(共37张PPT)
第1节 基因指导蛋白质的合成
第四章
RNA的结构和功能
01
遗传信息的转录
02
03
遗传信息的翻译、中心法则
美国科幻电影《侏罗纪公园》曾轰动一时。影片围绕着虚构的“侏罗纪公园”,展现了丰富而新奇的科学幻想:各种各样的恐龙飞奔跳跃、相互争斗,而这些复活的恐龙是科学家利用提取的恐龙DNA还原而来的。
讨论:
从原理上分析,利用已灭绝生物的DNA,真的能够使它们复活吗?
遗传信息储存在细胞核的DNA中
蛋白质的合成发生在核糖体
充当信使的中间物质---RNA
RNA的结构和功能
一、RNA的结构和功能
1.元素组成:
C、H、O、N、P
2.基本组成单位:
核糖核苷酸
3.结构:
一般是单链,比DNA短,能通过核孔,从细胞核转移至细胞质。
rRNA
4. RNA种类
信使RNA
转运RNA
核糖体RNA
种类 mRNA tRNA rRNA
名称 信使RNA 转运RNA 核糖体RNA
分布
功能
示 意 图
共同点 细胞核、细胞质
细胞质(主要)
与蛋白质结合成核糖体
翻译的直接模板
翻译时运载氨基酸
组成核糖体
①都是转录产物 ②基本单位相同 ③都与翻译过程有关
5.三种RNA的比较
比较项目 DNA RNA
基本单位
五碳糖
含氮碱基
结 构
主要存在部位
DNA与RNA的比较
脱氧核苷酸
核糖核苷酸
脱氧核糖
核糖
A T C G
A U C G
通常呈双螺旋结构
多为单链结构
细胞核
细胞质
思考:RNA为什么可以作为DNA的信使传递信息呢?
①RNA也是由核苷酸组成,含氮碱基有A、G、C、U,具备准确传递遗传信息的可能。
②RNA一般是单链,而且比DNA短,因此能够通过核孔,从细胞核转移到细胞质中。
③RNA与DNA的关系中,也遵循“碱基互补配对原则”;因此以mRNA为媒介可将遗传信息传递到细胞质中。
④RNA为单链结构,不稳定,易降解,使得完成使命的RNA能迅速分解,保证生命活动的有序进行。
遗传信息的转录
二、遗传信息的转录
1.概念:以DNA的一条链为模板,按照碱基互补配对原则,合成RNA的过程。其实质是将DNA脱氧核苷酸序列转录成mRNA核糖核苷酸的序列。
2.条件:
①模板:
DNA的一条链,另一条链称为信息链。
4种核糖核苷酸
细胞核
RNA聚合酶(作用)
②原料:
③场所:
④酶:
⑤碱基互补配对:
A-U T-A G-C C-G
3.意义:使遗传信息从DNA转移至RNA,为翻译过程提供模板mRNA。
⑥能量:
ATP(物质)
1.解旋
2.催化磷酸二酯键的形成
RNA聚合酶将DNA双链解开,碱基暴露出来
第一步
游离的核糖核苷酸与DNA模板链上的碱基互补配对
第二步
在RNA聚合酶的作用下,新结合的核糖核苷酸连接到正在合成的RNA分子上
第三步
合成的RNA从DNA链上释放,而后DNA双螺旋恢复
第四步
3
3
5
5
5
RNA与模板链是反向的
DNA复制与DNA转录
比较项目 DNA复制 DNA转录
模板
原料
碱基互补配对原则
酶
产物
DNA
RNA
DNA的两条链
DNA的一条链
四种脱氧核苷酸
四种核糖核苷酸
A-T;G-C
A-U;T-A;G-C
解旋酶、DNA聚合酶等
RNA聚合酶
模板链
mRNA携带的遗传信息如何翻译成蛋白质?
1.转录与DNA复制有什么共同之处?这对保证遗传信息的准确转录有什么意义?
遗传信息的转录过程
转录与复制都需要模板、都遵循碱基互补配对原则,等等。其中,碱基互补配对原则能够保证遗传信息传递的准确性。
2.与DNA复制相比,转录所需要的原料和酶各有什么不同?
DNA复制所需要的原料是4种游离的脱氧核苷酸,所需要的酶是解旋酶和DNA聚合酶;转录所需要的原料是4种游离的核糖核苷酸,所需要的酶是RNA聚合酶。
思考·讨论
DNA双链片段 a链
b链 C G A A C C T C A C G C
信使RNA
比较mRNA和b链,以及mRNA和a链的碱基序列的差异。
G C T T G G A G T G C G
G C U U G G A G U G C G
3.转录产生的RNA的碱基序列与其模板链的碱基序列有何异同点?与DNA的另外一条链的碱基序列有何异同点?
