学生知识状况分析
学生的技能基础:在上一节课的基础上,学生基本上了解了分解因式与整式的乘法运算之间的互逆关系,能通过观察、类比等手段,寻求因式分解与因数分解之间的关系,这为今天的深入学习提供了必要的基础.
学生活动经验基础:学生有了上一节课的活动基础,由于本节课采用的活动方法与上节课很相似,依然是观察、对比等,学生对于这些活动方法较熟悉,有较好的活动经验.
效果分析
第一环节 算一算
活动内容:计算:(1)
学生回答:你是用什么方法计算的?这个式子的各项有相同的因数吗?
活动目的:引入这一步的目的旨在让学生通过乘法分配律的逆运算(因数分解)这一特殊算法,使学生通过类比的思想方法很自然地过渡到正确理解提公因式法的概念上,从而为提公因式法的掌握扫清障碍.
教学效果:学生对于利用乘法的分配律进行逆运算的方法很熟悉,能很快找到这个式子各项有的相同因数,在提出公因数后,很快得出这一题的计算结果是7.
第二环节 想一想
活动内容:多项式 ab+ac中,各项有相同的因式吗?多项式 x2+4x呢?多项式mb2+nb–b呢?
结论:多项式中各项都含有的相同因式,叫做这个多项式各项的公因式.
活动目的:在学生能顺利地寻找数的简便运算中的公因数之后,再深一步引导学生采用类比的方法由寻找相同的因数过渡到在多项式中寻找相同的因式.
教学效果:由于有了第一环节的铺垫,再从数过渡到式,学生能很快用类比的方法找到这些式子中相同的因式.
第三环节 议一议
活动内容:
<试一试>:找出下列多项式各项的公因式:
(1)ma+mb (2)8x-72 (3)4kx-8ky (4) 5y3 +20y2
(5) a2b-2ab2+ab (6)
思考:怎样找一个多项式的公因式?
小组交流,尝试完成下列填空
【总结】找公因式的一般步骤:
(1)找各项系数的___________________
(2)找各项中含有的________字母
(3)相同字母的指数取_____________次
活动目的:
由于第二环节提供的几个多项式比较简单,不能反映公因式的全部特征,而通过本环节中寻找多项式2x2y+6x3y2中各项的公因式,则可很顺利的归纳出确定多项式各项公因式的方法,培养学生的初步归纳能力
教学效果:
每一个多项式都由两部分组成:系数部分与字母部分,因此,有必要将系数部分与字母部分分开讨论.在教师的引导下,学生能分别找出公因式的系数部分与字母部分,最后找到这个多项式的公因式.在学生具备初步的判断能力之后,应该将学生的能力进一步升华,引导他们归纳出确定多项式各项公因式的方法,培养学生的初步归纳能力.
第四环节 试一试
活动内容:
将以下多项式写成几个因式的乘积的形式:
(1)ab+ac (2)x2+4x (3)mb2+nb–b
如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.
活动目的:
让学生尝试着使用因式分解的意义以及提公因式法的定义进行几个简单的多项式的分解,为过渡到较为复杂的多项式的分解提供必要的准备.
教学效果:
由于有了因数分解的基础以及对提公因式法的正确理解和运用,学生能较快地从数的分解过渡到字母的因式分解.
第五环节 做一做
活动内容:将下列多项式进行分解因式:
(1)3x+6 (2)7x2–21x (3)8a3b2–12ab3c+ab (4)–24x3–12x2+28x
学生归纳:提取公因式的步骤:
(1)找公因式; (2)提公因式.
易出现的问题:(1)第(3)题中的最后一项提出ab后,漏掉了“+1”;
(2)第(4)题提出“–”时,后面的因式不是每一项都变号.
矫正对策:(1)因式分解后括号内的多项式的项数与原多项式的项数是否相同;
(2)如果多项式的第一项带“–”,则先提取“–”号,然后提取其它公因式;
(3)将分解因式后的式子再进行单项式与多项式相乘,其积是否与原式相等.
活动目的:根据用提公因式法进行因式分解时出现的问题,在教师的启发与指导下,学生自己归纳出提公因式的步骤及怎样预防提取公因式时出现类似问题,为提取公因式积累经验.
教学效果:第(1)(2)两小题是简单题,对学生的要求不高,学生能很快完成这两小题,但当多项式的项数多了,或首项出现负号时,部分同学会产生思维上的困难,此时,教师有必要引导学生分步进行分解:如,先将负号提出,然后再提取其它的公因式,并提醒学生在完成分解后,应再用整式的乘法进行逆向检查,查出错误予以纠正.
