【精品解析】【高考真题】浙江省2025年1月普通高校招生选考科目考试物理试题

文档属性

名称 【精品解析】【高考真题】浙江省2025年1月普通高校招生选考科目考试物理试题
格式 zip
文件大小 2.8MB
资源类型 试卷
版本资源
科目 物理
更新时间 2025-06-16 11:16:29

文档简介

【高考真题】浙江省2025年1月普通高校招生选考科目考试物理试题
1.(2025·浙江)我国新一代车用电池能够提供更长的续航里程,其参数之一为。其中单位“”(瓦时)对应的物理量是(  )
A.能量 B.位移 C.电流 D.电荷量
2.(2025·浙江)我国水下敷缆机器人如图所示,具有“搜寻—挖沟—敷埋”一体化作业能力。可将机器人看成质点的是(  )
A.操控机器人进行挖沟作业
B.监测机器人搜寻时的转弯姿态
C.定位机器人在敷埋线路上的位置
D.测试机器人敷埋作业时的机械臂动作
3.(2025·浙江)中国运动员以121公斤的成绩获得2024年世界举重锦标赛抓举金牌,举起杠铃稳定时的状态如图所示。重力加速度,下列说法正确的是(  )
A.双臂夹角越大受力越小
B.杠铃对每只手臂作用力大小为
C.杠铃对手臂的压力和手臂对杠铃的支持力是一对平衡力
D.在加速举起杠铃过程中,地面对人的支持力大于人与杠铃总重力
4.(2025·浙江)三个点电荷的电场线和等势线如图所示,其中的d,e与e,f两点间的距离相等,则(  )
A.a点电势高于b点电势
B.a、c两点的电场强度相同
C.d、f间电势差为d、e间电势差的两倍
D.从a到b与从f到b,电场力对电子做功相等
5.(2025·浙江)有一离地面高度、质量为稳定竖直降落的沙尘颗粒,在其降落过程中受到的阻力与速率v成正比,比例系数,重力加速度,则它降落到地面的时间约为(  )
A. B. C. D.
6.(2025·浙江)地球和哈雷彗星绕太阳运行的轨迹如图所示,彗星从a运行到b、从c运行到d的过程中,与太阳连线扫过的面积分别为和,且。彗星在近日点与太阳中心的距离约为地球公转轨道半径的0.6倍,则彗星(  )
A.在近日点的速度小于地球的速度
B.从b运行到c的过程中动能先增大后减小
C.从a运行到b的时间大于从c运行到d的时间
D.在近日点加速度约为地球的加速度的0.36倍
7.(2025·浙江)有关下列四幅图的描述,正确的是(  )
A.图1中,
B.图2中,匀速转动的线圈电动势正在增大
C.图3中,电容器中电场的能量正在增大
D.图4中,增大电容C,调谐频率增大
8.(2025·浙江)如图所示,光滑水平地面上放置完全相同的两长板A和B,滑块C(可视为质点)置于B的右端,三者质量均为。A以的速度向右运动,B和C一起以的速度向左运动,A和B发生碰撞后粘在一起不再分开。已知A和B的长度均为0.75m,C与A、B间动摩擦因数均为0.5,则(  )
A.碰撞瞬间C相对地面静止
B.碰撞后到三者相对静止,经历的时间为0.2s
C.碰撞后到三者相对静止,摩擦产生的热量为
D.碰撞后到三者相对静止,C相对长板滑动的距离为0.6m
9.(2025·浙江)新能源汽车日趋普及,其能量回收系统可将制动时的动能回收再利用,当制动过程中回收系统的输出电压(U)比动力电池所需充电电压()低时,不能直接充入其中。在下列电路中,通过不断打开和闭合开关S,实现由低压向高压充电,其中正确的是(  )
A. B.
C. D.
10.(2025·浙江)测量透明溶液折射率的装置如图1所示。在转盘上共轴放置一圆柱形容器,容器被透明隔板平分为两部分,一半充满待测溶液,另一半是空气。一束激光从左侧沿直径方向入射,右侧放置足够大的观测屏。在某次实验中,容器从图2(俯视图)所示位置开始逆时针匀速旋转,此时观测屏上无亮点;随着继续转动,亮点突然出现,并开始计时,经后亮点消失。已知转盘转动角速度为,空气折射率为1,隔板折射率为n,则待测溶液折射率为(  )(光从折射率的介质射入折射率的介质,入射角与折射角分别为与,有)
A. B.
C. D.
11.(2025·浙江)如图1所示,三束由氢原子发出的可见光P、Q、R分别由真空玻璃管的窗口射向阴极K。调节滑动变阻器,记录电流表与电压表示数,两者关系如图2所示。下列说法正确的是(  )
A.分别射入同一单缝衍射装置时,Q的中央亮纹比R宽
B.P、Q产生的光电子在K处最小德布罗意波长,P大于Q
C.氢原子向第一激发态跃迁发光时,三束光中Q对应的能级最高
D.对应于图2中的M点,单位时间到达阳极A的光电子数目,P多于Q
12.(2025·浙江)如图1所示,两波源和分别位于与处,以为边界,两侧为不同的均匀介质。时两波源同时开始振动,其振动图像相同,如图2所示。时与两处的质点开始振动。不考虑反射波的影响,则(  )
A.时两列波开始相遇
B.在间波的波长为
C.两列波叠加稳定后,处的质点振动减弱
D.两列波叠加稳定后,在间共有7个加强点
