落,重力加速度为g,经历时间t,则下列说法正确的是( )
A.t时间内重力对物体做功为mg2t2
B.t时间内重力的平均功率为mg2t
C.时刻重力的瞬时功率与t时刻重力的瞬时功率之比为1∶2
D.前时间内重力做功的平均功率与后时间内重力做功的平均功率之比为1∶3
物体自由下落,t时间内物体下落h=gt2,重力做功WG=mgh=mg2t2,A项正确;t时间内重力的平均功率P==mg2t,B项错误;由速度公式v=gt得,时刻与t时刻物体的速度之比为1∶2,结合P=Fv 得,时刻重力的瞬时功率与t时刻重力的瞬时功率之比为1∶2,C项正确;前时间内的位移之比为1∶3,则重力做功之比为
1∶3,故重力做功的平均功率之比为1∶3,D项正确。
解析
计算平均功率时可用功率的定义式P=,也可用功率的计算式P=Fv(其中v为沿力F方向的平均速度);计算瞬时功率只能用功率的计算式P=Fv(其中v为沿力F方向的瞬时速度)。
【典例4】 (2024·浙江卷)一个音乐喷泉喷头出水口的横截面积为2×10-4 m2,喷水速度约为10 m/s,水的密度为1×103 kg/m3,则该喷头喷水的功率约为( )
A.10 W B.20 W C.100 W D.200 W
设Δt时间内从喷头流出的水的质量为m=ρSv·Δt,喷头喷水的功率等于Δt时间内喷出的水的动能增加量,即P===ρSv3,代入数据解得P=100 W,C项正确。
解析
命题特点:以喷泉喷水为背景考查功率的计算,选取Δt时间内喷出的水为研究对象,并计算其动能的增加量,再利用功率的定义式求解。
复习建议:掌握物理概念的同时还要重视思想方法的运用,这里用到的微元法,即选取一小段时间Δt的水为研究对象。
机车的启动问题
考点3
关|键|能|力
1.机车的两种启动方式。
比较内容 以恒定功率启动 以恒定加速度启动
P-t图 和 v-t图
OA 段 过程 分析 v↑ F=↓ a=↓ a=不变 F不变
P=Fv↑直到P额=Fv1
运动 性质 加速度减小的加速直线运动 匀加速直线运动,维持时间t0=
AB 段 过程 分析 F=F阻 a=0 F阻= v↑ F=↓ a=↓
运动 性质 以vm做匀速直线运动 加速度减小的加速直线运动
BC段 无 F=F阻 a=0 以vm=匀速直线运动
2.三个重要关系式。
(1)无论哪种运行过程,机车的最大速度都等于其匀速运动时的速
度,即vm==(式中Fmin为最小牵引力,其值等于阻力F阻)。
(2)机车以恒定加速度启动的运动过程中,匀加速过程结束时,功率最大,速度不是最大,即v=(3)机车以恒定功率运行时,牵引力做的功W=Pt。由动能定理Pt-F阻x=ΔEk。此式经常用于求解机车以恒定功率启动过程的位移大小。
考向1
恒定功率启动
【典例5】 (2025·枣庄模拟)某品牌汽车的质量m=1 600 kg,发动机的额定功率P额=80 kW,沿平直路面运动时所受阻力的大小不变。若汽车以额定功率由静止启动,运动过程中能达到的最大速度vm=
40 m/s,当汽车的速度v=10 m/s时,其加速度的大小为( )
A.1.25 m/s2 B.2.5 m/s2
C.3.75 m/s2 D.5 m/s2
汽车具有最大速度时,牵引力与阻力平衡,可得P额=fvm,解得f=
2 000 N,当汽车的速度v=10 m/s时,有P额=Fv,解得F=8 000 N,由牛顿运动定律,可得F-f=ma,,解得a=3.75 m/s2,C项正确。
解析
【典例6】 (2025·南通模拟)电瓶车在水平路面上以功率P1匀速行驶。某时刻将电瓶车的功率增大为P2并保持不变。则功率变化前后电瓶车的速度v随时间t变化的图像可能是( )
设电动车受到的阻力为f,电瓶车在水平路面上以功率P1匀速行 驶,则有P1=F1v,F1=f,某时刻将电瓶车的功率增大为P2并保持不变,则有P2=F2v,根据牛顿第二定律F2-f=ma,汽车做加速运动,由于速度增加,所以F2变小,加速度随之减小,故速度v随时间t变化的图像的斜率变小,A项正确。