第六环节 反馈练习
活动内容: 1、找出下列各多项式的公因式:
(1)4x+8y (2)am+an (3)48mn–24m2n3 (4)a2b–2ab2+ab
2、将下列多项式进行分解因式:
(1)8x–72 (2)a2b–5ab (3)4m3–8m2
(4)a2b–2ab2+ab (5)–48mn–24m2n3 (6)–2x2y+4xy2–2xy
活动目的:通过学生的反馈练习,使教师能全面了解学生对公因式概念的理解是否到位,提取公因式的方法与步骤是否掌握,以便教师能及时地进行查缺补漏.
教学效果:从学生的反馈情况来看,学生对公因式概念的理解基本到位,提取公因式的方法与步骤基本掌握,但依然有部分同学出现第五环节中的问题,如对首项出现负号时不能正确处理,此时,需要老师进一步引导.
第七环节 学生反思
活动内容:从今天的课程中,你学到了哪些知识?你认为提公因式法与单项式乘多项式有什么关系?
活动目的:通过学生的回顾与反思,强化学生对确定公因式的方法及提公因式法的步骤的理解,进一步清楚地了解提公因式法与单项式乘多项式的互逆关系,加深对类比的数学思想的理解,对矛盾对立统一的哲学观点有一个初步认识.
教学效果:学生对确定公因式的方法及提公因式法的步骤有了进一步的理解,更清楚地了解提公因式法与单项式乘多项式的互逆关系,但对化归、类比等数学思想方法的认识较模糊,当然,这种认识也是需要长期的培养,而不是一朝一夕可以做到的.
巩固练习:课本第49页习题2.2第1,2,3题.
八年级数学下册《2.2 提公因式法(一)》教学设计 北师大版
一、 教材分析:
??? 这节课是九年制义务教育课程标准实验教科书八年级下册第二章第二节《提公因式法》第一课时。学习分解因式一是为解高次方程作准备,二是学习对于代数式变形的能力,从中体会分解的思想、逆向思考的作用。它不仅是现阶段学生学习的重点内容,而且也是学生后续学习的重要基础。本章教材是在学生学习了整式运算的基础上提出来的,事实上,它是整式乘法的逆向运用,与整式乘法运算有密切的联系.分解因式的变形不仅体现了一种“化归”的思想,而且也是解决后续——分式化简、解方程、恒等变形等学习的基础,为数学交流提供了有效的途径.分解因式这一章在整个教材中起到了承上启下的作用
二、学生知识状况分析
学生的技能基础:在上一节课的基础上,学生基本上了解了分解因式与整式的乘法运算之间的互逆关系,能通过观察、类比等手段,寻求因式分解与因数分解之间的关系,这为今天的深入学习提供了必要的基础.
学生活动经验基础:学生有了上一节课的活动基础,由于本节课采用的活动方法与上节课很相似,依然是观察、对比等,学生对于这些活动方法较熟悉,有较好的活动经验.
三、教学任务分析
根据学生在上一节课的经验,学生只是对因式分解有了一个初步的印象和判断,而对于怎样把一个多项式进行因式分解还很茫然,相应的数学能力还有待于进一步加强和巩固.因此,本课时的教学目标是:
知识与技能:
(1)使学生经历探索寻找多项式各项的公因式的过程,能确定多项式各项的公因式;
(2)会用提取公因式法进行因式分解.
数学能力:
(1)由学生自主探索解题途径,在此过程中,通过观察、对比等手段,确定多项式各项的公因式,加强学生的直觉思维,渗透化归的思想方法,培养学生的观察能力;
(2)由乘法分配律的逆运算过渡到因数分解,再由单项式与多项式的乘法运算过渡到因式分解,进一步发展学生的类比思想;
(3)寻找出确定多项式各项的公因式的一般方法,培养学生的初步归纳能力.
情感与态度:
进一步培养学生的矛盾对立统一的哲学观点以及实事求是的科学态度.
四、本课内容及重点、难点分析:
根据《标准》的要求,本章教材介绍了最基本的分解因式的方法:提公因式法和应用公式法.每一节课的引入,立足渗透类比这种重要的思想方法.通过如类比因数分解的意义导入因式分解的意义等.另外本章的设计多以问题串的形式创设问题情境,如观察多项式 x2- 25和9x2- y2,它们有什么共同特征?能否将它们分别写成两个因式的乘积?与同伴交流你的想法等,让学生经历观察、发现、类比、归纳、总结、反思的过程,感受整式乘法与因式分解之间的互逆变形关系,发展学生有条理的思考及语言表达能力.