13.(2025·浙江)如图1所示,在平面内存在一以O为圆心、半径为r的圆形区域,其中存在一方向垂直平面的匀强磁场,磁感应强度B随时间变化如图2所示,周期为。变化的磁场在空间产生感生电场,电场线为一系列以O为圆心的同心圆,在同一电场线上,电场强度大小相同。在同一平面内,有以O为圆心的半径为的导电圆环I,与磁场边界相切的半径为的导电圆环Ⅱ,电阻均为R,圆心O对圆环Ⅱ上P、Q两点的张角;另有一可视为无限长的直导线CD。导电圆环间绝缘,且不计相互影响,则(  )
A.圆环I中电流的有效值为
B.时刻直导线CD电动势为
C.时刻圆环Ⅱ中电流为
D.时刻圆环Ⅱ上PQ间电动势为
14.(2025·浙江)“探究加速度与力、质量的关系”的实验装置如图所示。
(1)如图是某次实验中得到的纸带的一部分。每5个连续打出的点为一个计数点,电源频率为,打下计数点3时小车速度为   (保留三位有效数字)。
(2)下列说法正确的是_____(多选)
A.改变小车总质量,需要重新补偿阻力
B.将打点计时器接到输出电压为的交流电源上
C.调节滑轮高度,使牵引小车的细线跟长木板保持平行
D.小车应尽量靠近打点计时器,并应先接通电源,后释放小车
(3)改用如图1所示的气垫导轨进行实验。气垫导轨放在水平桌面上并调至水平,滑块在槽码的牵引下先后通过两个光电门,配套的数字计时器记录了遮光条通过光电门1、2的遮光时间分别为,测得两个光电门间距为x,用游标卡尺测量遮光条宽度d,结果如图2所示,其读数   mm,则滑块加速度   (用题中所给物理量符号表示)。
15.(2025·浙江)在“探究影响感应电流方向的因素”实验中,当电流从“-”接线柱流入灵敏电流表,指针左偏:从“”或“”接线柱流入,指针右偏。如图所示是某次实验中指针偏转角度最大的瞬间,则
(1)此时磁铁的运动状态是   (选填“向上拔出”、“静止”或“向下插入”)。
(2)只做以下改变,一定会增大图中电流表指针偏转角度的是_____(多选)
A.磁铁静止,向上移动线圈
B.增大(1)中磁铁运动速度
C.将导线从接线柱移接至接线柱
D.将一个未与电路相接的闭合线圈套在图中线圈外
16.(2025·浙江)某同学研究半导体热敏电阻(其室温电阻约为几百欧姆)的阻值随温度规律,设计了如图所示电路。器材有:电源E(),电压表(),滑动变阻器R(A:“”或B:“”),电阻箱(),开关、导线若干。
(1)要使cd两端电压在实验过程中基本不变,滑动变阻器选   (选填“A”或“B”);
(2)正确连线,实验操作如下:
①滑动变阻器滑片P移到最左端,电阻箱调至合适阻值,合上开关;
②开关切换到a,调节滑片P使电压表示数为;再将开关切换到b,电阻箱调至,记录电压表示数、调温箱温度。则温度下   (保留三位有效数字):
③保持、滑片P位置和开关状态不变,升高调温箱温度,记录调温箱温度和相应电压表示数,得到不同温度下的阻值。
(3)请根据题中给定的电路且滑片P位置保持不变,给出另一种测量电阻的简要方案。
17.(2025·浙江)如图所示,导热良好带有吸管的瓶子,通过瓶塞密闭T1 = 300 K,体积V1 = 1 × 103 cm3处于状态1的理想气体,管内水面与瓶内水面高度差h = 10 cm。将瓶子放进T2 = 303 K的恒温水中,瓶塞无摩擦地缓慢上升恰好停在瓶口,h保持不变,气体达到状态2,此时锁定瓶塞,再缓慢地从吸管中吸走部分水后,管内和瓶内水面等高,气体达到状态3。已知从状态2到状态3,气体对外做功1.02 J;从状态1到状态3,气体吸收热量4.56 J,大气压强p0 = 1.0 × 105 Pa,水的密度ρ = 1.0 × 103 kg/m3;忽略表面张力和水蒸气对压强的影响。
(1)从状态2到状态3,气体分子平均速率   (“增大”、“不变”、“减小”),单位时间撞击单位面积瓶壁的分子数   (“增大”、“不变”、“减小”);
(2)求气体在状态3的体积V3;
(3)求从状态1到状态3气体内能的改变量ΔU。
18.(2025·浙江)一游戏装置的竖直截面如图所示。倾斜直轨道AB、半径为R的竖直螺旋轨道、水平轨道BC和、倾角为的倾斜直轨道EF平滑连接成一个抛体装置。该装置除EF段轨道粗糙外,其余各段均光滑,F点与水平高台GHI等高。游戏开始,一质量为m的滑块1从轨道AB上的高度h处静止滑下,与静止在C点、质量也为m的滑块2发生完全非弹性碰撞后组合成滑块3,滑上滑轨。若滑块3落在GH段,反弹后水平分速度保持不变,竖直分速度减半;若滑块落在H点右侧,立即停止运动。已知,EF段长度,FG间距,GH间距,HI间距,EF段。滑块1、2、3均可视为质点,不计空气阻力,,。
(1)若,求碰撞后瞬间滑块3的速度大小;
(2)若滑块3恰好能通过圆轨道,求高度h;
(3)若滑块3最终落入I点的洞中,则游戏成功。讨论游戏成功的高度h。