解析
考向2
恒定加速度启动
【典例7】 一辆实验模型小车在水平路面上由静止启动,在前5 s内做匀加速直线运动,5 s末达到额定功率,之后保持额定功率运动,其v-t图像如图所示。已知汽车的质量为1 500 kg,重力加速度g取
10 m/s2,汽车受到阻力为车重的0.15倍,则( )
A.小汽车前5 s内的位移大小75 m
B.小汽车在前5 s内的牵引力为4 500 N
C.小汽车额定功率为67.5 kW
D.小汽车的最大速度为45 m/s
根据v-t图像与横轴围成的面积表示位移,可知小汽车前5 s内的位移大小为x1=×15×5 m=37.5 m,A项错误;小汽车在前5 s内的加速度大小为a== m/s2=3 m/s2,根据牛顿第二定律可得F-f=ma,牵引力大小为F=f+ma=0.15×1 500×10 N+1 500×3 N=6 750 N,B项错误;小汽车在5 s时功率达到额定功率,则有P额=Fv5=6 750×15 W=
101.25 kW,C项错误;当牵引力等于阻力时,小汽车速度达到最
大,则有vm== m/s=45 m/s,D项正确。
解析微练19 功和功率
梯级Ⅰ基础练
1.(2024·江西卷)“飞流直下三千尺,疑是银河落九天”是李白对庐山瀑布的浪漫主义描写。设瀑布的水流量约为10 m3/s,水位落差约为150 m。若利用瀑布水位落差发电,发电效率为70%,则发电功率大致为( )
A.109 W B.107 W
C.105 W D.103 W
2.(2025·苏州模拟)如图,一质量为M的汽车在水平路面上匀加速行驶,加速度为a。车厢中一质量为m的人用大小为F的恒力向前推车并与车保持相对静止。在汽车行驶距离L的过程中,人对车做功为( )
A.0 B.FL
C.-MaL D.-maL
3.(2025·太原模拟)如图所示为竖直平面内的四分之一光滑圆弧轨道,小球在水平推力F的作用下,以不变的速率由P点沿圆弧移动至Q点,下列说法正确的是( )
A.重力的瞬时功率保持不变
B.支持力的瞬时功率一直减小
C.推力F的瞬时功率一直减小
D.合外力的瞬时功率始终为零
4.(2025·南通模拟)校园科技节上某兴趣小组利用锂电池和微型电机设计了一列“微型高铁”。假设这列高铁的质量为m,在平直轨道上匀速行驶的速度大小为v,受到的阻力大小为f,受到轨道的支持力大小为F,重力加速度为g。则电机的输出功率为( )
A.mgv B.Fv
C.fv D.(F-f)v
5.(2025·淮安模拟)如图所示,在皮带传送装置中,皮带把物体P匀速传送至高处,在此过程中,下列说法正确的是( )
A.摩擦力对物体做正功
B.支持力对物体做正功
C.重力对物体做正功
D.合外力对物体做正功
6.如图所示,质量均为m的甲、乙两人分别站在两种扶梯上,随着扶梯一起以速度v斜向上做匀速直线运动。已知两种扶梯的倾角均为θ,重力加速度大小为g。下列说法正确的是( )
A.平台对乙的摩擦力水平向右
B.甲、乙均处于超重状态
C.一段时间t内,扶梯的斜面对甲的摩擦力做的功为mgvt
D.平台对乙的支持力的功率为mgvsin θ
7.(多选)在离地面h=5 m处将质量为m=1 kg的小球以速度v0=10 m/s水平抛出,不计空气阻力,重力加速度g取10 m/s2,下列说法正确的是( )
A.从抛出到落地过程中,重力的平均功率为50 W
B.从抛出到落地过程中,重力的平均功率为100 W
C.落地时重力的瞬时功率为100 W
D.落地时重力的瞬时功率为100 W
8.(2025·宿迁模拟)质量为m的汽车,如果启动过程中发动机的功率恒为P,汽车速度能够达到的最大值为v,行驶过程中受到的阻力不变,那么当汽车的车速为时,汽车的加速度为( )