本章在呈现形式上力求突出:通过因数分解与因式分解的类比,让学生体会、
理解、认识因式分解的意义;设置了对比整式的乘法来探索因式分解方法的相关活动,让学生感受整式乘法与因式分解之间的这种逆向恒等变形的价值;通过设置恰当的有一定梯度的题目,关注学生知识技能的发展和不同层次学生的学习需要.
学习分解因式的作用主要是为后继学习方程与多项式的恒等变形作准备,虽然内容简单,课时也较少,但是,分解因式问题的提出,实际上是对整式乘法的逆过程的思考并运用,逆向思考的方法也是我们处理一般问题的一个重要方法,而且也是人们发现问题的重要方法(发现问题比解决一个问题更重要).
本课的教学重点:能观察出多项式的公因式,并根据分配律把公因式提出来。
本课的教学难点:让学生识别多项式的公因式。?
五、教学过程分析
本节课设计了七个教学环节:算一算——想一想——议一议——试一试——做一做——反馈练习——学生反思.
第一环节 算一算
活动内容:计算:(1)
学生回答:你是用什么方法计算的?这个式子的各项有相同的因数吗?
活动目的:引入这一步的目的旨在让学生通过乘法分配律的逆运算(因数分解)这一特殊算法,使学生通过类比的思想方法很自然地过渡到正确理解提公因式法的概念上,从而为提公因式法的掌握扫清障碍.
教学效果:学生对于利用乘法的分配律进行逆运算的方法很熟悉,能很快找到这个式子各项有的相同因数,在提出公因数后,很快得出这一题的计算结果是7.
第二环节 想一想
活动内容:多项式ab+ac中,各项有相同的因式吗?多项式 x2+4x呢?多项式mb2+nb–b呢?
结论:多项式中各项都含有的相同因式,叫做这个多项式各项的公因式.
活动目的:在学生能顺利地寻找数的简便运算中的公因数之后,再深一步引导学生采用类比的方法由寻找相同的因数过渡到在多项式中寻找相同的因式.
教学效果:由于有了第一环节的铺垫,再从数过渡到式,学生能很快用类比的方法找到这些式子中相同的因式.
第三环节 议一议
活动内容:
<试一试>:找出下列多项式各项的公因式:
(1)ma+mb (2)8x-72 (3)4kx-8ky (4) 5y3 +20y2
(5) a2b-2ab2+ab (6)
思考:怎样找一个多项式的公因式?小组交流,尝试完成下列填空
【总结】找公因式的一般步骤:
(1)找各项系数的___________________
(2)找各项中含有的________字母
(3)相同字母的指数取_____________次
活动目的:
由于第二环节提供的几个多项式比较简单,不能反映公因式的全部特征,而通过本环节中寻找多项式2x2y+6x3y2中各项的公因式,则可很顺利的归纳出确定多项式各项公因式的方法,培养学生的初步归纳能力
教学效果:
每一个多项式都由两部分组成:系数部分与字母部分,因此,有必要将系数部分与字母部分分开讨论.在教师的引导下,学生能分别找出公因式的系数部分与字母部分,最后找到这个多项式的公因式.在学生具备初步的判断能力之后,应该将学生的能力进一步升华,引导他们归纳出确定多项式各项公因式的方法,培养学生的初步归纳能力.
第四环节 试一试
活动内容:
将以下多项式写成几个因式的乘积的形式:
(1)ab+ac (2)x2+4x (3)mb2+nb–b
如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.
活动目的:
让学生尝试着使用因式分解的意义以及提公因式法的定义进行几个简单的多项式的分解,为过渡到较为复杂的多项式的分解提供必要的准备.
教学效果:
由于有了因数分解的基础以及对提公因式法的正确理解和运用,学生能较快地从数的分解过渡到字母的因式分解.
第五环节 做一做
活动内容:将下列多项式进行分解因式:
(1)3x+6 (2)7x2–21x (3)8a3b2–12ab3c+ab (4)–24x3–12x2+28x
学生归纳:提取公因式的步骤:
(1)找公因式; (2)提公因式.