19.(2025·浙江)如图所示,接有恒流源的正方形线框边长、质量m、电阻R,放在光滑水平地面上,线框部分处于垂直地面向下、磁感应强度为B的匀强磁场中。以磁场边界CD上一点为坐标原点,水平向右建立轴,线框中心和一条对角线始终位于轴上。开关S断开,线框保持静止,不计空气阻力。
(1)线框中心位于,闭合开关S后,线框中电流大小为I,求
①闭合开关S瞬间,线框受到的安培力大小;
②线框中心运动至过程中,安培力做功及冲量;
③线框中心运动至时,恒流源提供的电压;
(2)线框中心分别位于和,闭合开关S后,线框中电流大小为I,线框中心分别运动到所需时间分别为和,求。
20.(2025·浙江)同位素相对含量的测量在考古学中有重要应用,其测量系统如图1所示。将少量古木样品碳化、电离后,产生的离子经过静电分析仪ESA-I、磁体-I和高电压清除器,让只含有三种碳同位素、、的离子束(初速度可忽略不计)进入磁体-Ⅱ.磁体-Ⅱ由电势差为U的加速电极P,磁感应强度为B、半径为R的四分之一圆弧细管道和离子接收器F构成。通过调节U,可分离、、三种同位素,其中、的离子被接收器F所接收并计数,它们的离子数百分比与U之间的关系曲线如图2所示,而离子可通过接收器F,进入静电分析仪ESA-Ⅱ,被接收器D接收并计算。
(1)写出中子与发生核反应生成,以及发生衰变生成的核反应方程式:
(2)根据图2写出的离子所对应的U值,并求磁感应强度B的大小(计算结果保留两位有效数字。已知,原子质量单位,元电荷);
(3)如图1所示,ESA-Ⅱ可简化为间距两平行极板,在下极板开有间距的两小孔,仅允许入射角的离子通过。求两极板之间的电势差U:
(4)对古木样品,测得与离子数之比值为;采用同样办法,测得活木头中与的比值为,由于它与外部环境不断进行碳交换,该比例长期保持稳定。试计算古木被砍伐距今的时间(已知的半衰期约为5700年,)
答案解析部分
1.【答案】A
【知识点】电功率和电功
【解析】【解答】本题考查功和能的单位问题,结合单位制知识进行准确分析解答。根据电功可知是能量的单位。
故选A。
【分析】根据功的公式结合单位进行分析解答。
2.【答案】C
【知识点】质点
【解析】【解答】质点是用来代替物体的具有质量的点,因而其突出特点是“具有质量”和“占有位置”,但没有大小,它的质量就是它所代替的物体的质量。操控机器人进行挖沟作业、监测机器人搜寻时的转弯姿态、测试机器人敷埋作业时的机械臂动作均不能忽略机器人的大小和形状,需要关注机器人本身的变化情况,因此不可以看作质点,定位机器人在敷埋线路上的位置时可以忽略机器人的大小和形状,可以视为质点。
故选C。
【分析】质点指的是当运动物体的大小、形状对我们研究的问题影响很小时,我们就可以把物体看成一个只有质量的点,这个点就叫做质点。参考系指的是当要描述一个物体的运动时,用来参考、假定不动的物体。
3.【答案】D
【知识点】牛顿第三定律;共点力的平衡;超重与失重
【解析】【解答】本题主要考查根据平衡条件求力和根据加速度方向分析物体受力大小的判断。A.双臂所受杠铃作用力的合力的大小等于杠铃的重力大小,与双臂的夹角无关,A错误;
B.杠铃的重力为
手臂与水平的杠铃之间有夹角,假设手臂与竖直方向夹角为,根据平衡条件可知
结合,解得杠铃对手臂的作用力
B错误;
C.杠铃对手臂的压力和手臂对杠铃的支持力是一对相互作用力,C错误;
D.加速举起杠铃,人和杠铃构成的相互作用系统加速度向上,系统处于超重状态,因此地面对人的支持力大于人与杠铃的总重力,D正确。
故选D。
【分析】根据平衡条件分析;加速举起过程,加速向上,合力向上。
4.【答案】D
【知识点】电场线;电势能;电势;电势差与电场强度的关系
【解析】【解答】无论是电场线或是等差等势面,都是密的地方场强大,疏的地方场强小;电势高低的判断方法可以根据电势的定义式来判断,但一般都是按沿电场线方向电势降低来判断。A.电场线从高等势面指向低等势面,即电场线从图中的正电荷指向负电荷,因此b点所在的等势面高于a点所在的等势面,A错误;
B.a、c两点电场强度方向不同,电场强度不同,B错误;
C.从d→e→f电场强度逐渐减小,间距相等,结合可知,则,C错误;
D.a点与f点在同一等势面上,a、b两点和f、b两点的电势差相等,根据电场力做功可知从a到b与从f到b,电场力对电子做功相等,D正确。
故选D。
【分析】根据沿电场线方向电势降低进行分析;a、c两点的电场强度方向不相同;根据U=Ed结合图像进行分析;根据图像可知a和f位于同一个等势面,根据W=qU进行分析。
5.【答案】B
【知识点】动量定理
【解析】【解答】本题考查牛顿第二定律和运动学公式的综合运用,解题关键掌握沙尘颗粒降落过程中,沙尘颗粒做匀变速直线运动。
沙尘颗粒开始时速度较小时,阻力较小,可知
…………①
沙尘颗粒速率增大,阻力增大,加速度减小,当时,沙尘颗粒速度达到最大且稳定,此时速度满足
…………②
解得
由定理定律可得