A. B.
C. D.
梯级Ⅱ能力练
9.(2025·连云港模拟)一辆汽车在平直的公路上以恒定功率P启动,其运动的v-t图像如图所示,已知t1时刻速度大小为v1,t2时刻速度恰好达到最大值v2。下列说法正确的是( )
A.汽车先做匀加速直线运动,后做匀速直线运动
B.t2时刻汽车受到的牵引力大小为
C.加速过程中牵引力做功为P(t2-t1)
D.汽车受到的阻力大小为
10.(多选)在建筑装修中,工人用质量为m的磨石对水平地面进行打磨,当对磨石施加压力F时(如图所示),磨石刚好能向右做匀速直线运动,已知磨石与地面间的动摩擦因数是μ,重力加速度为g,在磨石向前运动s的过程中,工人对磨石做功为( )
A.Fscos θ B.μFs
C.μ(mg+Fsin θ)s D.μ(mg+F)s
11.某健身爱好者质量为55 kg,在做俯卧撑运动的过程中可将他的身体视为一根直棒。已知重心在c点,其垂线与脚、两手连线中点间的距离Oa、Ob分别为1.0 m和0.5 m。若他在1 min内做了36个俯卧撑,每次肩部上升的距离均为0.5 m。则该健身爱好者在1 min内克服重力做功的平均功率为( )
A.110 W B.11 W
C.16.5 W D.165 W
12.(多选)如图所示,三个固定的斜面底边长度都相等,斜面倾角分别为30°、45°、60°,斜面的表面情况都一样。完全相同的物体(可视为质点)A、B、C分别从三斜面的顶部滑到底部的过程中( )
A.三者所受摩擦力fA>fB>fC
B.三者克服摩擦力所做的功WA>WB>WC
C.三者克服摩擦力所做的功WAD.三者克服摩擦力所做的功WA=WB=WC
13.(多选)(2025·菏泽模拟)某同学用额定功率为1 200 W、最大拉力为300 N的提升装置,把静置于地面上质量为20 kg的重物竖直向上提起,该装置先用最大拉力使重物匀加速运动,功率达到额定值后保持不变,经一段时间后匀速上升,不计空气阻力,重力加速度g取10 m/s2,下列说法正确的是( )
A.重物上升过程中的最大加速度为5 m/s2
B.重物匀加速上升的时间为0.8 s
C.重物上升过程中的最大速度为6 m/s
D.重物速度为5 m/s时,加速度为3 m/s2
梯级Ⅲ创新练
14.某动车组由两节额定功率为P和2P的动车组成,两节动车在某平直铁轨上能达到的最大速度分别为v1和v2。设每节动车运行时受到的阻力在编组前后不变,则该动车组在此铁轨上能达到的最大速度为( )
