中小学教育资源及组卷应用平台
中小学教育资源及组卷应用平台
2024-2025学年六年级数学下册期末复习专项西师大版
(期末考点培优)专题02 填空题
学校:___________姓名:___________班级:___________考号:___________
1.如图,把一个圆柱切成若干等份,拼成一个近似的长方体,表面积比原来增加了80cm2,已知圆柱的高是10cm,则圆柱的底面半径是( )cm。
2.学校环保小组调查了某小区6月份垃圾回收情况,并制作了下边两幅不完整的统计图,看图完成下面的题。
这个小区6月份共回收垃圾 吨;6月份回收可回收垃圾 吨,占回收垃圾总数的 %。
3.一个圆柱形木块的底面直径是6cm,高是5cm,把它削成一个最大的圆锥,削去部分的体积是( )cm。
4.某停车场停有两轮自行车和四轮小轿车共35辆,总共有110个车轮。自行车有( )辆,小轿车有( )辆。
5.一个圆锥的体积是47.1dm3,高是5dm,底面积是( )dm2。
6.六三班昨天实际到校38人,缺席2人。六三班昨天的出勤率是( )。
7.在比例8∶32=4∶16中,如果把内项32减少8,要使比例成立,那么外项8应减少 。
8.甲、乙、丙三个商店同时销售一种原价为每袋6元的洗衣粉。甲商店打八五折;乙商店满100元打七五折;丙商店买4送1。王阿姨要买10袋这种洗衣粉,想花钱最少,应该到 商店去买。
9.某班有48人,某次数学测试的优秀率是25%,获得优秀的有 人,如果将这次数学测试成绩制成扇形统计图,表示优秀的扇形的圆心角度数是 °。
10.一个圆柱的侧面展开图是一个正方形,正方形的边长既等于圆柱的 ,又等于圆柱底面的 。
11.幸福村去年计划造林16hm2,实际造林20hm2,实际造林比计划造林多( )%。
12.据统计,2023年全年广安市的粮食总产量为183.7万吨,增长百分之二点二。183.7读作 ,百分之二点二写作 。
13.一个底面半径为2dm,高为3dm的圆柱表面积是( )dm2,和它等底等高圆锥的体积是( )dm3。
14.一条长90米的道路的两侧,原来从一端起每9米摆一盆花(首尾都摆),现在要改为每6米摆一盆花(首尾都摆),有( )盆花的位置可以保持不动。
15.一种大豆,10千克可以榨2千克油。照这样计算,榨5吨油,需要( )吨这样的大豆。
16.商场卖一种书包,售价为150元,其中售价的60%是进价,售价的40%是利润。现在要搞促销活动,如果想要销售一个书包有30元利润,促销折扣应确定为按原价的( )%出售。
17.找规律填数。
(1)3,11,20,30,( ),53,…
(2)1,3,2,6,4,9,8,( ),( ),15,32,…
18.张叔叔每月的工资是6400元,超过5000元的部分应按3%缴纳个人所得税,张叔叔应纳税( )元。
19.学校买进一批图书,其中科技书占总数的50%,故事书占总数的25%,科技书比故事书多120本。这批图书中科技书有( )本,故事书有( )本。
20.红星小学12月份用水440立方米,比11月份节约20%。11月份用水( )立方米。
21.一个足球原价80元,现在七五折出售,这个足球现在售价( )元,比原价便宜了( )元。
22.一列火车原来每小时行驶80千米,现在速度提高了50%。这列火车现在每小时行驶( )千米,现在行驶3.6小时能行驶( )千米。
23.将一张长方形纸对折3次后展开,然后把其中3份用分数表示为( ),用百分数表示为( ),用小数表示为( )。
24.小平做了40道口算题,做对了38道;小芳做了50道口算题,做对了48道。( )的正确率高。
25.小刚搭建了一个几何体,从前面、右面和上面看到的都是如图的形状,他一定是用( )个小正方体搭成的。
26.如图所示两个展开图围成的立体图形,左边一个是( )体,表面积是( );右边一个是( )体,体积是( )立方厘米。
27.如图是小兵家5月份家庭支出情况扇形统计图。妈妈告诉小兵本月生活支出是3600元。妈妈本月去银行存了( )元,如果妈妈存的是一年定期,年利率是1.92%,到期后可得利息( )元。
28.将一个高是15厘米的圆锥形容器盛满水,然后将水倒入和它等底等高的圆柱形空杯里,水的高度是( )厘米。
29.六(1)班有50人,六(2)班有45人,六(1)班的人数比六(2)班多( )(填分数);六(2)班的人数比六(1)班少( )(填百分数)。
30.在“、﹣、0、0.5、﹣1”中,负数的个数占总个数的( )%。18和24的最小公倍数是( ),把它写成质数相乘形式是( )。
31.把一个圆柱削成一个最大的圆锥,削去部分的体积与圆锥的体积比是 ∶ 。
32.有一段圆柱形的木块,测得它的底面半径为3分米,侧面积是94.2平方分米,这个木块的体积是 立方分米。
33.有这样一个比例,组成这个比例的两个比的比值是,请写出一个符合条件的比例 。
34.一台长虹电视按50%的利润率定价,然后打八折出售,可获利1200元,这台电视成本价是 元;如果想要获得2100元的利润,应打 折出售。
35.如图所示,转动长方形ABCD,生成右边的圆柱。完成下面的填空。
圆柱是以长方形的 边为轴旋转而成的,底面半径是 cm,高是 cm。
36.把桌面上水平放置的一个半径为5cm的圆形纸片,垂直向上平移6cm,所形成立体图形的体积是( )cm3。
37.一个底面直径是6dm,高是8dm的圆柱,如果将它按图甲那样沿直径垂直切开成两个半圆柱,它的表面积会增加( )dm2;如果将它按图乙那样横切成两段小圆柱,它的表面积会增加( )dm2。
甲 乙
38.底面半径为4cm,高为6cm的圆锥的体积是( )cm3,与它等底等高的圆柱的体积是( )cm3。
39.如图是地球陆地面积分布统计图,根据统计图填空。
(1)全世界共有七个洲,( )洲的面积最大,它占地球陆地总面积的( )%。
(2)南极洲的陆地面积占地球陆地总面积的( )%。
(3)( )洲和( )洲的陆地面积之和接近地球陆地总面积的一半。
40.自来水管的内直径是2厘米,水管内水的流速是每秒8厘米,一位同学去水池洗手,走时忘记关掉水龙头,5分钟会浪费 升水。
41.A的等于B的75%,A与B的最简整数比是( ),比值是( ),A和B成( )比例,A比B多( )%。
42.如上图,甲圆柱形容器是空的,乙长方形容器中水深6.28cm,要将乙容器中的水全部倒入甲容器,这时水深 cm,如果倒入与这个圆柱底面积之比是5∶1的圆锥形容器中水面高 cm。
43.在一个比例中,两个外项的积是10,其中一个内项是0.2,则另一个内项是( )。
44.看图填空。
(1)茄子占总面积的( )%,茄子的占地面积是90平方米,则黄瓜的占地面积是( )平方米,青菜的占地面积是( )平方米。
(2)茄子的占地面积是黄瓜的( ),是青菜的( )。
45.一件衣服原价250元,商场优惠活动每满100元减50元。现在买这件衣服相当于打( )折。
46.一个圆柱体高10cm,如果高减少2cm,它的表面积就减少12.56cm2,原圆柱体的体积是( )cm3。