易出现的问题:(1)第(3)题中的最后一项提出ab后,漏掉了“+1”;
(2)第(4)题提出“–”时,后面的因式不是每一项都变号.
矫正对策:(1)因式分解后括号内的多项式的项数与原多项式的项数是否相同;
(2)如果多项式的第一项带“–”,则先提取“–”号,然后提取其它公因式;
(3)将分解因式后的式子再进行单项式与多项式相乘,其积是否与原式相等.
活动目的:根据用提公因式法进行因式分解时出现的问题,在教师的启发与指导下,学生自己归纳出提公因式的步骤及怎样预防提取公因式时出现类似问题,为提取公因式积累经验.
教学效果:第(1)(2)两小题是简单题,对学生的要求不高,学生能很快完成这两小题,但当多项式的项数多了,或首项出现负号时,部分同学会产生思维上的困难,此时,教师有必要引导学生分步进行分解:如,先将负号提出,然后再提取其它的公因式,并提醒学生在完成分解后,应再用整式的乘法进行逆向检查,查出错误予以纠正.
第六环节 反馈练习
活动内容: 1、找出下列各多项式的公因式:
(1)4x+8y (2)am+an (3)48mn–24m2n3 (4)a2b–2ab2+ab
2、将下列多项式进行分解因式:
(1)8x–72 (2)a2b–5ab (3)4m3–8m2
(4)a2b–2ab2+ab (5)–48mn–24m2n3 (6)–2x2y+4xy2–2xy
活动目的:通过学生的反馈练习,使教师能全面了解学生对公因式概念的理解是否到位,提取公因式的方法与步骤是否掌握,以便教师能及时地进行查缺补漏.
教学效果:从学生的反馈情况来看,学生对公因式概念的理解基本到位,提取公因式的方法与步骤基本掌握,但依然有部分同学出现第五环节中的问题,如对首项出现负号时不能正确处理,此时,需要老师进一步引导.
第七环节 学生反思
活动内容:从今天的课程中,你学到了哪些知识?你认为提公因式法与单项式乘多项式有什么关系?
活动目的:通过学生的回顾与反思,强化学生对确定公因式的方法及提公因式法的步骤的理解,进一步清楚地了解提公因式法与单项式乘多项式的互逆关系,加深对类比的数学思想的理解,对矛盾对立统一的哲学观点有一个初步认识.
教学效果:学生对确定公因式的方法及提公因式法的步骤有了进一步的理解,更清楚地了解提公因式法与单项式乘多项式的互逆关系,但对化归、类比等数学思想方法的认识较模糊,当然,这种认识也是需要长期的培养,而不是一朝一夕可以做到的.
巩固练习:课本第49页习题2.2第1,2,3题.
六、检测反馈
1.填空:
(1)= (2)
(3)7a( )
2. 将下列各式分解因式:
(1)25x-5 (2) (3)7x3-21x2 (4)
(5) (6)
测评分析:
七、教学反思
教学活动是学生与教师的双边活动,在这个过程中,学生应是学习的主体,教师应启发、指导学生进行探索活动,而不应越俎代庖.
在提公因式的教学中,很容易演变成以教师的灌输式教学为主,而学生主要是进行模仿练习,从知识的掌握上看,这种做法更有效,更快,但学生的探究能力和意识没有提高,数学思想方法渗透也不充分,最后导致的是学生数学素养的降低.
因而,在新课程理念下,我们应该倡导新型的教学形式——自主探究式的教学方式,即把学生置于主体地位,达到培养学生的创新能力的目的.教师在教学过程中不再是凌驾于学生之上的圣人,而是善于走进学生心灵世界真诚的合作者.学生由于主体性得到了体现,自然会产生求知和探究的欲望,会把学习当作乐事,最终达到学会、会学和乐学的境地;教师不再把自己视为工作者,?而是合作者.在合作中,教师与学生之间原有的“权威——服从”关系逐渐变成了“指导——参与”的关系.
课件10张PPT。北京师范大学出版社 初中数学 八年级山东省济南育贤中学执教教师:张娜提公因式法第一环节 算一算1.计算:2.你是用什么方法计算的?这个式子的各项有相同的因数吗?== 7第二环节 想一想多项式 ab+ac中,各项有相同的因式吗?多项式 x2+4x呢?多项式mb2+nb–b呢?
结论:
多项式中各项都含有的相同因式,叫做这个多项式各项的公因式.