A. B.
C. D.
微练19 功和功率
1.B 解析 由题知,Δt时间内流出的水量为m=ρQΔt=1.0×104Δt,发电过程中水的重力势能转化为电能,则有P=×70%=1.05×107 W,B项正确。
2.D 解析 车对人的合力大小为ma,方向水平向右,根据牛顿第三定律可知人对车的合力大小为ma,方向水平向左,人对车做负功,则有W=-maL,D项正确。
3.D 解析 小球以不变的速率由P点沿圆弧移动至Q点,根据PG=mgvy,由于竖直分速度逐渐增大,则重力的瞬时功率逐渐增大,A项错误;由于支持力的方向与速度方向始终垂直,所以支持力的瞬时功率一直为0,B项错误;由于小球的动能不变,所以推力F做的功等于小球克服重力做的功,则推力F的瞬时功率等于重力的瞬时功率,所以推力F的瞬时功率逐渐增大,C项错误;小球做匀速圆周运动,合力方向指向圆心,所以合力方向与速度方向始终垂直,合外力的瞬时功率始终为零,D项正确。
4.C 解析 高铁匀速运动,牵引力与阻力平衡,则有F牵=f,电机的输出功率P=F牵v,解得P=fv,C项正确。
5.A 解析 皮带把物体P匀速传送至高处,根据受力平衡可知,物体受到竖直向下的重力,垂直于皮带接触面向上的支持力,沿皮带向上的静摩擦力;所以重力对物体做负功,支持力对物体不做功,摩擦力对物体做正功,由于物体的动能不变,根据动能定理可知,合外力对物体做功为0,A项正确。
6.D 解析 乙处于二力平衡状态,只受支持力和重力作用,不受摩擦力作用,A项错误;甲、乙均做匀速直线运动,加速度均为0,既不是超重状态也不是失重状态,B项错误;对甲进行受力分析,由力的平衡条件可知扶梯斜面对甲的摩擦力为Ff=mgsin θ,一段时间t内,扶梯斜面对甲的摩擦力做的功为W=Ffvt=mgvtsin θ,C项错误;平台对乙的支持力为F=mg,把斜向上的速度v分别沿水平方向和竖直方向分解,则有vy=vsin θ,则支持力F的功率为P=Fvy=mgvsin θ,D项正确。
7.AC 解析 小球做平抛运动,竖直方向上,根据h=gt2,解得t=1 s,从抛出到落地过程中,重力做的功W=mgh=50 J,重力的平均功率为P==50 W,A项正确,B项错误;小球落地时,竖直方向的瞬时速度vy=gt=10 m/s,落地时重力的瞬时功率P'=mgvy=100 W,C项正确,D项错误。
8.A 解析 当汽车以最大速度行驶时,牵引力F与阻力f大小相等,所以发动机的功率为P=Fv=fv,阻力f=,当汽车的速度为时,汽车的牵引力大小为F1==,当汽车的车速为时,汽车的加速度a===,A项正确。
9.B 解析 v-t图像斜率代表加速度,0~t1时间内图像斜率变化,则加速度变化,汽车做变加速直线运动,A项错误;根据P=Fv2得t2时刻汽车受到的牵引力大小为F=,B项正确;加速过程中牵引力做功为W=Pt2,C项错误;汽车速度达到最大值时,牵引力等于阻力,则汽车受到的阻力大小f=F=,D项错误。
10.AC 解析 对磨石受力分析,如图所示,磨石做匀速直线运动,受力平衡,则有Fcos θ=f,f=μFN=μ(mg+Fsin θ),由功的定义式可知,工人对磨石做功为W=Fscos θ=μ(mg+Fsin θ)s,A、C两项正确。
11.A 解析 每次肩部上升的距离均为0.5 m,可知重心上升h=0.5× m= m,每次克服重力做功W=mgh=550× J= J,该健身爱好者在1 min内克服重力做功的平均功率为P== W=110 W,A项正确。
12.AD 解析 斜面对物体的摩擦力f=μmgcos θ,因θA<θB<θC,所以cos θA>cos θB>cos θC,则fA>fB>fC,A项正确;设斜面底边长度为b,则摩擦力做的功W=-μmgcos θ·=-μmgb,即克服摩擦力做功为定值W克=μmgb,B、C两项错误,D项正确。