47.在开展“书香校园”活动中,希望小学举行了一次科普知识抢答赛。赵晴同学答对了18题,答错了3题,她要使自己答题正确率达到90%,接下来要继续答对( )题。
48.把如图的三角形绕一条直角边旋转一周,形成的立体图形的体积最大是( )cm3。
49.东东把3000元压岁钱存入银行,定期两年,如果年利率2.25%,到期后,他一共取回( )元。
50.医院要掌握病人的血压变化情况,用( )统计图表示比较合适;要了解病人血液中各种成分的含量,用( )统计图表示比较合适。
51.在一个比例里,两个内项互为倒数,其中一个外项是9,另一个外项是( )。
52.小梅参加体育锻炼后喝了一杯100毫升含盐5%的盐水,盐和盐水的比是( )。
53.如果5=,那么与成( )比例,如果=,那么与成( )比例。
54.平行四边形的面积一定,它的高和底成 比例;圆的周长和半径成 比例。
55.一个圆柱形木块的体积是540cm3,把它削成一个最大的圆锥,这个圆锥的体积是 cm3。
56.用小棒按如图所示的方式摆放三角形,摆第⑨个图形需要 根小棒,摆第n个图形需要 根小棒。
57.六一儿童节,爸爸给松松买了一套儿童桌椅,一共用去266元。其中桌子按标价打了七折,实际用了210元,椅子按标价打了八折,椅子的标价是 元。
58.甲城到乙城的飞机票全价是1400元,如果上午乘坐票价打八折优惠,晚上乘坐打五折优惠。晚上的票价比上午的票价便宜( )元。
59.一个圆柱和圆锥高相等,底面周长的比是1∶3,则圆柱的体积是圆锥体积的( )。
60.从学校到新华书店,老师用了小时,佳佳用了小时,老师和佳佳两人的时间比是( ),老师和佳佳两人的速度比是( )。
61.在、、八七折、0.8和八成五这五个数中,按从大到小排列,第一个数是( ),最后一个数是( ),第一个数与第四个数的差是( )。
62.六年级二班有3人因病请假,只有47人参加体操比赛,六年级二班今天的缺席率是( );出勤率是( )。
63.王老师把4000元人民币存入银行,定期2年,年利率是2.25%。到期时,王老师一共可以取回( )元。
64.下图是一个底边6cm,高8cm的等腰三角形,以这条高为轴,旋转形成的立体图形是( ),体积是( )立方厘米。
65.重阳节这天,优优亲自动手做了一个美味蜂蜜蛋糕准备送给奶奶。这个蛋糕的形状近似于圆柱,直径是8厘米、高是12厘米。她想再做一个精美的长方体纸盒把这块蛋糕正好装进去,做这个纸盒至少需要( )平方厘米硬纸。
66.六一儿童节期间,游乐场门票八八折优惠,现价是原价的( )%;儿童文具店所有学习用品一律九二折出售,节省了( )%。
67.将一张长方形或正方形的纸对折3次后展开,然后把其中3份用分数表示为( ),用百分数表示为( ),用小数表示为( )。
68.班主任张老师计划购买36个笔记本奖励学生。甲、乙、丙三家文具店相同笔记本标价都是24元/个,但三家文具店促售方式不同。请问张老师至少要用多少元?
答:张老师去( )店买,用( )元人民币。
69.菲菲看一本160页的故事书,第一天看了全书的20%,第二天应从第( )页接着看。
70.小兰把一个底面积是6.28cm2,高2cm的圆柱形橡皮泥做成了一个底面积约12.56cm2的圆锥,这个圆锥的高约是( )cm。
71.冬冬给买妈妈来一个圆柱形的生日蛋糕。为了携带方便,冬冬准备用丝带捆扎成“*”形,再打上蝴蝶结(如图),蝴蝶结需要丝带4dm。捆扎这个蛋糕盒共用丝带长( )dm。
72.袁隆平爷爷是杂交水稻之父。2020年在湖南省衡南县水稻基地,袁隆平团队的第三代杂交水稻双季亩产突破了1500千克。东北水稻最高亩产约是600千克。照这样计算第三代杂交水稻双季的最高亩产相当于东北水稻的( )%,东北水稻最高亩产比第三代杂交水稻双季最高亩产少( )%。
73.欢欢去参加数学竞赛,一共20道题,答对1题得5分,答错1题倒扣4分。欢欢得了73分,他错了( )道题。
74.把一个底面半径为3dm、高20cm的圆柱平均分成若干份,拼成近似的长方体,长方体的表面积增加了( )dm2,体积是( )dm3。
75.一个长方体的底面是边长为10cm的正方形,高是15cm,这个长方体的表面积是( )cm2,体积是( )cm3。若将它锯成一个最大的圆柱,这个圆柱的体积是( )cm3。
76.用圆规画一个直径6厘米的圆,圆规两脚间张开的距离应是( )厘米;把一个圆柱削成一个最大的圆锥,削去部分与圆锥的体积比是( )。
77.新的个人所得税起征点为5000元。杨叔叔本月工资是8000元,若超过起征点部分按照3%的得税率缴税,他本月应缴纳个人所得税( )元。
78.李明把1000元钱存入银行,定期两年,年利率是2.79%。如果不缴纳利息税,两年后连本加利息应得钱数是( )元。
79.8∶10==40÷( )=( )(填百分数)=( )(填成数)。
80.修建一条长3千米的公路,第一周修了全长的40%,第二周修了千米。两周一共修了( )千米。
81.一个圆柱与一个圆锥体积相等,底面积也相等,圆锥的高是15厘米,圆柱的高是( )厘米。
82.如果3a=4b(a、b都不为0),那么a和b成( )比例。当b=0.6时,a=( )。
83.非0自然数A和B,如果A=B,那么A、B的最大公因数是( ),A和B成( )比例。
84.一个圆柱的底面半径为5厘米,侧面展开后正好是一个正方形,圆柱的体积是( )立方厘米。
85.某生态园买进一批松树苗,第一次栽了80棵,成活了70棵,又补种了20棵,全部成活。这批松树苗的成活率是( )%。
86.六年级同学做广播操,每行站20人,正好站12行。如果每行站16人,能站多少行?此题中,( )和( )成( )比例关系。
87.一般考试,满分100分,至少考到90分为A档。照这样计算,满分是120分的试卷,至少考到( )分是A档;如果满分是120分的试卷考了96分,那么相当于一般考试的( )分。
88.a与b的比是3∶4,b是c的,则( ),a比c少。
89.盒子里有黑、白两种颜色的球,黑球和白球个数的比是2∶3。从盒子里任意摸出一个球,摸到黑球的可能性是,摸到白球的可能性是( )%。
90.一根长100cm的圆柱形木料,沿着木料横截成长短不同的3个圆柱形,表面积增加,这根圆柱形木料原来一共的体积是( )。
91.如表,如果x和y成正比例关系,“?”处应填( );如果x和y成反比例关系,“?”处应填( )。
x 3 ?
y 12 24
92.一个圆柱形钢坯的底面积是314cm2,高是6cm,把它铸成与它等底等高的圆锥,可以铸( )个,每个圆锥的体积是( )cm3。
93.妈妈将10000元钱存入银行,定期两年,年利率3.75%(免交利息税)。到期时妈妈可从银行取回本息共( )元。
94.把一根长1m的圆柱形木料,截成2个小圆柱,表面积增加了25.12dm2,这根木料原来的体积是( )dm3。
95.在一块长10dm,宽6dm的长方形铁板上,最多能截取( )个直径是2dm的圆形铁板。
96.一根长的圆柱形木料,锯掉长的一段后,表面积减少了,原来这根木料的体积是( ).