则沙尘下落时间为
由于,则
故选B。
【分析】解题关键掌握沙尘颗粒降落过程中,根据牛顿第二定律有mg-kv=ma,解得a的表达式,当a=0时做匀速运动,根据运动学公式求解。
6.【答案】C
【知识点】开普勒定律;卫星问题;动能
【解析】【解答】本题主要是考查了万有引力定律及其应用;解答此类题目一般要把握两条线:一是在星球表面,忽略星球自转的情况下,万有引力等于重力;二是根据万有引力提供向心力列方程进行解答。
A.地球绕太阳做匀速圆周运动,万有引力提供向心力
哈雷彗星在近日点的曲率半径小于地球半径,因此哈雷彗星在近日点的速度大于地球绕太阳的公转速度,A错误;
B.从b运行到c的过程中万有引力与速度方向夹角一直为钝角,哈雷彗星速度一直减小,因此动能一直减小,B错误;
C.根据开普勒第二定律可知哈雷彗星绕太阳经过相同的时间扫过的面积相同,根据可知从a运行到b的时间大于从c运行到d的时间,C正确;
D.万有引力提供加速度
则哈雷彗星的加速度与地球的加速度比值为
D错误。
故选C。
【分析】根据高轨低速大周期的二级结论分析;根据万有引力做功情况分析;根据开普勒第二定律分析;根据牛顿第二定律分析。
7.【答案】C
【知识点】交变电流的产生及规律;变压器原理;电磁振荡
【解析】【解答】了解交变电流的产生、变压器的构造和原理、电磁振荡产生的过程是解决本题的关键,属于基础题。A.理想变压器原副线圈与匝数的关系为,A错误;
B.从图2所示位置转动至线框与磁感线垂直的过程中,逐渐转向中性面,因此线框中的电动势逐渐减小,B错误;
C.电容器中电场强度方向竖直向上,因此下极板带正电,上极板带负电,根据线圈的磁场方向结合安培定则可知电流流向正极板,因此电容器正在充电,电场的能量正在增大,C正确;
D.电容C增大,根据电磁振荡的频率可知调谐频率减小,D错误。
故选C。
【分析】根据变压器电压与匝数的关系进行分析;根据交流发电机及其产生交变电流的原理可知,线圈平面与磁场垂直时,线圈位于中性面位置,此时磁通量最大,磁通量的变化率最小,电动势最小进行分析;根据电磁振荡产生的原理,判断电容器上下极板带电性及根据电感判断电流方向,从而判断出能量的转化;根据调谐频率即可分析。
8.【答案】D
【知识点】碰撞模型
【解析】【解答】本题考查板块模型的动量和能量问题,要切实分清运动过程,找准研究对象,运用动量守恒定律进行求解。A.碰撞瞬间C相对地面向左运动,选项A错误;
B.向右为正方向,则AB碰撞过程由动量守恒
解得
v1=1m/s
方向向右;当三者共速时
可知
v=0
即最终三者一起静止,可知经历的时间
选项B错误;
C.碰撞到三者相对静止摩擦产生的热量
选项C错误;
D.碰撞到三者相对静止由能量关系可知
可得
选项D正确。
故选D。
【分析】根据动量守恒定律求出A和B碰撞后的共同速度,进而求出三者的共同速度,根据牛顿第二定律结合运动学,可以求出从碰撞到三者相对静止所经历的时间,再由能量守恒定律求出摩擦生热,根据摩擦产生的热量可以求出C相对长板滑动的距离。
9.【答案】B
【知识点】自感与互感
【解析】【解答】 本题考查对感生电动势的理解,熟悉电路图,自感线圈断开或者闭合瞬间会产生自感电动势。A.该电路中当开关S断开时,整个电路均断开,则不能给电池充电,选项A错误;
B.该电路中当S闭合时稳定时,线圈L中有电流通过,当S断开时L产生自感电动势阻碍电流减小,L相当电源,电源U与L中的自感电动势共同加在电池两端,且此时二极管能导体,从而实现给高压充电,选项B正确;
C.该电路中当S闭合时稳定时,线圈L中有电流通过,但当S断开时L也与电路断开,还是只有回收系统的电压U加在充电电池两端,则不能实现给高压充电,选项C错误;
D.该电路中当S闭合时稳定时,线圈L中有电流通过,但当S断开时电源U也断开,只有L产生的自感电动势相当电源加在充电电池两端,则不能实现给高压充电,选项D错误。
故选B。
【分析】只有电源U与L中的自感电动势串联,电压之和高于充电电压时,才能给电池充电,根据电路图分析。
10.【答案】A
【知识点】光的全反射
【解析】【解答】解决几何光学问题的关键是根据题意正确画出光路图,然后根据几何关系以及相关物理知识求解。由题意可知当屏上无光点时,光线从隔板射到空气上时发生了全发射,出现亮点时,光线从溶液射到隔板再射到空气时发生了折射,可知从出现亮点到亮点消失,容器旋转满足
光线能透过液体和隔板从空气中射出时,即出现亮点时,可知光线的在空气中的入射角为θ时,光线在隔板和空气界面发生全反射,在隔板和液体界面,有
在隔板和空气界面
解得
故选A。
【分析】根据题意分析出现亮点到亮点消失过程满足的夹角关系,再根据全反射发生的条件和满足的规律列式求解。
11.【答案】B,C
【知识点】玻尔理论与氢原子的能级跃迁;光电效应;粒子的波动性 德布罗意波
【解析】【解答】本题考查光电效应和单缝衍射,德布罗意波长的问题,会根据题意进行准确分析解答。爱因斯坦光电效应方程为:Ek=hν-W0。A.根据
因Q的截止电压大于R,可知Q的频率大于R的频率,Q的波长小于R的波长,则分别射入同一单缝衍射装置时,R的衍射现象比Q更明显,则Q的中央亮纹比R窄,选项A错误;