① 该RNA与DNA模板链的碱基互补配对,A 与U配对,而非T ;
② 该RNA与DNA互补链的碱基序列基本相同,只是DNA链上T的位置,RNA 链上是U 。
转录以基因为单位,不同基因模板链不同
4.分裂间期和分裂期都可以进行转录吗?
分裂期的染色体高度螺旋,DNA难以解旋,转录难以发生。
5.转录的是DNA还是DNA片段?
遗传信息的翻译、中心法则
转录得到的是RNA,而不是蛋白质。
那么,RNA上的碱基序列如何能变成蛋白质中氨基酸排列顺序呢?
mRNA通过核孔进入细胞质中,与核糖体结合,开始它新的历程——翻译。
三、遗传信息的翻译
1.定义:
游离在细胞质中的各种氨基酸,以mRNA为模板合成具有一定氨基酸顺序的蛋白质的过程,称为遗传信息的翻译。
DNA携带的遗传信息
mRNA携带的遗传信息
蛋白质
转录
翻译
碱基排序
碱基排序
氨基酸排序
mRNA:
碱基的数量
排列顺序
种类
蛋白质:
氨基酸的数量
排列顺序
种类
决定
决定
决定
讨论:4种碱基怎么决定蛋白质的21种氨基酸?
1个碱基决定1种氨基酸就只能决定 种,即
2个碱基决定1种氨基酸就只能决定 种,即
3个碱基决定1种氨基酸就只能决定 种,即
4
4种
21种
41
16
42
64
43
2.密码子:
mRNA 上 3 个相邻的碱基决定 1 个氨基酸,每 3 个这样的碱基叫作 1 个密码子。
mRNA
5'
3'
A
密码子
密码子
密码子
密码子认读是从mRNA的5'→3',相邻的密码子无间隔、不重叠。
缬氨酸
组氨酸
精氨酸
苯丙氨酸
第一个碱基 第二个碱基 第三个碱基
U C A G U 苯丙氨酸 丝氨酸 酪氨酸 半胱氨酸 U
苯丙氨酸 丝氨酸 酪氨酸 半胱氨酸 C
亮氨酸 丝氨酸 终止 终止、硒代半胱氨酸 A
亮氨酸 丝氨酸 终止 色氨酸 G
C 亮氨酸 脯氨酸 组氨酸 精氨酸 U
亮氨酸 脯氨酸 组氨酸 精氨酸 C
亮氨酸 脯氨酸 谷氨酰胺 精氨酸 A
亮氨酸 脯氨酸 谷氨酰胺 精氨酸 G
A 异亮氨酸 苏氨酸 天冬酰胺 丝氨酸 U
异亮氨酸 苏氨酸 天冬酰胺 丝氨酸 C
异亮氨酸 苏氨酸 赖氨酸 精氨酸 A
甲硫氨酸(起始) 苏氨酸 赖氨酸 精氨酸 G
G 缬氨酸 丙氨酸 天冬氨酸 甘氨酸 U
缬氨酸 丙氨酸 天冬氨酸 甘氨酸 C
缬氨酸 丙氨酸 谷氨酸 甘氨酸 A
缬氨酸、甲硫氨酸(起始) 丙氨酸 谷氨酸 甘氨酸 G
终止密码子: 、 、
种类 起始密码子: (甲硫氨酸)、
( 种) _ ____(缬氨酸、甲硫氨酸)
编码氨基酸的密码子______种或_____种
64
UAA
UGA(硒代半胱氨酸)
UAG
AUG
GUG
61
61
特殊密码子说明:
①在正常情况下,UGA是终止密码子,但在特殊情况下可编码硒代半胱氨酸。
②在原核生物中,GUG也可以作起始密码子,此时它编码甲硫氨酸。
绝大多数氨基酸都有几个密码子。
2.密码子的简并性
地球上几乎所有的生物都共用同一套密码子。
3.密码子的通用性
讨论1:你认为密码子的简并对生物体的生存和发展有什么意义?
讨论2:根据密码子的通用性这一事实,你能想到什么?