97.“近些年,我国智能快递柜投放量( )趋势明显:2014年智能快递柜投放量仅1.5万组。截至2017年,智能快递柜投放量已经增长至27.1万组,……照这样发展,预测到2020年我国智能快递柜投放量将达到80万组”。以上信息制成( )统计图较为适宜。
98.将一根米长的木料平均锯成4段,用去其中的一份,用去这根木料的,用去米,还剩( )%。
99.要想知道西安地区2017年第四季度每天最高气温的增减变化情况,应选 择统计图比较合适。
100.一张边长62.8厘米的正方形纸刚好卷成一个圆柱形纸筒.这个圆柱形纸筒的底面半径是 厘米,高是 厘米.
中小学教育资源及组卷应用平台
中小学教育资源及组卷应用平台
21世纪教育网(www.21cnjy.com)
21世纪教育网(www.21cnjy.com)
参考答案与试题解析
1.4
【分析】分析题目,拼成的这个长方体的前后面之和等于圆柱的侧面积,上下面分别对应圆柱的上底面和下底面,所以长方体的左右面是增加的2个面,即长方体的表面积比圆柱的表面积多了左右两个面,用80除以2即可求出一个面的面积,据图可知,长方体左面的面积=圆柱的底面半径×高,据此用一个面的面积除以高即可得到底面半径。
【解析】80÷2=40(cm2)
40÷10=4(cm)
把一个圆柱切成若干等份,拼成一个近似的长方体,表面积比原来增加了80cm2,已知圆柱的高是10cm,则圆柱的底面半径是4cm。
2.40 8 20
【分析】根据条形统计图中可知有害垃圾是4吨,从扇形统计图中可知有害垃圾占6月份共回收垃圾的10%,已知一个数的百分之几求这个数用除法得出6月份共回收垃圾40吨;
根据条形统计图,可回收垃圾=总垃圾-厨余垃圾-其他垃圾-有害垃圾;
求一个数占另外一个数的百分之几,用这个数除以另外一个数乘100%。
【解析】4÷10%=40(吨)
40-16-12-4
=40-32
=8(吨)
8÷40×100%=20%
则这个小区6月份共回收垃圾40吨;6月份回收可回收垃圾8吨,占回收垃圾总数的20%。
3.94.2
【分析】把圆柱削成最大的圆锥,说明圆锥与圆柱等底等高,圆锥体积是圆柱体积的,削去部分的体积是圆柱的,用直径除以2得到半径,再根据圆柱的体积公式,代入数据计算圆柱的体积再乘,即可得解。
【解析】
(cm3)
一个圆柱形木块的底面直径是6cm,高是5cm,把它削成一个最大的圆锥,削去部分的体积是94.2cm。
4.15 20
【分析】设小轿车有x辆,则自行车有(35-x)辆,自行车的辆数×轮数=自行车的总轮数,小轿车的辆数×轮数=小轿车的总轮数,根据等量关系:“自行车的总轮数+小轿车的总轮数=110个”列方程解答即可求出小轿车的辆数,再用35减去小轿车的辆数就是自行车的辆数。
【解析】解:设小轿车有x辆。
4x+(35-x)×2=110
4x+35×2-2x=110
2x+70=110
2x+70-70=110-70
2x=40
2x÷2=40÷2
x=20
35-20=15(辆)
所以自行车有15辆,小轿车有20辆。
5.28.26
【分析】 根据,得出底面积=3×圆锥的体积÷高,代入数据计算即可。
【解析】3×47.1÷5
=141.3÷5
=28.26(dm2)
则底面积是28.26dm2。
6.95%
【分析】出勤率=出勤的人数÷全班总人数×100%,计算出六三班全班总人数为(38+2=40)人,昨天出勤的人数是38,据此列式解答即可。
【解析】38÷(38+2)×100%
=38÷40×100%
=0.95×100%
=95%
因此六三班昨天的出勤率是95%。
7.2
【分析】在比例中,两个外项的积等于两个内项的积,这叫做比例的基本性质。据此内项32减少8是24,另一个内项是4,先求出现在内项的积是24×4=96,也是外项积。用外项积÷16得出现在的外项,用8减去现在的外项即可。
【解析】(32-8)×4÷16
=24×4÷16
=6
8-6=2
要使比例成立,那么外项8应减少2。
8.丙
【分析】甲商店:八五折表示现价是原价的85%,用原价6元乘85%,求出洗衣粉的现价。再将现价乘10,求出10袋多少钱;
乙商店:数量×单价=总价,将10袋乘6元,求出总价。七五折=75%,如果总价超过100元,再将总价乘75%,求出实际花了多少钱。如果总价没有超过100元,则没有折扣;
丙商店:买4送1,相当于买5袋只花了4袋的钱。那么只需要付8袋的钱,就可以买到10袋洗衣粉。用单价6元乘8,求出总价。
比较得出,在哪个商店买花钱最少即可。
【解析】甲商店:6×85%×10=51(元)
乙商店:6×10=60(元),60<100,那么没有折扣
丙商店:10÷(4+1)
=10÷5
=2(组)
2×4×6=48(元)
48<51<60,所以想花钱最少,应该到丙商店去买。
9.12 90
【分析】优秀率是25%,就是优秀的人占这个班级总人数的25%,将这班级的总人数看成单位“1”,即求一个数的百分之几用乘法。
如果制成扇形统计图,就是将360°看成单位“1”,优秀的扇形的圆心角度数占360°的25%,用乘法得出角的度数。
【解析】48×25%=12(人)
360°×25%=90°
获得优秀的有12人,如果将这次数学测试成绩制成扇形统计图,表示优秀的扇形的圆心角度数是90°。
10.高 周长
【分析】把圆柱侧面沿高剪开,打开后得到一个长方形或一个正方形。当侧面展开图是一个正方形时,说明圆柱的底面周长=圆柱的高=正方形的边长。据此解答。
【解析】根据分析可得:
一个圆柱的侧面展开图是一个正方形,正方形的边长既等于圆柱的高,又等于圆柱底面的周长。
11.25
【分析】将计划造林面积看成单位“1”,先求出实际造林面积比计划造林面积多多少hm2,再用多出的面积÷计划造林面积即可求出实际造林比计划造林多百分之几;据此解答。
【解析】(20-16)÷16
=4÷16
=25%
实际造林比计划造林多25%。
12.一百八十三点七 2.2%
【分析】读小数时,小数的整数部分按整数的读法来读,小数点读作“点”,小数部分按照顺序读出每一个数位上的数字;百分数的写法:通常不写成分数形式,而是先写“百分之”后面的数,然后在这个数后面加上百分号,即“%”。
【解析】183.7读作一百八十三点七,百分之二点二写作2.2%。
13.62.8 12.56
【分析】根据,其中圆柱的侧面积,,代入数据计算即可;
圆柱是与它等底等高的圆锥的3倍,则圆锥的体积,代入数据计算即可。
【解析】根据分析:
侧面积:2×2×3.14×3=37.68(dm2)
表面积:37.68+3.14×22×2
=37.68+3.14×4×2
=37.68+25.12
=62.8(dm2)
圆锥的体积:
×3.14×22×3
=×3.14×4×3
=×3.14×12
=3.14×4
=12.56(dm3)
则圆柱表面积是62.8dm2,和它等底等高圆锥的体积是12.56dm3。
14.12
【分析】先求出9和6的最小公倍数,把9和6分解质因数后,把公有的相同质因数与独有质因数乘起来就是它们的最小公倍数,这个最小公倍数就是在一定距离内保持不动的间隔距离,然后用道路总长度除以这个间隔距离,因为首尾都摆,所以再加上1,即可计算出道路一侧不动的花盆数,最后乘2得到道路两侧不动的花盆数,据此解答。
【解析】9=3×3
6=2×3
9和6的最小公倍数是:2×3×3=18
(90÷18+1)×2
=(5+1)×2