B.同理可知P、Q产生的光电子在K处Q的最大初动能比P较大,根据
可知最小德布罗意波长,P大于Q,选项B正确;
C.因Q对应的能量最大,则氢原子向第一激发态跃迁发光时,根据
可知三束光中Q对应的能级最高,选项C正确;
D.对应于图2中的M点,P和Q的光电流相等,可知P和Q单位时间到达阳极A的光电子数目相等,选项D错误。
故选BC。
【分析】根据图2,判断三束光的频率关系,结合频率波长关系式,单缝衍射中央亮纹宽度和波长的关系进行分析解答;根据光电效应方程、动能和动量关系式结合德布罗意波长公式进行解答;根据频率关系判断能量关系,再结合跃迁规律进行分析解答;根据交点含义进行分析解答。
12.【答案】B,C
【知识点】波长、波速与频率的关系;波的干涉现象
【解析】【解答】本题既要理解振动图像和波动图像各自的物理意义,由振动图像能判断出质点的速度方向,同时要把握两种图像的内在联系,能由质点的速度方向,判断出波的传播方向。A.波在左侧的波速
右侧的波速
从0.1s开始,再经过时间相遇
所以
选项A错误;
B.在间波的波长为
选项B正确;
C.左侧波传到时用时间为
此时右侧波在该质点已经振动
即此时刻左侧波在该点的振动在平衡位置向上运动,右侧波在该点的振动也在平衡位置向下振动,可知该点的振动减弱,选项C正确;
D.当右侧波传到x=6m位置时用时间为0.1s=5T,即此时x=6m处质点从平衡位置向上振动;此时x=0处的波源S1也在平衡位置向上振动,即振动方向相同,可知在内到x=0和x=6m两点的路程差为波长整数倍时振动加强,波在该区间内的波长
可知
即x=3+0.4n
其中n取0、±1、±2、±3、±4、±5、±6、±7
则共有15个振动加强点,选项D错误。
故选BC。
【分析】求出波在0~6m处的介质中的传播速度和在6m~12m处的介质中的传播速度,再根据运动学公式求解相遇时间;根据波长的计算公式求解波长;将x=6m处视为S1波的新波源,根据起振方向结合加强、减弱的条件进行分析;将x=6m处视为S2的新波源,0<x<6m的加强点对两波源的波程差应为波长的整数倍,由此分析。
13.【答案】B,D
【知识点】感应电动势及其产生条件;交变电流的峰值、有效值、平均值与瞬时值
【解析】【解答】此题是电磁感应中电路问题,要注意法拉第电磁感应定律的应用,搞清电路的结构,根据电磁感应规律和电路知识相结合解答。有效值是根据电流的热效应定义的一个等效概念。A.由题图可知,在内和内圆环I中的电流大小均为
在内圆环I中的电流大小为
设圆环I中电流的有效值为,根据有效值定义可得
联立解得
故A错误;
B.设右侧又一无限长的直导线对称的无限长的直导线与构成回路,则时刻,、回路产生的总电动势为
根据对称性可知时刻直导线CD电动势为,故B正确;
C.由于圆环Ⅱ处于磁场外部,通过圆环Ⅱ的磁通量一直为0,所以圆环Ⅱ不会产生感应电流,则时刻圆环Ⅱ中电流为0,故C错误;
D.以O点为圆心,过程P、Q两点圆轨道,在时刻产生的电动势为
则P、Q两点间圆弧的电动势为
由于P、Q两点间圆弧与圆环Ⅱ上PQ构成回路不会产生感应电流,则圆环Ⅱ上PQ间电动势为,故D正确。
故选BD。
【分析】圆环Ⅱ中没有磁场,磁通量恒为零无变化,无电流;根据法拉第电磁感应定律结合有效值的概念计算;根据分压规律分析。
14.【答案】(1)0.390
(2)C;D
(3)10.00;
【知识点】探究加速度与力、质量的关系
【解析】【解答】本题考查探究牛顿第二定律的问题和纸带的数据处理,结合实验原理及匀变速直线运动规律解答。
(1)相邻计数点间的时间间隔T=0.1s打计数点3时的速度
(2)A.平衡摩擦力时满足
两边质量消掉,改变小车质量时不需要重新平衡摩擦力,选项A错误;
B.电火花计时器需要接220V交流电源,选项B错误;
C.调节滑轮高度,使牵引小车的细线根长木板保持平行,选项C正确;
D.小车应尽量接近打点计时器,并应该先接通电源后释放小车,以充分利用纸带,选项D正确。
故选CD。
(3)遮光条宽度d=10mm+0.05mm×0=10.00mm
经过两光电门时的速度分别为
根据
解得
【分析】(1)根据匀变速直线运动规律计算速度;
(2)根据实验原理分析判断;
(3)根据游标卡尺精确度读数;根据速度—位移公式计算。
(1)相邻计数点间的时间间隔T=0.1s打计数点3时的速度
(2)A.平衡摩擦力时满足
两边质量消掉,改变小车质量时不需要重新平衡摩擦力,选项A错误;
B.电火花计时器需要接220V交流电源,选项B错误;
C.调节滑轮高度,使牵引小车的细线根长木板保持平行,选项C正确;
D.小车应尽量接近打点计时器,并应该先接通电源后释放小车,以充分利用纸带,选项D正确。
故选CD。
(3)[1]遮光条宽度d=10mm+0.05mm×0=10.00mm
[2]经过两光电门时的速度分别为
根据
解得
15.【答案】(1)向上拔出
(2)B;C
【知识点】电磁感应的发现及产生感应电流的条件
【解析】【解答】本题考查电磁感应现象,涉及的知识点有楞次定律以及右手螺旋定则,理解楞次定律并会应用是解题关键。