①增强密码子的容错性。当密码子中有一个碱基改变时,由于密码子的简并性,可能并不会改变其对应的氨基酸;
②提高使用频率。当某种氨基酸使用频率高时,几种不同的密码子都编码同一种氨基酸可以保证翻译的速度。
说明当今生物可能有着共同的起源。
一种密码子决定一种氨基酸。
1.密码子的专一性
分析密码子的特性
思考·讨论
3.tRNA(转运RNA):
①形态:
②功能特点:
③反密码子
RNA链经过折叠,形成三叶草形
识别密码子,转运氨基酸。(tRNA只能识别并转运一种氨基酸。氨基酸可由一种或几种tRNA转运)
mRNA
5'
3'
A
C
U
反密码子
密码子
位于tRNA上,其实质是与密码子发生碱基互补配对的3个相邻的碱基。
密码子=反密码子=61或62
4.过程:
第1步 mRNA进入细胞质,与核糖体结合。携带甲硫氨酸的tRNA ,通过与碱基AUG互补配对,进入位点1。
第2步 携带某个氨酸的tRNA以同样的方式进入位点2 。
第3步 甲硫氨酸与这个氨基酸形成肽键,从而转移到位点2的tRNA上。
第4步 核糖体沿mRNA移动,读取下一个密码子,原占位点1的tRNA离开核糖体,原位点2的tRNA进入位点1,一个新的携带氨基酸的tRNA进入位点2,继续肽链的合成
就这样,随着核糖体的移动,tRNA以上述方式将携带的氨基酸输送过来,以合成肽链。直到核糖体遇到mRNA的终止密码子,合成才告终止
5.场所:
6.条件:
7.结果:
核糖体
能量:
酶:
模板:
原料:
原则:
ATP
肽酰转移酶(连接肽键)
mRNA
21种游离氨基酸
碱基互补配对
A-U、U-A
G-C、C-G
多肽链
8.特征:
(1)如何快速高效地进行翻译呢?
一个mRNA分子上结合多个核糖体,同时进行多条肽链合成。
(2)以同一模板合成的多条肽链的氨基酸序列是否相同?
相同,因为其模板相同
(3)翻译合成的肽链就具有相应的功能吗?
不具有,还需要进一步加工。
mRNA
核糖体
(4)真、原核细胞基因的表达有什么区别?
真核细胞中先转录后翻译,原核细胞中边转录边翻译
DNA的复制、转录和翻译的比较
项目 复制 转录 翻译
场所
条件 模板
原料
能量
酶
产物
原则
细胞核(主要场所)
细胞核(主要场所)
核糖体
DNA的两条链
DNA的一条链
mRNA
4种游离的脱氧核苷酸
4种游离的核糖核苷酸
21种游离的氨基酸
ATP
ATP
ATP
解旋酶
DNA聚合酶
RNA聚合酶
DNA
RNA
多肽
碱基互补配对
A-T T-A G-C C-G
碱基互补配对
A-U T-A G-C C-G
碱基互补配对
A-U U-A G-C C-G
特定的酶
1957年,克里克率先提出遗传信息传递的一般规律——中心法则。
遗传信息可以从DNA流向DNA,即DNA的复制;
复制
转录
翻译
蛋白质
DNA
RNA
也可以从DNA流向RNA ,进而流向蛋白质,即遗传信息的转录和翻译。
随着研究的深入,科学家对中心法则进行补充:
资料:1.1965年,科学家在某种RNA病毒中发现了RNA复制酶,RNA复制酶
能催化RNA的复制。
2.1970年,科学家在致癌的RNA病毒中发现了逆转录酶,它能以RNA
为模板合成DNA。
逆转录
复制
四、中心法则
基因的表达过程中碱基与氨基酸的数量关系
A—C—U—G—G—A—U—C—U
mRNA:
苏氨酸——甘氨酸——丝氨酸
肽链:
DNA:
A—C—T—G—G—A—T—C—T
T—G—A—C—C—T—A—G—A
肽键 肽键
(假设以B链为模板进行转录)
A链
B链
转录
翻译
基因中的碱基数:mRNA中的碱基数:蛋白质中的氨基酸数 =
6∶3∶1
一、概念检测
1. 基因的表达包括遗传信息的转录和翻译两个过程。判断下列相关表述是否正确。
(1)DNA转录形成的mRNA,与母链碱基的组成、排列顺序都是相同的。( )
(2)一个密码子只能对应一种氨基酸,一种氨基酸必然有多个密码子。( )
×
×
2. 密码子决定了蛋白质的氨基酸种类以及翻译的起始和终止。密码子是指 ( )
A. 基因上3个相邻的碱基
B. DNA上3个相邻的碱基
C. tRNA上3个相邻的碱基
D. mRNA上3个相邻的碱基
D
二、拓展应用
红霉素、环丙沙星、利福平等抗菌药物能够抑制细菌的生长,它们的抗菌机制如下表所示, 请结合本节内容说明这些抗菌药物可用于治疗疾病的道理。
题中的三种抗生素都是通过阻止遗传信息的传递和表达,来干扰细菌蛋白质的合成,进而抑制细菌生长的。具体而言,红霉素影响翻译过程,环丙沙星影响复制过程,利福平影响转录过程。
抗菌药物 抗菌机制
红霉素 能与核糖体结合,抑制肽链的延伸
环丙沙星 抑制细菌DNA的复制
利福平 抑制细菌RNA酶的活性