=6×2
=12(盆)
即一共有12盆花的位置可以保持不动。
15.25
【分析】由题可得,每千克大豆的榨油量是一定的,即大豆的质量和油的质量的比值是一定的,即大豆的质量和油的质量成正比例关系,据此列比例,根据比例的基本性质解出比例,即可解答。
【解析】解:设榨5吨油,需要吨这样的大豆。
10∶2=∶5
=10×5
=50
÷2=50÷2
=25
即需要25吨这样的大豆。
16.80
【分析】根据题意,根据求一个数的百分之几是多少,用这个数×百分之几,则售价乘60%得到进价即成本,根据“售价×折扣-成本=预定的利润30元”推得,折扣等于成本与30元的和除以售价,再转化成百分数,据此解答。
【解析】(150×60%+30)÷150
=(90+30)÷150
=120÷150
=0.8
=80%
所以促销折扣应确定为按原价的80%出售。
17.(1)41
(2) 12 16
【分析】(1)11-3=8,20-11=9,30-20=10,通过计算相邻两个数的差值,可以发现相邻两个数的差值依次增加1,那么下一个差值应该是10+1=11,由此可以求出30后面的数是:30+11=41,据此解答;
(2)通过观察这组数的偶数项:3、6、9,可以发现后一个数比前一个数大3,,第8个数是偶数项,它前面的偶数项数字是9,所以第8个数是:9+3=12。
通过观察这组数的奇数项:1、2、4、8,可以发现后一个数是前一个数的2倍,第9个数是奇数项,它前面的奇数项数字是8,所以第9个数是:8×2=16。
【解析】(1)由分析得:3,11,20,30,41,53,…
(2)由分析得:1,3,2,6,4,9,8,12,16,15,32,…
18.42
【分析】根据应缴税=超过5000元部分×3%,运用百分数乘法计算得出答案。
【解析】张叔叔应纳税:
(元)
张叔叔应纳税42元。
19.240 120
【分析】把图书总数看作单位“1”,则科技书比故事书多总数的(50%-25%),已知科技书比故事书多120本,根据“已知一个数的百分之几是多少,求这个数,用除法计算”,用120除以(50%-25%)可以求出图书总数。再根据“求一个数的百分之几是多少,用乘法计算”,用图书总数分别乘50%和25%,即可求出科技书和故事书的本数。
【解析】120÷(50%-25%)
=120÷25%
=120÷0.25
=480(本)
科技书:480×50%
=480×0.5
=240(本)
故事书:480×25%
=480×0.25
=120(本)
则这批图书中科技书有240本,故事书有120本。
20.550
【分析】把11月份的用水量看作单位“1”,12月份用水量比11月份节约20%,即12月份用水量是11月份的(1-20%),根据已知比一个数少百分之几的数是多少,求这个数,用除法计算,即可求出11月份的用水量,据此解答。
【解析】440÷(1-20%)
=440÷0.8
=550(立方米)
即11月份用水550立方米。
21.60 20
【分析】将原价看成单位“1”, 现在七五折出售,就是按照原价的75%出售,用原价×75%即可求出现价;用原价减去现价就是便宜的钱数;据此解答。
【解析】80×75%=60(元)
80-60=20(元)
这个足球现在售价60元,比原价便宜了20元。
22.120 432
【分析】把这列火车原来的速度看作单位“1”,现在的速度=原来的速度×(1+50%),再根据“路程=速度×时间”求出3.6小时行驶的路程,据此解答。
【解析】80×(1+50%)
=80×1.5
=120(千米)
120×3.6=432(千米)
所以,这列火车现在每小时行驶120千米,现在行驶3.6小时能行驶432千米。
23. 37.5% 0.375
【分析】根据分数的意义,将这张长方形看作单位“1”,对折3次后展开,则把这张长方形平均分成8份,每份是,其中3份用分数表示为。根据分数、百分数和小数之间的关系,用分子除以分母即可化为小数;把小数的小数点向右移动两位再加上百分号即可。
【解析】=0.375=37.5%
将一张长方形纸对折3次后展开,然后把其中3份用分数表示为,用百分数表示为37.5%,用小数表示为0.375。
24.小芳
【分析】根据正确率=正确的题数÷总题数×100%,分别代入数据计算小芳和小平的正确率,再比较大小即可得解。
【解析】小平:38÷40×100%
=0.95×100%
=95%
小芳:48÷50×100%
=0.96×100%
=96%
95%<96%
小平做了40道口算题,做对了38道;小芳做了50道口算题,做对了48道。小芳的正确率高。
25.4
【分析】
观察图形可知,从上面看到的图形为,则这个图形最下面一层有3个小正方体。从前面看到的图形也是,则这个图形第二层至少有1个小正方体,且靠右。从右面看到的图形也是,则这个图形第二层有1个小正方体。即从上面看到的图形中右上角共有2个小正方体。
【解析】如图所示,从上面看到的图形中,数字表示小正方体的个数,
1+1+2=4(个)
则他一定是用4个小正方体搭成的。
26.长方 2a2+4ah 圆柱 6.28
【分析】观察左图的展开图可知,这个展开图围成的立体图形是一个长a、宽a、高h的长方体;根据长方体的表面积=(长×宽+长×高+宽×高)×2,即可求出它的表面积;
观察右图的展开图可知,这个展开图围成的立体图形是一个底面半径为1厘米、高为2厘米的圆柱体;根据圆柱的体积公式V=πr2h,即可求出它的体积。
【解析】左图围成一个长a、宽a、高h的长方体,它的表面积是:
(a×a+a×h+a×h)×2
=(a2+2ah)×2
=2a2+4ah
右图围成一个底面半径为1厘米、高为2厘米的圆柱体,它的体积是:
3.14×12×2
=3.14×1×2
=6.28(立方厘米)
填空如下:
如图所示两个展开图围成的立体图形,左边一个是(长方)体,表面积是(2a2+4ah);右边一个是(圆柱)体,体积是(6.28)立方厘米。
27.4200 80.64
【分析】把小兵家5月份的收入看作单位“1”,生活支出占总收入的30%,对应的是3600元,根据已知一个数的百分之几是多少,求这个数用除法,用3600÷30%列式求出小兵家5月份的总收入,再根据百分数乘法的意义,用小兵家5月份的总收入乘35%求出妈妈本月去银行存的钱数;根据利息=本金×利率×存期,代入数据解答即可。
【解析】3600÷30%×35%
=12000×35%
=4200(元)
4200×1.92%×1
=80.64×1
=80.64(元)
所以妈妈本月去银行存了4200元,到期后可得利息80.64元。
28.5
【分析】由题意可知,把圆锥形容器里面的水倒入圆柱形量杯里水的体积不变,当圆锥和圆柱等体积等底面积时,圆锥的高是圆柱高的3倍,圆柱的高是圆锥高的,据此解答。
【解析】15×=5(厘米)
所以水的高度为5厘米。
29. 10%
【分析】六(1)班的人数比六(2)班多的分数=(六(1)班的人数-六(2)班人数)÷六(2)班人数,运用除法与分数的关系可得到分数;六(2)班的人数比六(1)班少的百分数=(六(1)班的人数-六(2)班人数)÷六(1)班人数×100%,据此可得出答案。
【解析】六(1)班的人数比六(2)班多:
六(2)班的人数比六(1)班少:
30.40 72 72=2×2×2×3×3