第三环节 议一议 1.尝试找出下列多项式各项的公因式:
(1)ma+mb (2)8x-72
(3)4kx-8ky (4) 5y3 +20y2
(5)a2b-2ab2+ab (6)6a2b-4a3b3-2ab
2.小组讨论:怎样找一个多项式的公因式?结论:(1)找各项系数的最大公约数
(2)各项含有的相同字母
(3)相同字母的指数取最低次m4k8ab2ab5y2第四环节 试一试将以下多项式写成几个因式的乘积的形式:
(1)ab+ac (2)x2+4x (3)mb2+nb–b 如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.思考:如何检验自己分解因式的结果是否正确?第五环节 做一做将下列多项式进行分解因式:
(1)3x+6 (2)7x2–21x
(3)8a3b2–12ab3c+ab (4)–24x3–12x2+28x思考:你能总结提公因式法分解因式的步骤吗?
步骤:(1)找公因式;(2)提公因式.注意(1)因式分解后括号内的多项式的项数与原多项式的项数是否相同;
(2)如果多项式的第一项带“–”,则先提取“–”号,然后提取其它公因式;
(3)将分解因式后的式子再进行单项式与多项式相乘,其积是否与原式相等.
第六环节 反馈练习 1、找出下列各多项式的公因式:
(1)4x+8y (2)am+an
(3)48mn–24m2n3 (4)a2b–2ab2+ab
2、将下列多项式进行分解因式:
(1)8x–72 (2)a2b–5ab
(3)4m3–8m2 (4)7x3-21x2y
(5)–48mn–24m2n3 (6)–2x2y+4xy2–2xy第七环节 学生反思从今天的课程中,你学到了哪些知识?你认为提公因式法与单项式乘多项式有什么关系?谢谢教材分析:
??? 这节课是九年制义务教育课程标准实验教科书八年级下册第二章第二节《提公因式法》第一课时。学习分解因式一是为解高次方程作准备,二是学习对于代数式变形的能力,从中体会分解的思想、逆向思考的作用。它不仅是现阶段学生学习的重点内容,而且也是学生后续学习的重要基础。本章教材是在学生学习了整式运算的基础上提出来的,事实上,它是整式乘法的逆向运用,与整式乘法运算有密切的联系.分解因式的变形不仅体现了一种“化归”的思想,而且也是解决后续——分式化简、解方程、恒等变形等学习的基础,为数学交流提供了有效的途径.分解因式这一章在整个教材中起到了承上启下的作用。
根据《标准》的要求,本章教材介绍了最基本的分解因式的方法:提公因式法和应用公式法.每一节课的引入,立足渗透类比这种重要的思想方法.通过如类比因数分解的意义导入因式分解的意义等.另外本章的设计多以问题串的形式创设问题情境,如观察多项式 x2- 25和9x2- y2,它们有什么共同特征?能否将它们分别写成两个因式的乘积?与同伴交流你的想法等,让学生经历观察、发现、类比、归纳、总结、反思的过程,感受整式乘法与因式分解之间的互逆变形关系,发展学生有条理的思考及语言表达能力.
本章在呈现形式上力求突出:通过因数分解与因式分解的类比,让学生体会、理解、认识因式分解的意义;设置了对比整式的乘法来探索因式分解方法的相关活动,让学生感受整式乘法与因式分解之间的这种逆向恒等变形的价值;通过设置恰当的有一定梯度的题目,关注学生知识技能的发展和不同层次学生的学习需要.
学习分解因式的作用主要是为后继学习方程与多项式的恒等变形作准备,虽然内容简单,课时也较少,但是,分解因式问题的提出,实际上是对整式乘法的逆过程的思考并运用,逆向思考的方法也是我们处理一般问题的一个重要方法,而且也是人们发现问题的重要方法(发现问题比解决一个问题更重要).