13.ABC 解析 重物上升过程中的最大加速度为am== m/s2=5 m/s2,A项正确;匀加速能达到的最大速度v1== m/s=4 m/s,重物匀加速上升的时间为t1== s=0.8 s,B项正确;重物上升过程中的最大速度为vm== m/s=6 m/s,C项正确;重物速度为5 m/s时,加速度为a'==-10m/s2=2 m/s2,D项错误。
14.C 解析 动车组在速度达到最大值时,牵引力与阻力平衡,对每节动车进行分析,则有F1=f1,F2=f2,根据功率的表达式有P=F1v1,2P=F2v2。令动车组在此铁轨上能达到的最大速度为v3,结合上述有P+2P=F3v3,F3=f1+f2,解得v3=,C项正确。(共27张PPT)
微练19
功和功率
1
5
6
7
8
9
10
11
12
13
14
2
3
4
1.(2024·江西卷)“飞流直下三千尺,疑是银河落九天”是李白对庐山瀑布的浪漫主义描写。设瀑布的水流量约为10 m3/s,水位落差约为150 m。若利用瀑布水位落差发电,发电效率为70%,则发电功率大致为( )
A.109 W B.107 W
C.105 W D.103 W
梯级Ⅰ 基础练
由题知,Δt时间内流出的水量为m=ρQΔt=1.0×104Δt,发电过程中水的重力势能转化为电能,则有P=×70%=1.05×107 W,B项正确。
解析
1
5
6
7
8
9
10
11
12
13
14
2
3
4
2.(2025·苏州模拟)如图,一质量为M的汽车在水平路面上匀加速行驶,加速度为a。车厢中一质量为m的人用大小为F的恒力向前推车并与车保持相对静止。在汽车行驶距离L的过程中,人对车做功为( )
A.0 B.FL
C.-MaL D.-maL
车对人的合力大小为ma,方向水平向右,根据牛顿第三定律可知人对车的合力大小为ma,方向水平向左,人对车做负功,则有W=-maL,D项正确。
解析
1
5
6
7
8
9
10
11
12
13
14
2
3
4
3.(2025·太原模拟)如图所示为竖直平面内的四分之一光滑圆弧轨 道,小球在水平推力F的作用下,以不变的速率由P点沿圆弧移动至Q点,下列说法正确的是( )
A.重力的瞬时功率保持不变
B.支持力的瞬时功率一直减小
C.推力F的瞬时功率一直减小
D.合外力的瞬时功率始终为零
1
5
6
7
8
9
10
11
12
13
14
2
3
4
小球以不变的速率由P点沿圆弧移动至Q点,根据PG=mgvy,由于竖直分速度逐渐增大,则重力的瞬时功率逐渐增大,A项错误;由于支持力的方向与速度方向始终垂直,所以支持力的瞬时功率一直为0,B项错误;由于小球的动能不变,所以推力F做的功等于小球克服重力做的功,则推力F的瞬时功率等于重力的瞬时功 率,所以推力F的瞬时功率逐渐增大,C项错误;小球做匀速圆周运动,合力方向指向圆心,所以合力方向与速度方向始终垂直,合外力的瞬时功率始终为零,D项正确。
解析
1
5
6
7
8
9
10
11
12
13
14
2
3
4
4.(2025·南通模拟)校园科技节上某兴趣小组利用锂电池和微型电机设计了一列“微型高铁”。假设这列高铁的质量为m,在平直轨道上匀速行驶的速度大小为v,受到的阻力大小为f,受到轨道的支持力大小为F,重力加速度为g。则电机的输出功率为( )
A.Mgv B.Fv C.fv D.(F-f)v
高铁匀速运动,牵引力与阻力平衡,则有F牵=f,电机的输出功率P=F牵v,解得P=fv,C项正确。
解析
1
5
6
7
8
9
10
11
12
13
14
2
3
4
5.(2025·淮安模拟)如图所示,在皮带传送装置中,皮带把物体P匀速传送至高处,在此过程中,下列说法正确的是( )
A.摩擦力对物体做正功
B.支持力对物体做正功
C.重力对物体做正功
D.合外力对物体做正功
1
5
6
7
8
9
10
11
12
13
14
2
3
4
皮带把物体P匀速传送至高处,根据受力平衡可知,物体受到竖直向下的重力,垂直于皮带接触面向上的支持力,沿皮带向上的静摩擦力;所以重力对物体做负功,支持力对物体不做功,摩擦力对物体做正功,由于物体的动能不变,根据动能定理可知,合外力对物体做功为0,A项正确。
解析
1
5