【分析】根据负数的意义可知,负数的数字前面有“﹣”,在“、﹣、0、0.5、﹣1”这5个数中,负数是﹣、﹣1,共有2个;用负数的个数除以总个数,求出负数的个数占总个数的百分之几。
分解质因数是把合数分解成若干个质因数相乘的形式。
用分解质因数的方法求两个数的最小公倍数:把两个数公有的质因数与每个数独有质因数相乘,积就是它们的最小公倍数。
【解析】2÷5=40%
18=2×3×3
24=2×2×2×3
18和24的最小公倍数是:2×2×2×3×3=72
72写成质数相乘形式是:72=2×2×2×3×3。
在“、﹣、0、0.5、﹣1”中,负数的个数占总个数的(40)%。18和24的最小公倍数是(72),把它写成质数相乘形式是(72=2×2×2×3×3)。
31.2 1
【分析】把一个圆柱削成一个最大的圆锥,这个圆锥和原来的圆柱是等底等高的关系。等底等高的圆柱的体积是圆锥体积的3倍。那么如果圆锥的体积是1,则圆柱的体积是3,则削去部分的体积是(3-1)。据此写出削去部分的体积与圆锥的体积比。
【解析】假设削成的圆锥体积是1,那么圆柱的体积是1×3=3,所以削去部分的体积是3-1=2。
所以,把一个圆柱削成一个最大的圆锥,削去部分的体积与圆锥的体积比是2∶1。
32.141.3
【分析】根据底面周长=2×圆周率×底面半径,圆柱的高=侧面积÷底面周长,先求出圆柱的高,再根据圆柱体积=底面积×高,列式计算即可。
【解析】94.2÷(2×3.14×3)
=94.2÷18.84
=5(分米)
3.14×32×5
=3.14×9×5
=141.3(立方分米)
这个木块的体积是141.3立方分米。
33.6:8=24:32(答案不唯一)
【分析】用比的前项除以后项,所得的商即为比值。比例的意义:表示两个比的比值相等的式子叫做比例,写出两个比值是的比,即可组成比例。
【解析】因为6∶8=
24∶32=
所以,符合条件的比例为6∶8=24∶32(答案不唯一)
34.6000 九
【分析】将成本价看作单位“1”,按50%的利润率定价,则定价是成本价的(1+50%),几折就是百分之几十,然后打八折出售,则售价相当于成本价的(1+50%)×80%,获利1200元就相当于成本价的[(1+50%)×80%-1],获利钱数÷对应百分率=成本价;
成本价×定价对应百分率=定价,如果想要获得2100元的利润,则售价=成本价+利润,将定价看作单位“1”,售价÷定价=售价是定价的百分之几,根据几折就是百分之几十,确定折扣。
【解析】1200÷[(1+50%)×80%-1]
=1200÷[1.5×0.8-1]
=1200÷[1.2-1]
=1200÷0.2
=6000(元)
6000×(1+50%)
=6000×1.5
=9000(元)
(6000+2100)÷9000
=8100÷9000
=0.9
=90%
=九折
这台电视成本价是6000元;如果想要获得2100元的利润,应打九折出售。
35.AD(或BC) 4 8
【分析】以长方形的一边为轴旋转可以得到一个圆柱,旋转轴就是圆柱的高,与该边垂直的另一条边就是圆柱的半径;观察图中的圆柱,很明显此圆柱的高就是长方形的长,圆柱的半径就是这个长方形的宽,据此解答即可。
【解析】由分析可知:
圆柱是以长方形的AD(或BC)边为轴旋转而成的,底面半径是4cm,高是8cm。
36.471
【分析】根据题意可知形成的立体图形为圆柱,根据圆柱的体积=底面积×高,代入数值进行计算即可。
【解析】3.14×52×6
=78.5×6
=471(cm3)
答:所形成立体图形的体积是471cm3。
37.96 56.52
【分析】观察图形可知,如果将圆柱按图甲那样沿直径垂直切开,它的表面积会增加2个长方形的面积,长方形的长等于圆柱的高,宽等于圆柱的底面直径,根据长方形的面积=长×宽即可解答;如果将圆柱按图乙那样横切成两段小圆柱,它的表面积会增加2个圆的面积,圆的面积=πr2,据此解答。
【解析】8×6×2=96(dm2)
3.14×(6÷2)2×2
=3.14×32×2
=3.14×9×2
=56.52(dm2)
则如果将它按图甲那样沿直径垂直切开成两个半圆柱,它的表面积会增加96dm2;如果将它按图乙那样横切成两段小圆柱,它的表面积会增加56.52dm2。
38.100.48 301.44
【分析】等底等高的圆柱和圆锥,圆柱的体积是圆锥的3倍,圆锥的体积是圆柱的。先根据圆柱的体积:V=πr2h,代入数据,求出圆柱的体积。再用圆柱的体积除以3,即可求出圆锥的体积。
【解析】圆柱的体积:
42×3.14×6
=16×3.14×6
=301.44(cm3)
圆锥的体积:301.44÷3=100.48(cm3)
底面半径为4cm,高为6cm的圆锥的体积是100.48cm3,与它等底等高的圆柱的体积是301.44cm3。
39.(1) 亚 29.4
(2)9.4
(3) 亚 非
【分析】(1)比较数据大小,全世界共有七个大洲,亚洲的面积最大,它占地球陆地总面积的29.4%。
(2)观察扇形统计图,可知南极洲的陆地面积占地球陆地总面积的9.4%。
(3)观察扇形统计图,可知亚洲占地球陆地总面积的29.4%,非洲占地球陆地总面积的20.2%,因为29.4%+20.2%=49.6% ,所以亚洲和非洲的陆地面积之和接近地球陆地总面积的一半。
【解析】(1)29.4%>20.2%>16.2%>12%>9.4%>6.8%>6%
全世界共有七个大洲,亚洲的面积最大,它占地球陆地总面积的29.4%。
(2)南极洲的陆地面积占地球陆地总面积的9.4%。
(3)29.4%+20.2%=49.6%
亚洲和非洲的陆地面积之和接近地球陆地总面积的一半。
40.7.536
【分析】要求5分钟会浪费多少升水,也就是求5分钟自来水管流出多少升的水;把自来水管流出来的水的体积看作是圆柱的体积;利用圆柱的体积=底面积×高,代入相应的数值计算;据此解答。
【解析】1分=60秒
3.14×(2÷2)2×8×60×5
=3.14×1×480×5
=3.14×2400
=7536(立方厘米)
7536立方厘米=7536毫升=7.536升
因此5分钟会浪费7.536升水。
41.9∶8/ 正 12.5
【分析】求一个数的几分之几(百分之几)是多少,用乘法计算。A的等于B的75%,可列等式:A×=B×75%,再根据比例的性质,求出A与B的比,再化简;
比的前项除以后项求出比值;
若可以求出A与B的比值,则可以判断A与B成正比例关系;
求一个数比另一个多/少百分之几,用两数之差除以另一个数;据此解答。
【解析】A×=B×75%
所以,A∶B=75%∶
A∶B=75%∶
=()∶()
=9∶8
A∶B=9÷8=(一定),A与B的比值一定,成正比例关系;
假设A=9,B=8;
(9-8)÷8
=1÷8
=0.125
=12.5%
A的等于B的75%,A与B的最简整数比是9∶8,比值是,A和B成正比例,A比B多12.5%。
42.8 4.8
【分析】整个过程中水的体积不变。
首先根据长方体的体积公式: V = abh,求 出乙长方体容器中水的体积,然后用水的体积除以圆柱形容器的底面积即可求出水深;求如果倒入与这个圆柱底面积之比是5 ∶ 1的圆锥形容器中水面高,把这个圆柱底面积看作1,则圆锥形容器的底面积看作5,根据圆柱体积公式,用底面积乘高再除以圆锥形容器的底面积再除以即可解答。
【解析】10×10×6.28÷(10÷2)2÷3.14
=628÷25÷3.14
=200÷25
=8(厘米)
8÷5÷