(1)由图可知,灵敏电流表指针左偏,可知感应电流从“-”极流入,根据楞次定律可知,螺线管中产生的感应电流从上到下,可知磁铁的N极向上拔出;
(2)A.磁铁静止,向上移动线圈,则产生的感应电流不一定增加,指针偏角不一定会增加,选项A错误;
B.增大(1)中磁铁的速度,产生的感应电动势会增加,指针偏角会增大,选项B正确;
C.减小电流计的量程,即将导线从接线柱G1移接到G0,可是电流计指针偏角变大,选项C正确;
D.将一个未与电路相接的闭合线圈套在线圈外,线圈中的感应电流不变,电流计指针偏角不变,选项D错误。
故选BC。
【分析】(1)根据灵敏电流计指针的偏转方向与通过电流计的电流方向的关系,需要知道电流方向。根据题意以及楞次定律判断磁铁的运动状态;
(2)要增大灵敏电流计的偏转角度,则要增大磁通量的变化率。
(1)由图可知,灵敏电流表指针左偏,可知感应电流从“-”极流入,根据楞次定律可知,螺线管中产生的感应电流从上到下,可知磁铁的N极向上拔出;
(2)A.磁铁静止,向上移动线圈,则产生的感应电流不一定增加,指针偏角不一定会增加,选项A错误;
B.增大(1)中磁铁的速度,产生的感应电动势会增加,指针偏角会增大,选项B正确;
C.减小电流计的量程,即将导线从接线柱G1移接到G0,可是电流计指针偏角变大,选项C正确;
D.将一个未与电路相接的闭合线圈套在线圈外,线圈中的感应电流不变,电流计指针偏角不变,选项D错误。
故选BC。
16.【答案】(1)A
(2)157
(3)题中滑片P位置保持不变,则电阻箱R1与热敏电阻Rt两端电压之和保持不变,先让S2接a,此时电压表读数为U,然后接b,读出电阻箱R1的读数和电压表读数U',可得
则以后保持S2接a,改变电阻箱的阻值R1,根据
可得热敏电阻Rt的值。
【知识点】特殊方法测电阻
【解析】【解答】本题考查了欧姆定律、串并联电路的规律等知识,此实验侧重对电学基本实验原理和实验方法的考查,要求同学们对这部分内容要做到足够熟练,加强练习,注重归纳与总结。
(1)要使得cd两端电压U0在实验中基本不变,则滑动变阻器应该选择阻值较小的A;
(2)由电路可知
(3)题中滑片P位置保持不变,则电阻箱R1与热敏电阻Rt两端电压之和保持不变,先让S2接a,此时电压表读数为U,然后接b,读出电阻箱R1的读数和电压表读数U',可得
则以后保持S2接a,改变电阻箱的阻值R1,根据
可得热敏电阻Rt的值。
【分析】 (1)根据实验的原理选择滑动变阻器。
(2)根据串并联电路的规律和欧姆定律分析求解。
(3)电阻箱R1与热敏电阻Rt两端电压之和保持不变,结合串联电路电压之比等于电阻之比求解。
(1)要使得cd两端电压U0在实验中基本不变,则滑动变阻器应该选择阻值较小的A;
(2)由电路可知
(3)题中滑片P位置保持不变,则电阻箱R1与热敏电阻Rt两端电压之和保持不变,先让S2接a,此时电压表读数为U,然后接b,读出电阻箱R1的读数和电压表读数U',可得
则以后保持S2接a,改变电阻箱的阻值R1,根据
可得热敏电阻Rt的值。
17.【答案】(1)不变;减小
(2)V3 = 1.0201 × 103 cm3
(3)ΔU = 2.53 J
【知识点】气体压强的微观解释;热力学第一定律及其应用;气体的等温变化及玻意耳定律;气体的等压变化及盖-吕萨克定律
【解析】【解答】 本题考查水银柱类问题,此类问题一般要选择封闭气体为研究对象,分析理想气体发生的是何种变化,根据平衡条件分析初末状态的压强,并结合题意分析初末状态气体的体积、温度,利用理想气体状态方程或者气体实验定律列等式求解。分析气体内能变化时,要使用热力学第一定律。其中气体做功通过W=pΔV求解。
(1)从状态2到状态3,温度保持不变,气体分子的内能保持不变,则气体分子平均速率不变,由于气体对外做功,则气体压强减小,故单位时间撞击单位面积瓶壁的分子数减小。
(2)气体从状态1到状态2的过程,由盖—吕萨克定律
其中,,
解得
此时气体压强为
气体从状态2到状态3的过程,由玻意耳定律
其中
代入数据解得,气体在状态3的体积为
(3)气体从状态1到状态2的过程中,气体对外做功为
由热力学第一定律
其中,
代入解得,从状态1到状态3气体内能的改变量为
【分析】(1)由温度分析气体分子平均速率的变化;根据气体压强的变化分析单位时间撞击单位面积瓶壁的分子数的变化;
(2)由盖—吕萨克定律和玻意耳定律列式求解;
(3)由W=pΔV求出气体从状态1到状态2的过程中,气体对外做的功,再由热力学第一定律计算从状态1到状态3气体内能的改变量。
(1)[1][2]从状态2到状态3,温度保持不变,气体分子的内能保持不变,则气体分子平均速率不变,由于气体对外做功,则气体压强减小,故单位时间撞击单位面积瓶壁的分子数减小。
(2)气体从状态1到状态2的过程,由盖—吕萨克定律
其中
,,
解得
此时气体压强为
气体从状态2到状态3的过程,由玻意耳定律
其中
代入数据解得,气体在状态3的体积为
(3)气体从状态1到状态2的过程中,气体对外做功为
由热力学第一定律
其中