6
7
8
9
10
11
12
13
14
2
3
4
6.如图所示,质量均为m的甲、乙两人分别站在两种扶梯上,随着扶梯一起以速度v斜向上做匀速直线运动。已知两种扶梯的倾角均为 θ,重力加速度大小为g。下列说法正确的是( )
A.平台对乙的摩擦力水平向右
B.甲、乙均处于超重状态
C.一段时间t内,扶梯的斜面对甲的摩擦力做的功为mgvt
D.平台对乙的支持力的功率为mgvsin θ
1
5
6
7
8
9
10
11
12
13
14
2
3
4
乙处于二力平衡状态,只受支持力和重力作用,不受摩擦力作 用,A项错误;甲、乙均做匀速直线运动,加速度均为0,既不是超重状态也不是失重状态,B项错误;对甲进行受力分析,由力的平衡条件可知扶梯斜面对甲的摩擦力为Ff=mgsin θ,一段时间t内,扶梯斜面对甲的摩擦力做的功为W=Ffvt=mgvtsin θ,C项错 误;平台对乙的支持力为F=mg,把斜向上的速度v分别沿水平方向和竖直方向分解,则有vy=vsin θ,则支持力F的功率为P=Fvy=
mgvsin θ,D项正确。
解析
1
5
6
7
8
9
10
11
12
13
14
2
3
4
7.(多选)在离地面h=5 m处将质量为m=1 kg的小球以速度v0=10 m/s水平抛出,不计空气阻力,重力加速度g取10 m/s2,下列说法正确的是( )
A.从抛出到落地过程中,重力的平均功率为50 W
B.从抛出到落地过程中,重力的平均功率为100 W
C.落地时重力的瞬时功率为100 W
D.落地时重力的瞬时功率为100 W
1
5
6
7
8
9
10
11
12
13
14
2
3
4
小球做平抛运动,竖直方向上,根据h=gt2,解得t=1 s,从抛出到落地过程中,重力做的功W=mgh=50 J,重力的平均功率为P==50 W,A项正确,B项错误;小球落地时,竖直方向的瞬时速度vy=gt=10 m/s,落地时重力的瞬时功率P'=mgvy=100 W,C项正确,D项错误。
解析
1
5
6
7
8
9
10
11
12
13
14
2
3
4
8.(2025·宿迁模拟)质量为m的汽车,如果启动过程中发动机的功率恒为P,汽车速度能够达到的最大值为v,行驶过程中受到的阻力不变,那么当汽车的车速为时,汽车的加速度为( )
A. B.
C. D.
1
5
6
7
8
9
10
11
12
13
14
2
3
4
当汽车以最大速度行驶时,牵引力F与阻力f大小相等,所以发动机的功率为P=Fv=fv,阻力f=,当汽车的速度为时,汽车的牵引力大小为F1==,当汽车的车速为时,汽车的加速度a===,A项正确。
解析
1
5
6
7
8
9
10
11
12
13
14
2
3
4
9.(2025·连云港模拟)一辆汽车在平直的公路上以恒定功率P启动,其运动的v-t图像如图所示,已知t1时刻速度大小为v1,t2时刻速度恰好达到最大值v2。下列说法正确的是( )
A.汽车先做匀加速直线运动,后做匀速直线运动
B.t2时刻汽车受到的牵引力大小为
C.加速过程中牵引力做功为P(t2-t1)
D.汽车受到的阻力大小为
1
5
6
7
8
9
10
11
12
13
14
2
3
4
梯级Ⅱ 能力练
v-t图像斜率代表加速度,0~t1时间内图像斜率变化,则加速度变化,汽车做变加速直线运动,A项错误;根据P=Fv2得t2时刻汽车受到的牵引力大小为F=,B项正确;加速过程中牵引力做功为W=Pt2,C项错误;汽车速度达到最大值时,牵引力等于阻力,则汽车受到的阻力大小f=F=,D项错误。
解析
1
5
6
7
8
9
10
11
12
13
14
2
3
4
1
5
6
7
8
9
10
11
12
13
14
2
3
4
10.(多选)在建筑装修中,工人用质量为m的磨石对水平地面进行打磨,当对磨石施加压力F时(如图所示),磨石刚好能向右做匀速直线运动,已知磨石与地面间的动摩擦因数是μ,重力加速度为g,在磨石向前运动s的过程中,工人对磨石做功为( )
A.Fscos θ B.μFs