=8×3÷5
=24÷5
=4.8(厘米)
要将乙容器中的水全部倒入甲容器,这时水深8cm,如果倒入与这个圆柱底面积之比是5∶1的圆锥形容器中水面高4.8cm。
43.50
【分析】比例的两内项积=两外项积,两个外项的积÷其中一个内项=另一个内项,据此列式计算。
【解析】10÷0.2=50
另一个内项是50。
44.(1) 5 630 1080
(2)
【分析】(1)把三种蔬菜的总面积看作单位“1”,用1依次减去黄瓜、青菜的占地面积所占的百分比,即可求出茄子占总面积的百分比。根据已知量÷已知量所对应的分率=单位“1”的量,用90÷茄子的占地面积所占的百分比,可求出总面积(单位“1”);再用总面积×35%求出黄瓜的占地面积,用总面积×60%求出青菜的占地面积。
(2)求一个数是另一个数的几分之几的解法:一个数÷另一个数。据此用茄子的占面积÷黄瓜的占地面积,可求出茄子的占地面积是黄瓜的几分之几;用茄子的占地面积÷青菜的占地面积,可求出茄子的占地面积是青菜的几分之几。
【解析】(1)1-35%-60%=5%
90÷5%=1800(平方米)
1800×35%=630(平方米)
1800×60%=1080(平方米)
所以,茄子占总面积的5%,黄瓜的占地面积是630平方米,青菜的占地面积是1080平方米。
(2)90÷630==
90÷1080==
所以,茄子的占地面积是黄瓜的,是青菜的。
45.六
【分析】由题意可知,满几个100就减去几个50,据此求出这件衣服的现价,再根据现价÷原价=折扣,据此计算即可。
【解析】250÷100=2(个) 50(元)
250-50×2
=250-100
=150(元)
150÷250=60%=六折
则现在买这件衣服相当于打六折。
46.31.4
【分析】根据题意,圆柱的高减少2cm,它的表面积就减少12.56cm2,减少的表面积是高为2cm的圆柱的侧面积;根据圆柱侧面积公式S侧=Ch可知,C=S侧÷h,由此求出圆柱的底面周长;
根据圆的周长公式C=2πr可知,r=C÷π÷2,由此求出圆柱的底面半径;
然后根据圆柱的体积公式V=πr2h,代入数据计算,即可求出原圆柱体的体积。
【解析】圆柱的底面周长:
12.56÷2=6.28(cm)
圆柱的底面半径:
6.28÷3.14÷2=1(cm)
原圆柱的体积:
3.14×12×10
=3.14×1×10
=31.4(cm3)
原圆柱体的体积是31.4cm3。
47.9
【分析】如果她想使自己的答题正确率达到90%,则答错的占总题目的1-90%,已经答错了3道,则需要答的总题目是3÷(1-90%)道,则还需要连续答对的题数是3÷(1-90%)-18-3。
【解析】3÷(1-90%)-18-3
=3÷10%-18-3
=30-18-3
=12-3
=9(题)
则接下来要继续答对9题。
48.50.24
【分析】三角形绕一条直角边旋转,另一条直角边则为高,形成一个圆锥,根据V=πr2h计算体积再比较大小进行解答。
【解析】绕3cm直角边旋转:
V=×3.14×42×3
=3.14×42
=50.24(cm3)
绕4cm直角边旋转:
V=×3.14×32×4
=3.14×3×4
=37.68(cm3)
两种旋转方式所形成的立体图形体积最大是50.24 cm3。
49.3135
【分析】利息=本金×利率×存期,据此先用3000×2.25%×2求出利息,再用本金加利息,求出到期后一共取回的钱数。
【解析】3000+3000×2.25%×2
=3000+67.5×2
=3000+135
=3135(元)
所以到期后,他一共取回3135元。
50.折线 扇形
【分析】条形统计图能够清楚的看出数量的多少;折线统计图不仅能看清数量的多少,还能通过折线的上升和下降表示数量的增减变化情况;扇形统计图可以清楚地看出各部分数量与总数量之间,部分与部分之间的关系,据此解答。
【解析】分析可知,医院要掌握病人的血压变化情况,用折线统计图表示比较合适,要了解病人血液中各种成分的含量,用扇形统计图表示比较合适。
51.
【分析】互为倒数的两个数的乘积是1;再根据比例的基本性质,内项积等于外项积,用两个内项积除以其中一个外项即可求出另一个外项。
【解析】1÷9=
则另一个外项是。
52.1∶20
【分析】含盐5%的盐水,表示盐占盐水的5%,改写成分母是100的分数再化简是,根据比与分数的关系是=1∶20。
【解析】由分析可知:
5%===1∶20
则盐和盐水的比是1∶20。
53.正 反
【分析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定,如果是比值一定,就成正比例,如果是乘积一定,则成反比例,据此解答。
【解析】由分析可得:
因为5=,即y∶x=5(一定),比值一定,所以与成正比例;
因为=,即ab=8(一定),乘积一定,所以与成反比例。
54.反 正
【分析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例。据此解答。
【解析】平行四边形的面积=底×高,面积一定,则它的底和高的乘积一定,符合反比例的意义,所以平行四边形的底和高成反比例;
根据圆的周长公式可知,,一定,则周长与半径的比值一定,符合正比例的意义,所以圆的周长和半径成正比例。
55.180
【分析】根据题意,把一个圆柱形木块削成一个最大的圆锥,那么圆锥和圆柱等底等高,圆锥的体积是圆柱体积的,据此解答。
【解析】圆锥的体积:
540×=180(cm3)
56.19 2n+1
【分析】由图可知,第n个图形有n个三角形,摆1个三角形需要3根小棒,摆2个三角形需要(3+2)根小棒,摆3个三角形需要(3+2×2)根小棒,摆4个三角形需要(3+2×3)根小棒……每增加一个三角形增加2根小棒,摆n个三角形需要[3+2(n-1)]根小棒,据此解答。
【解析】分析可知,摆第n个图形需要小棒的数量为:3+2(n-1)
=3+2n-2
=(2n+1)根
当n=9时,2n+1=2×9+1=18+1=19(根)
57.70
【分析】先用减法求出椅子的实际价格,再根据“标价=实际价格÷折扣”求出椅子的标价,据此解答。
【解析】八折=80%
(266-210)÷80%
=56÷80%
=70(元)
所以,椅子的标价是70元。
58.420
【分析】八折是80%,五折是50%,据此先利用乘法求出上午和晚上的票价,再利用减法求出晚上的票价比上午的票价便宜多少元。
【解析】1400×80%-1400×50%
=1120-700
=420(元)
所以,晚上的票价比上午的票价便宜420元。
59.1∶3
【分析】由题意可知,设圆柱的底面周长为1,圆锥的底面周长是3,它们的高是h,根据圆的周长公式:C=2πr,据此求出圆柱和圆锥的底面半径,然后根据圆柱的体积公式:V=Sh,圆锥的体积公式:V=Sh,然后用圆柱的体积比上圆锥的体积,再化简即可。
【解析】设圆柱的底面周长为1,圆锥的底面周长是3,它们的高是h
圆柱的底面半径:1÷π÷2=
圆柱的体积:π×()2h=
圆锥的底面半径:3÷π÷2=
圆锥的体积:π×()2h=
∶
=(×4π)∶(×4π)
=h∶3h
=(h÷h)∶(3h÷h)
=1∶3
60.3∶4 4∶3
【分析】根据比的意义,写出老师和佳佳两人的时间比,并化简比;
根据“速度×时间=路程”可知,路程一定时,速度与时间成反比例关系,所以老师和佳佳两人的速度比是她们时间的反比。