本课的教学重点:能观察出多项式的公因式,并根据分配律把公因式提出来。
观评记录
刘芳秀老师评课:
1、教师注重教给学生思考的方法,重视培养学生的思维能力,整节课,教师善于启发学生从多角度、多方面去挖掘其思路,鼓励他们大胆的讲出自己的不同看法,并及时给予肯定或鼓励,但在鼓励学生想法,算法多样化的同时,又不忘教给学生一般的优化的计算方法,让他们的发散思维和聚合思维都得到了共同的发展。
2、教师让学生真正成为学习的主体。整个教学过程,教师几乎没有代替学生做过任何结论,教师总是引导学生发现问题,然后引导他们找到解决问题的途径,获得学习体验。
3、教师大胆冲破教材原有的框架,活用教材。
4、极大的激发了学生的学习兴趣。
【不足之处】
教学的形式还可以多样化,例如在中间设计学生以小组的合作交流的形式环来调节课堂;教师驾驭课堂的能力也有待加强。
贾艳老师评课:
这节课教学设计合理,教学内容难度符合该班学情。教学过程从特殊到一般,类比分配率引出提公因式法。教学过程充分考虑学生实际,采用多种教学手段,调动学生积极性,整堂课问题设置层层递进,细节处处理到位,善于抓住学生的疑难点,突出重点,突破难点。教态亲切自然,从容不迫,过渡语衔接自然,从下定义到画图像,从说性质到用性质,全堂课流畅、自然。从探究新知到新知梳理,再到学以致用,学生的学习能力构建严谨。是一堂精彩的数学课。 1x
陈会芳老师评课:
1.设计合理。
课堂中的每个环节,无论是例题、练习题、习题的处理,老师充分放手让学生自己动手,动口,老师只引导点拨,善于启发学生,使学生主动获取知识,在潜移默化中领悟知识,使学生完全成为课堂主人,达到知识学习与能力培养的统一,使学生学习得轻松、愉快。教师个人基本功扎实,教态自然,语言语调好,注意了与学生的沟通,有较强的驾驭课堂的能力。
2.重视数学思想方法的教学。
老师从一开始上课就提出以类比的思想方法解决问题,很自然导入新课。在整节课中也是围绕这个思想展开教学的,使数与字母结合起来,老师在这方面做的非常好。
【建议】
学案设计应该全面一些,包括教学重点,目标,学生学习方法。
检测反馈
1.填空:
(1)=
(2)
(3)7a( )
2. 将下列各式分解因式:
(1)25x-5
(2)
(3)7x3-21x2
(4)
(5)
(6)
教学反思
教学活动是学生与教师的双边活动,在这个过程中,学生应是学习的主体,教师应启发、指导学生进行探索活动,而不应越俎代庖.
在提公因式的教学中,很容易演变成以教师的灌输式教学为主,而学生主要是进行模仿练习,从知识的掌握上看,这种做法更有效,更快,但学生的探究能力和意识没有提高,数学思想方法渗透也不充分,最后导致的是学生数学素养的降低.
因而,在新课程理念下,我们应该倡导新型的教学形式——自主探究式的教学方式,即把学生置于主体地位,达到培养学生的创新能力的目的.教师在教学过程中不再是凌驾于学生之上的圣人,而是善于走进学生心灵世界真诚的合作者.学生由于主体性得到了体现,自然会产生求知和探究的欲望,会把学习当作乐事,最终达到学会、会学和乐学的境地;教师不再把自己视为工作者,?而是合作者.在合作中,教师与学生之间原有的“权威——服从”关系逐渐变成了“指导——参与”的关系.
对学生数学能力及数学思想方法的培养在初中数学教材中尽管没有专门章节进行训练,但始终渗透在整个初中数学的教学过程中.由于一些数学问题的解决思路常常是相通的,类比思想可以教会学生由此及彼,灵活应用所学知识,它是初中数学一个重要的数学思想.运用类比的数学方法,在新概念提出、新知识点的讲授过程中,可以使学生易于理解和掌握.如学生在接受提取公因式法时,由整式的 乘法的逆运算到提取公因式的概念,由提取的公因式是单项式到提取的公因式是多项式时的分解方法,都是利用了类比的数学思想,从而使得学生接受新的概念时显得轻松自然,容易理解,没有斧凿的痕迹.教学中那种只重视讲授表层知识,而不注重渗透数学思想、方法的教学,是不完备的教学,它不利于学生对所学知识的真正理解和掌握,使学生的知识水平永远停留在一个初级阶段,难以提高;反之,如果单纯强调数学思想和方法,而忽略表层知识的教学,就会使教学流于形式,成为无源之水,无本之木,学生也难以领略深层知识的真谛.因此数学思想的教学应与整个表层知识的讲授融为一体.
课标分析
《标准》中要求学生“能通过观察、实验、归纳、类比等获得数学猜想,并进一步寻求证据,给出理由或举出反例,能清晰的表达自己的思考过程,做到言之有理、落笔有据;在与他人的交流过程中,能运用数学语言合乎逻辑的进行讨论与质疑。”