代入解得,从状态1到状态3气体内能的改变量为
18.【答案】(1)对滑块1由动能定理
解得滑块1与滑块2碰前的速度大小为
滑块1与滑块2碰撞过程中,由动量守恒定律
解得碰撞后瞬间滑块3的速度大小为
(2)在轨道D点,由牛顿第二定律
解得
滑块3从D点到C'点,由机械能守恒定律
解得
结合

联立解得
(3)滑块3从C'点到F点的过程中,由动能定理
若滑块3直接落入洞中,则竖直方向
水平方向
结合

联立解得
若经一次反弹落入洞中,则
水平方向
结合

联立解得
【知识点】斜抛运动;生活中的圆周运动;动能定理的综合应用;机械能守恒定律;碰撞模型
【解析】【分析】(1)应用动能定理求出碰撞前滑块1的速度大小,碰撞过程系统动量守恒,应用动量守恒定律求出碰撞后瞬间滑块3的速度大小。
(2)滑块3恰好通过圆轨道,在圆轨道最高点,重力提供向心力,应用牛顿第二定律求出滑块3的速度,应用动能定理与动量守恒定律求解。
(3)滑块3可能直接落入洞中,也可能反弹一次后落入洞中,应用动能定理、动量守恒定律与运动学公式求解。
(1)对滑块1由动能定理
解得滑块1与滑块2碰前的速度大小为
滑块1与滑块2碰撞过程中,由动量守恒定律
解得碰撞后瞬间滑块3的速度大小为
(2)在轨道D点,由牛顿第二定律
解得
滑块3从D点到C'点,由机械能守恒定律
解得
结合

联立解得
(3)滑块3从C'点到F点的过程中,由动能定理
若滑块3直接落入洞中,则竖直方向
水平方向
结合

联立解得
若经一次反弹落入洞中,则
水平方向
结合

联立解得
19.【答案】(1)①闭合开关S瞬间,线框在磁场中的有效长度为
所以线框受到的安培力大小为
②线框运动到x时,安培力大小为
则初始时和线框中心运动至时的安培力分别为

则线框中心运动至过程中,安培力做功为
由动能定理
可得
则安培力的冲量为
③由能量守恒定律
可得,恒流源提供的电压为
(2)类比于简谐运动,则回复力为
根据简谐运动周期公式
由题意可知,两次简谐运动周期相同,两次都从最大位移运动到平衡位置,时间均相同,则有

【知识点】简谐运动;安培力的计算;电磁感应中的磁变类问题
【解析】【分析】(1)①根据F=BIL计算安培力大小;
②先根据安培力的平均值计算安培力做功,然后根据动能定理合动量与动能的关系计算安培力的冲量;
③根据能量守恒计算;
(2)把线框的运动类比于简谐运动,得到线框的运动周期,结合运动时间比较即可。
(1)①闭合开关S瞬间,线框在磁场中的有效长度为
所以线框受到的安培力大小为
②线框运动到x时,安培力大小为
则初始时和线框中心运动至时的安培力分别为

则线框中心运动至过程中,安培力做功为
由动能定理
可得
则安培力的冲量为
③由能量守恒定律
可得,恒流源提供的电压为
(2)类比于简谐运动,则回复力为
根据简谐运动周期公式
由题意可知,两次简谐运动周期相同,两次都从最大位移运动到平衡位置,时间均相同,则有

20.【答案】(1)中子与发生核反应生成的核反应方程式为
发生衰变生成的核反应方程式为
(2)在加速电场中,由动能定理得
解得
磁场中,洛伦兹力提供向心力
联立解得

相比,的比荷更大,通过圆形管道所需要的电压更大,通过图2可知当电压为时,与的离子数百分比为,故的离子所对应的U值为。
根据整理得
(3)由题意知,粒子在板间做类斜抛运动,水平方向有

竖直方向有
,,
联立解得
(4)古木中与比值是活木头中的,说明经过衰变后只剩下,已知经过一个半衰期剩下,设经过n个半衰期,则有
解得
则砍伐时间
【知识点】原子核的衰变、半衰期;原子核的人工转变;带电粒子在电场中的偏转;带电粒子在电场与磁场混合场中的运动;α、β、γ射线及特点
【解析】【分析】(1)根据质量数守恒和电荷数守恒写出核反应方程;
(2)由动能定理分析带电粒子在电场中的加速运动,再由洛伦兹力提供向心力分析粒子在磁场中的运动;
(3)粒子在板间做类斜抛运动,水平方向方向匀速运动,竖直方向自由落体运动,根据类平抛规律分析求解;
(4)根据半衰期的定义结合数学知识分析求解。
(1)中子与发生核反应生成的核反应方程式为
发生衰变生成的核反应方程式为
(2)在加速电场中,由动能定理得
解得
磁场中,洛伦兹力提供向心力
联立解得