【解析】老师和佳佳两人的时间比是:
∶
=(×24)∶(×24)
=3∶4
老师和佳佳两人的速度比是4∶3。
61. 0.8 0.03
【分析】分数、化成小数,用分子除以分母即可;
八七折即87%,八成五即85%,百分数化成小数,小数点向左移动两位,同时去掉百分号;
然后按照小数大小的比较方法,从大到小排列,据此求解。
【解析】=7÷8=0.875
=22÷25=0.88
八七折=87%=0.87
八成五=85%=0.85
0.88>0.875>0.87>0.85>0.8
>>八七折>八成五>0.8
0.88-0.85=0.03
在、、八七折、0.8和八成五这五个数中,按从大到小排列,第一个数是,最后一个数是0.8,第一个数与第四个数的差是0.03。
62.6% 94%
【分析】根据缺勤率=缺勤人数÷总人数×100%,出勤率=1-缺勤率,列式计算即可。
【解析】3÷(3+47)×100%
=3÷50×100%
=6%
1-6%=94%
63.4180
【分析】根据“利息=本金×利率×存期”,代入数据计算求出利息,再加上本金,就是到期时一共可以取回的钱数。
【解析】4000×2.25%×2+4000
=4000×0.0225×2+4000
=90×2+4000
=180+4000
=4180(元)
64.圆锥 75.36
【分析】以这条三角形的高为轴,旋转形成的立体图形是一个圆锥体,这个圆锥体的半径是6÷2=3cm,然后根据圆锥的体积公式:V=Sh,据此填空即可。
【解析】×3.14×(6÷2)2×8
=×3.14×9×8
=×226.08
=75.36(立方厘米)
旋转形成的立体图形是圆锥,体积是75.36立方厘米。
65.512
【分析】求硬纸的面积即求长方体的表面积,由题意可知,这个长方体的底面是一个正方形,边长是8厘米,高是12厘米,根据长方体的表面积公式:S=(ab+ah+bh)×2,据此解答即可。
【解析】(8×8+8×12+8×12)×2
=(64+96+96)×2
=256×2
=512(平方厘米)
66.88 8
【分析】几折就是百分之几十,原价看作单位“1”,1-折扣=节省了百分之几,据此分析。
【解析】1-92%=8%
六一儿童节期间,游乐场门票八八折优惠,现价是原价的88%;儿童文具店所有学习用品一律九二折出售,节省了8%。
67. 37.5% 0.375
【分析】将一张长方形或正方形的纸对折3次后展开,则把这张长方形或正方形平均分成8份,其中3份用分数表示为,根据分数、百分数和小数之间的关系,用分子除以分母即可化为小数;把小数的小数点向右移动两位再加上百分号即可。
【解析】=0.375=37.5%
把其中3份用分数表示为,用百分数表示为37.5%,用小数表示为0.375。
68.丙;691.2
【分析】根据每个文具店促销活动计算出每个点张老师要买36个笔记本的价格,再进行比较,找出用钱最少的文具店,即可解答。
【解析】甲文具店:买五送一
36÷(5+1)
=36÷6
=6(组)
6×5×24
=30×24
=720(元)
已文具店:九折就是90%:
24×36×90%
=864×90%
=777.6(元)
丙文具店:满500元,优惠
24×36=864
864>500
864×(1-)
=864×
=691.2(元)
691.2<720<777.6
张老师去丙文具店买,用691.2元。
69.33
【分析】用160×20%,求出第一天看的页数,再加上1,就是第二天应从第几页看。
【解析】160×20%+1
=32+1
=33(页)
70.3
【分析】根据圆柱的体积公式:体积=底面积×高,代入数据,求出圆柱形橡皮泥的体积;圆柱的体积等于圆锥的体积;根据圆锥的体积公式:体积=底面积×高×,高=圆锥体积÷底面积×3,代入数据,即可解答。
【解析】6.28×2÷12.56×3
=12.56÷12.56×3
=1×3
=3(cm)
71.40.6
【分析】根据题意,把一个底面直径是3.6dm,高是2.5dm蛋糕盒用丝带捆扎起来,由图形可知,需要丝带的长度等于这个圆柱底面直径的6倍加上高的6倍再加上打蝴蝶结需要的4dm,据此列式解答。
【解析】(3.6+2.5)×6+4
=6.1×6+4
=36.6+4
=40.6(dm)
72.250 60
【分析】求一个数占另一个数的百分之几用除法;差÷较小数=少百分之几,据此分析。
【解析】1500÷600=250%
(1500-600)÷1500
=900÷1500
=60%
73.3
【分析】假设欢欢20题全做对,他应得100分,而现在只得了73分,少了27分;就是因为他做错题的原因,由题意,每做错1题不但不得分,还要倒扣4分,也就是每做错1题要少得5+4=9(分),那么他做错了27÷9=3(道)。
【解析】(5×20-73)÷(5+4)
=27÷9
=3(道)
74.12 56.52
【分析】长方体的表面积增加了两个长方形的面,其中长等于圆柱的高,宽等于圆柱的底面半径,求出一个长方形的面积,乘2即可;长方体的体积等于圆柱的体积,根据圆柱的体积V=πr2h,代入数据计算即可。
【解析】20cm=2dm
3×2×2
=6×2
=12(dm2)
长方体的表面积增加了12dm2。
3.14×32×2
=28.26×2
=56.52(dm3)
体积是56.52dm3。
75.800 1500 1177.5
【分析】根据长方体的底面是正方形可知,它的前后左右四个面面积相等,则表面积为10×10×2+10×15×4;“长方体体积=底面积×高”据此求出体积即可;若将它锯成一个最大的圆柱,则圆柱的底面直径和长方体的底面边长相等,高和长方体的高相等,再根据求出体积即可。
【解析】10×10×2+10×15×4
=200+600
=800(平方厘米)
10×10×15=1500(立方厘米)
3.14×(10÷2) ×15
=3.14×25×15
=1177.5(立方厘米)
76.3 2∶1
【分析】画圆时,圆规两脚张开的距离是圆的半径,直径÷2=半径;把一个圆柱削成一个最大的圆锥,圆柱体积占3份,圆锥体积占1份,削去部分占2份,根据比的意义写出比即可。
【解析】6÷2=3(厘米)
用圆规画一个直径6厘米的圆,圆规两脚间张开的距离应是3厘米;把一个圆柱削成一个最大的圆锥,削去部分与圆锥的体积比是2∶1。
77.90
【分析】根据题意可知,杨叔叔工资超出5000元的部分需要纳税,即3000元需要纳税,用3000元乘缴税税率即可。
【解析】(8000-5000)×3%
=3000×3%
=90(元)
78.1055.8
【分析】“利息=本金×利率×存期”据此求出利息,再加上本金即可。
【解析】1000×2.79%×2+1000
=55.8+1000
=1055.8(元)
79.4;50;80%;八成
【分析】根据比与分数的关系,分数的基本性质,8∶10===;根据分数与除法的关系,商不变的规律,=4÷5=(4×10)÷(5×10)=40÷50;再用4÷5=0.8,再把小数的小数点向右移动两位,加上百分号化为百分数;再根据几成就是十分之几,也就是百分之几十,把百分数化为成数。
【解析】8∶10==40÷50=80%(填百分数)=八成(填成数)。
80.1.8
【分析】将全长看作单位“1”,全长×第一周修的对应百分率+第二周修的长度即可。
【解析】3×40%+
=1.2+0.6
=1.8(千米)
