本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
第23章 二次函数和反比例函数测试题
一.选择题(10×4)
1.二次函数的最小值是( )
A. B. C. D.
2.如图,抛物线的对称轴是直线,且经过点(3,0),则的值为
A. 0 B. -1 C. 1 D. 2
3.二次函数的图象的顶点坐标是( )
A. B. C. D.
4.函数在同一直角坐标系内的图象大致是 ( )
5.将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大
A. 7 B. 6 C. 5 D. 4
6.下列命题:
①若,则;
②若,则一元二次方程有两个不相等的实数根;
③若,则一元二次方程有两个不相等的实数根;
④若,则二次函数的图像与坐标轴的公共点的个数是2或3.
其中正确的是( ).
A.只有①②③ B.只有①③④ C.只有①④ D. 只有②③④.
7.如图所示是二次函数的图象在轴上方的一部分,对于这段图象与轴所围成的阴影部分的面积,你认为与其最接近的值是( )
A.4 B. C. D.
8.在平面直角坐标系中,如果抛物线y=2x2不动,而把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是
A.y=2(x-2)2 + 2 B.y=2(x + 2)2-2
C.y=2(x-2)2-2 D.y=2(x + 2)2 + 2
9.如图,正方形的边长为2,反比例函数过点,则的值是( )
A. B. C. D.
10.一个函数的图象如图,给出以下结论:
①当时,函数值最大;
②当时,函数随的增大而减小;
③存在,当时,函数值为0.
其中正确的结论是( )
A.①② B.①③
C.②③ D.①②③
2.填空题(5×5)
11.如图,一名男生推铅球,铅球行进高度(单位:m)与水平距离(单位:m)之间的关系是.则他将铅球推出的距离是 m.
12.初三数学课本上,用“描点法”画二次函数的图象时,列了如下表格:
… 0 1 2 …
… …
根据表格上的信息回答问题:该二次函数在时,
13. 已知函数的部分图象如图所示,则c=______,当x______时,y随x的增大而减小.
14.如图,在反比例函数()的图象上,有点,它们的横坐标依次为1,2,3,4.分别过这些点作轴与轴的垂线,图中所构成的阴影部分的面积从左到右依次为,则 .
15.如图,在平面直角坐标系中,函数(,常数)的图象经过点,,(),过点作轴的垂线,垂足为.若的面积为2,则点的坐标为 .
三.解答题
16.(8分)已知一次函数y=ax+b的图像与反比例函数 的图像交于A(2,2),B(-1,m),求一次函数的解析式.
17.(8分)已知二次函数y=x2-2x-1。
(1) 求此二次函数的图象与x轴的交点坐标.
(2) 将y=x2的图象经过怎样的平移,就可以得到二次函数y=x2-2x-1的图象
18.(11分)已知二次函数中,函数与自变量的部分对应值如下表:
… …
… …
(1)求该二次函数的关系式;
(2)当为何值时,有最小值,最小值是多少?
(3)※若,两点都在该函数的图象上,试比较与的大小.
19(10分)如图,点A(m,m+1),B(m+3,m-1)都在反比例函数的图象上.
(1)求m,k的值;
(2)如果M为x轴上一点,N为y轴上一点,
以点A,B,M,N为顶点的四边形是平行四边形,
试求直线MN的函数表达式.
20.(10分)已知一次函数与反比例函数的图象交于点.
(1)求这两个函数的函数关系式;
(2)在给定的直角坐标系(如图)中,画出这两个函数的大致图象;
(3)当为何值时,一次函数的值大于反比例函数的值?当为何值时,一次函数的值小于反比例函数的值?
21.(12分)某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.
设每个房间每天的定价增加元.求:
(1)房间每天的入住量(间)关于(元)的函数关系式.(3分)
(2)该宾馆每天的房间收费(元)关于(元)的函数关系式.(3分)
(3)该宾馆客房部每天的利润(元)关于(元)的函数关系式;当每个房间的定价为每天多少元时,有最大值?最大值是多少?(6分)
22.(12分)桂林红桥位于桃花江上,是桂林两江四湖的一道亮丽的风景线,该桥的部分横截面如图所示,上方可看作是一个经过A、C、B三点的抛物线,以桥面的水平线为X轴,经过抛物线的顶点C与X轴垂直的直线为Y轴,建立直角坐标系,已知此桥垂直于桥面的相邻两柱之间距离为2米(图中用线段AD、CO、BE等表示桥柱)CO=1米,FG=2米
(1) 求经过A、B、C三点的抛物线的解析式。
(2) 求柱子AD的高度。
型 号 甲 乙 丙
进价(万元/台) 0.9 1.2 1.1
售价(万元/台) 1.2 1.6 1.3
23.(14分)“5 12”汶川大地震后,某健身器材销售公司通过当地“红十字会”向灾区献爱心,捐出了五月份全部销售利润.已知该公司五月份只售出甲、乙、丙三种型号器材若干台,每种型号器材不少于8台,五月份支出包括这批器材进货款64万元和其他各项支出(含人员工资和杂项开支)3.8万元.这三种器材的进价和售价如下表,人员工资y1(万元)和杂项支出y2(万元)分别与总销售量x(台)成一次函数关系(如图).