C.μ(mg+Fsin θ)s D.μ(mg+F)s
对磨石受力分析,如图所示,磨石做匀速直线运动,受力平衡,则有Fcos θ=f,f=μFN=μ(mg+Fsin θ),由功的定义式可知,工人对磨石做功为W=Fscos θ=
μ(mg+Fsin θ)s,A、C两项正确。
解析
1
5
6
7
8
9
10
11
12
13
14
2
3
4
11.某健身爱好者质量为55 kg,在做俯卧撑运动的过程中可将他的身体视为一根直棒。已知重心在c点,其垂线与脚、两手连线中点间的距离Oa、Ob分别为1.0 m和0.5 m。若他在1 min内做了36个俯卧撑,每次肩部上升的距离均为0.5 m。则该健身爱好者在1 min内克服重力做功的平均功率为( )
A.110 W B.11 W
C.16.5 W D.165 W
1
5
6
7
8
9
10
11
12
13
14
2
3
4
每次肩部上升的距离均为0.5 m,可知重心上升h=0.5× m= m,每次克服重力做功W=mgh=550× J= J,该健身爱好者在1 min内克服重力做功的平均功率为P== W=110 W,A项正确。
解析
1
5
6
7
8
9
10
11
12
13
14
2
3
4
12.(多选)如图所示,三个固定的斜面底边长度都相等,斜面倾角分别为30°、45°、60°,斜面的表面情况都一样。完全相同的物体 (可视为质点)A、B、C分别从三斜面的顶部滑到底部的过程中( )
A.三者所受摩擦力fA>fB>fC
B.三者克服摩擦力所做的功WA>WB>WC
C.三者克服摩擦力所做的功WAD.三者克服摩擦力所做的功WA=WB=WC
1
5
6
7
8
9
10
11
12
13
14
2
3
4
斜面对物体的摩擦力f=μmgcos θ,因θA<θB<θC,所以cos θA> cos θB>cos θC,则fA>fB>fC,A项正确;设斜面底边长度为b,则摩擦力做的功W=-μmgcos θ·=-μmgb,即克服摩擦力做功为定值W克=μmgb,B、C两项错误,D项正确。
解析
1
5
6
7
8
9
10
11
12
13
14
2
3
4
13.(多选)(2025·菏泽模拟)某同学用额定功率为1 200 W、最大拉力为300 N的提升装置,把静置于地面上质量为20 kg的重物竖直向上提起,该装置先用最大拉力使重物匀加速运动,功率达到额定值后保持不变,经一段时间后匀速上升,不计空气阻力,重力加速度g取 10 m/s2,下列说法正确的是( )
A.重物上升过程中的最大加速度为5 m/s2
B.重物匀加速上升的时间为0.8 s
C.重物上升过程中的最大速度为6 m/s
D.重物速度为5 m/s时,加速度为3 m/s2
1
5
6
7
8
9
10
11
12
13
14
2
3
4
重物上升过程中的最大加速度为am== m/s2=5 m/s2,A项正确;匀加速能达到的最大速度v1== m/s=4 m/s,重物匀加速上升的时间为t1== s=0.8 s,B项正确;重物上升过程中的最大速度为vm== m/s=6 m/s,C项正确;重物速度为 5 m/s时,加速度为a'==(-10)m/s2=2 m/s2,D项错误。
解析
1
5
6
7
8
9
10
11
12
13
14
2
3
4
1
5
6
7
8
9
10
11
12
13
14
2
3
4
14.某动车组由两节额定功率为P和2P的动车组成,两节动车在某平直铁轨上能达到的最大速度分别为v1和v2。设每节动车运行时受到的阻力在编组前后不变,则该动车组在此铁轨上能达到的最大速度为 ( )
A. B.
C. D.
梯级Ⅲ 创新练
动车组在速度达到最大值时,牵引力与阻力平衡,对每节动车进行分析,则有F1=f1,F2=f2,根据功率的表达式有P=F1v1,2P= F2v2。令动车组在此铁轨上能达到的最大速度为v3,结合上述有P+2P=F3v3,F3=f1+f2,解得v3=,C项正确。
解析
1
5
6
7
8
9
10
11
12
13
14
2
3
4