81.5
【分析】等体积等底面积的圆柱和圆锥,圆锥的高是圆柱的3倍,直接用圆锥的高÷3=圆柱的高。
【解析】15÷3=5(厘米)
82.正 0.8
【分析】先依据比例的基本性质,即两内项之积等于两外项之积,即可写出这个比例式,再据正、反比例的意义,即可判定a和b成何比例。
【解析】因为3a=4b,
则a∶b=4∶3=(一定),
所以a和b成正比例。
3a=4b,当b=0.6时
3a=4×0.6
3a=2.4
a=0.8
83.A 正
【分析】因为A=B,由此即可知道3A=B,即A和B成倍数关系,当两个数为倍数关系,最大公因数为较小的数;由于3A=B,则B÷A==3,根据正比例判断的方法,两个相关联的数比值一定,则成正比例,由此即可知道A和B成正比例。
【解析】根据分析可知,A、B的最大公因数是A;A和B成正比例。
84.2464.9
【分析】侧面展开图是一个正方形,说明:圆柱的底面周长=圆柱高,根据底面半径5厘米,求出周长:5×2×3.14=31.4(厘米),即:圆柱的高=31.4厘米。根据圆柱的体积公式:V=πr2h,把数据代入公式解答即可。
【解析】3.14×52×(5×2×3.14)
=3.14×25×31.4
=78.5×31.4
=2464.9(立方厘米)
85.90
【分析】成活率=成活的棵数÷植树总棵树×100%,据此解答。
【解析】(70+20)÷(80+20)×100%
=90÷100×100%
=90%
86.每行站的人数 站的行数 反
【分析】判断两种相关联的量成不成比例,成什么比例,就看这两种量是对应的比值一定,还是对应的乘积一定,如果是比值一定,就成正比例,如果是乘积一定,就成反比例,如果是其它的量一定或乘积、比值不一定,就不成比例;据此解答。
【解析】由题意可知:每行站的人数×站的行数=六年级总人数(一定),即每行站的人数和站的行数的乘积一定,所以每行站的人数和站的行数成反比例关系。
87.108 80
【分析】根据题意可知,达到A档的分数占总份数的百分数是相同的,满分是100分,至少考到90分为A档,A档的分数占总分数的90÷100=90%,用120×90%,即可求出满分为120分,考多少分是A档;再用96÷120,求出96分相当于120分的百分之几再乘100分,就是96分相当于一般考试的分数,即可解答。
【解析】120×(90÷100)
=120×90%
=108(分)
96÷120×100
=80%×100
=80(分)
88.3∶10;
【分析】b是c的,即b=c,又a与b的比是3∶4,将b用c进行等量代换,所以a∶c=3∶4,化简即可得a∶c的值;求a比c少几分之几,先求出(c-a),再除以c即可。
【解析】因为b=c,a∶b=3∶4,所以
a∶c=3∶4
c=4a
a∶c=3∶10
a为3份,c为10份
则a比c少几分之几列式为:
(10-3)÷10
=7÷10
=
89.;60
【分析】先用“2+3”求出黑球和白球共有的份数,根据可能性的求法:即求一个数是另一个数的几分之几或百分之几,分别用除法解答,求出黑球和白球分别占总份数的几分之几或百分之几即可。
【解析】2+3=5
摸到黑球的可能性是:2÷5=;
摸到白球的可能性是:3÷5=0.6=60%。
90.1250
【分析】一根100cm的圆柱形木料截成三段,它的表面积就是增加了4个圆柱形的底面积。我们可以设这根圆柱的底面面积为,即4个底面积等于,求出来底面积以后再根据圆柱的体积公式算出最后的答案。
【解析】解:设这根圆柱的底面面积为,可列出方程:
即底面积为,因此这根圆柱形的木料体积为:
91.6 1.5
【分析】如果x和y成正比例关系,则它们的比值一定,则3∶12=?∶24,据此求出?的值;如果x和y成反比例关系,则它们的乘积一定,则3×12=?×24,据此求出?的值。
【解析】3∶12=?∶24
解:12×?=3×24
?=6;
3×12=?×24
解:?×24=36
?=1.5
92.3 628
【分析】根据等底等高圆柱的体积与圆锥体积的关系,确定圆锥个数,根据圆锥体积=底面积×高÷3,列式计算。
【解析】314×6÷3=628(立方厘米)
可以铸3个,每个圆锥的体积是628cm3。
93.10750
【分析】根据利息=本金×时间×利率,代入数据求出可得的利息,再加本金即可。
【解析】10000×2×3.75%+10000
=20000×3.75%+10000
=750+10000
=10750(元)
到期时妈妈可从银行取回本息共10750元。
94.125.6
【分析】根据题意可知,这根圆柱形木料截成2个小圆柱,表面积增加了25.12dm2,表面积增加的是两个截面的面积,据此可以求出圆柱的底面积,根据圆柱的体积公式:V=Sh,把数据代入公式解答。
【解析】1m=10dm
25.12÷2×10
=12.56×10
=125.6(dm3)
所以,这根木料原来的体积是125.6dm3。
95.15
【分析】用10÷2求出一行可以截取几个,再用6÷2求出可以截取几行,再相乘即可。
【解析】(10÷2)×(6÷2)
=5×3
=15(个)
96.188.4
【分析】表面积减少部分是长为4分米的圆柱的侧面积,利用圆柱的侧面积公式可以求得这个圆柱的底面周长,从而求得它的半径,再利用圆柱的体积公式即可解答.抓住减少的50.24平方分米的表面积是长为4分米的圆柱的侧面积,从而求得半径是解决本题的关键.
【解析】1.5米=15分米,
圆柱的底面半径为:50.24÷4÷3.14÷2=2(分米),
这根木料的体积是:3.14×22×15=188.4(立方分米),
答:这根木料的体积是188.4立方分米.
故答案为188.4.
97.增长 折线
【分析】根据题意可知,我国智能快递柜投放量应该是增长趋势明显。而折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;据此解答即可。
【解析】近些年,我国智能快递柜投放量增长趋势明显。以上信息制成折线统计图较为适宜。
故答案为:增长;折线。
98.;;75
【分析】(1)求用去几分之几,把这根木料的长度看作单位“1”,则用去了1÷4=;(2)求用去多少米,因为每份是,用去一份,列式为×,计算出结果即可;(3)求还剩百分之几,因为用去了,所以还剩1-=,通过计算将化成百分数即可。
【解析】(1)用去这根木料的:1÷4=;
(2)用去了:×=(米);
(3)还剩1-==75%;
故答案为:;;75
99.折线
【解析】因为要显示出增减变化情况,所以应选折线统计图比较合适。
故答案为:折线
【分析】条形统计图能清楚地表示出数量的多少,折线统计图不仅能表示出数量的多少,还能表示出数量的增减变化情况,扇形统计图能表示出部分与整体之间的关系。
100.10 62.8
【解析】根据圆柱的特征,圆柱的侧面展开是一个长方形(正方形是特殊的长方形),这个长方形的长等于圆柱的底面周长,这个长方形的宽等于圆柱的高。根据圆的周长公式:c=2πr,据此解答。
【解答】解:一张边长62.8厘米的正方形纸刚好卷成一个圆柱形纸筒。这个圆柱形纸筒的底面周长和高都是62.8厘米,
62.8÷3.14÷2=10(厘米),
答:这个圆柱形纸筒的底面半径是10厘米,高是62.8厘米。
故答案为:10,62.8。
21世纪教育网(www.21cnjy.com)
21世纪教育网(www.21cnjy.com)