(1)求y1与x的函数解析式;
(2)求五月份该公司的总销售量;
(3)设公司五月份售出甲种型号器材t台,五月份总销售利为W(万元),求W与t的函数关系式;(销售利润=销售额-进价-其他各项支出)
(4)请推测该公司这次向灾区捐款金额的最大值.
参考答案
1.选择题BAACC BCBDC
2.填空题11.10 ,12.-4 ,13. 3 x<1 ,14. ,15.(3,)
3.解答题
16.先求得m=-4,∵一次函数y=ax+b的图象过点A(2,2)B(-1,-4)
∴ 解得 a=2 ,b=-2 ∴所求一次函数的解析式为y=2x-2
17.⑴解方程 x2-2x-1=0得x=1±∴二次函数y=x2-2x-1与x轴的交点坐标为(1+,0),(1-,0)
⑵y=x2-2x-1=(x-1)2-2 顶点坐标为(1,-2) ∴把y=x2向右平移1个单位再向下平移2单位就可以得到y=x2-2x-1的图象
18.(1)根据题意,当时,;当时,.
所以
解得
所以,该二次函数关系式为.
(2)因为,
所以当时,有最小值,最小值是1.
(3)因为,两点都在函数的图象上,
所以,,.
.所以,当,即时,;
当,即时,;
当,即时,.
19.解:(1)由题意可知,.
解,得 m=3. ………………………………3分
∴ A(3,4),B(6,2);
∴ k=4×3=12. ……………………………4分
(2)存在两种情况,如图:
①当M点在x轴的正半轴上,N点在y轴的正半轴
上时,设M1点坐标为(x1,0),N1点坐标为(0,y1).
∵ 四边形AN1M1B为平行四边形,
∴ 线段N1M1可看作由线段AB向左平移3个单位,
再向下平移2个单位得到的(也可看作向下平移2个单位,再向左平移3个单位得到的).
由(1)知A点坐标为(3,4),B点坐标为(6,2),
∴ N1点坐标为(0,4-2),即N1(0,2);
M1点坐标为(6-3,0),即M1(3,0).
设直线M1N1的函数表达式为,把x=3,y=0代入,解得.
∴ 直线M1N1的函数表达式为.
②当M点在x轴的负半轴上,N点在y轴的负半轴上时,设M2点坐标为(x2,0),N2点坐标为(0,y2).
∵ AB∥N1M1,AB∥M2N2,AB=N1M1,AB=M2N2,
∴ N1M1∥M2N2,N1M1=M2N2.
∴ 线段M2N2与线段N1M1关于原点O成中心对称.
∴ M2点坐标为(-3,0),N2点坐标为(0,-2).
设直线M2N2的函数表达式为,把x=-3,y=0代入,解得,
∴ 直线M2N2的函数表达式为.
所以,直线MN的函数表达式为或.
20.(1)设一次函数的关系式为,反比例函数的关系式为,
反比例函数的图象经过点,
.
所求反比例函数的关系式为.
将点的坐标代入上式得,
点的坐标为.
由于一次函数的图象过
和,
解得
所求一次函数的关系式为.
(2)两个函数的大致图象如图.
(3)由两个函数的图象可以看出.
当和时,一次函数的值大于反比例函数的值.
当和时,一次函数的值小于反比例函数的值.
21.
22.⑴根据题意 可设所求函数解析式为:y=ax2+1,∵它过点F(-4,2) ∴2=16a+1
a= ∴所求抛物线的解析式为Y=x2+1
⑵把x=-8代入Y=x2+1得y=×64+1=5
∴ 柱子AD的高度为5米.
23.
–1
3
3
1
O
x
y
x
y
C
O
A
B
(第10题)
x
y
O
P1
P2
P3
P4
1
2
3
4
y
O
x
C
A(1,2)
B(m,n)
x
O
y
A
B
O
1
2
3
4
5
6
6
5
4
3
2
1
-1
-2
-3
-4
-5
-6
-1
-2
-3
-4
-5
-6
x
y
0
20
0.2
0.3
1.2
B
y1
y2=0.005x+0.3
x(台)
y(万元)
x
O
y
A
B
M1
N1
M2
N2
O
1
2
3
4
5
6
6
5
4
3
2
1
-1
-2
-3
-4
-5
-6
-1
-2
-3
-4
-5
-6
x
y
Q(2,-3)
P(-3,2)
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网