相比,的比荷更大,通过圆形管道所需要的电压更大,通过图2可知当电压为时,与的离子数百分比为,故的离子所对应的U值为。
根据整理得
(3)由题意知,粒子在板间做类斜抛运动,水平方向有

竖直方向有
,,
联立解得
(4)古木中与比值是活木头中的,说明经过衰变后只剩下,已知经过一个半衰期剩下,设经过n个半衰期,则有
解得
则砍伐时间
1 / 1【高考真题】浙江省2025年1月普通高校招生选考科目考试物理试题
1.(2025·浙江)我国新一代车用电池能够提供更长的续航里程,其参数之一为。其中单位“”(瓦时)对应的物理量是(  )
A.能量 B.位移 C.电流 D.电荷量
【答案】A
【知识点】电功率和电功
【解析】【解答】本题考查功和能的单位问题,结合单位制知识进行准确分析解答。根据电功可知是能量的单位。
故选A。
【分析】根据功的公式结合单位进行分析解答。
2.(2025·浙江)我国水下敷缆机器人如图所示,具有“搜寻—挖沟—敷埋”一体化作业能力。可将机器人看成质点的是(  )
A.操控机器人进行挖沟作业
B.监测机器人搜寻时的转弯姿态
C.定位机器人在敷埋线路上的位置
D.测试机器人敷埋作业时的机械臂动作
【答案】C
【知识点】质点
【解析】【解答】质点是用来代替物体的具有质量的点,因而其突出特点是“具有质量”和“占有位置”,但没有大小,它的质量就是它所代替的物体的质量。操控机器人进行挖沟作业、监测机器人搜寻时的转弯姿态、测试机器人敷埋作业时的机械臂动作均不能忽略机器人的大小和形状,需要关注机器人本身的变化情况,因此不可以看作质点,定位机器人在敷埋线路上的位置时可以忽略机器人的大小和形状,可以视为质点。
故选C。
【分析】质点指的是当运动物体的大小、形状对我们研究的问题影响很小时,我们就可以把物体看成一个只有质量的点,这个点就叫做质点。参考系指的是当要描述一个物体的运动时,用来参考、假定不动的物体。
3.(2025·浙江)中国运动员以121公斤的成绩获得2024年世界举重锦标赛抓举金牌,举起杠铃稳定时的状态如图所示。重力加速度,下列说法正确的是(  )
A.双臂夹角越大受力越小
B.杠铃对每只手臂作用力大小为
C.杠铃对手臂的压力和手臂对杠铃的支持力是一对平衡力
D.在加速举起杠铃过程中,地面对人的支持力大于人与杠铃总重力
【答案】D
【知识点】牛顿第三定律;共点力的平衡;超重与失重
【解析】【解答】本题主要考查根据平衡条件求力和根据加速度方向分析物体受力大小的判断。A.双臂所受杠铃作用力的合力的大小等于杠铃的重力大小,与双臂的夹角无关,A错误;
B.杠铃的重力为
手臂与水平的杠铃之间有夹角,假设手臂与竖直方向夹角为,根据平衡条件可知
结合,解得杠铃对手臂的作用力
B错误;
C.杠铃对手臂的压力和手臂对杠铃的支持力是一对相互作用力,C错误;
D.加速举起杠铃,人和杠铃构成的相互作用系统加速度向上,系统处于超重状态,因此地面对人的支持力大于人与杠铃的总重力,D正确。
故选D。
【分析】根据平衡条件分析;加速举起过程,加速向上,合力向上。
4.(2025·浙江)三个点电荷的电场线和等势线如图所示,其中的d,e与e,f两点间的距离相等,则(  )
A.a点电势高于b点电势
B.a、c两点的电场强度相同
C.d、f间电势差为d、e间电势差的两倍
D.从a到b与从f到b,电场力对电子做功相等
【答案】D
【知识点】电场线;电势能;电势;电势差与电场强度的关系
【解析】【解答】无论是电场线或是等差等势面,都是密的地方场强大,疏的地方场强小;电势高低的判断方法可以根据电势的定义式来判断,但一般都是按沿电场线方向电势降低来判断。A.电场线从高等势面指向低等势面,即电场线从图中的正电荷指向负电荷,因此b点所在的等势面高于a点所在的等势面,A错误;
B.a、c两点电场强度方向不同,电场强度不同,B错误;
C.从d→e→f电场强度逐渐减小,间距相等,结合可知,则,C错误;
D.a点与f点在同一等势面上,a、b两点和f、b两点的电势差相等,根据电场力做功可知从a到b与从f到b,电场力对电子做功相等,D正确。
故选D。
【分析】根据沿电场线方向电势降低进行分析;a、c两点的电场强度方向不相同;根据U=Ed结合图像进行分析;根据图像可知a和f位于同一个等势面,根据W=qU进行分析。
5.(2025·浙江)有一离地面高度、质量为稳定竖直降落的沙尘颗粒,在其降落过程中受到的阻力与速率v成正比,比例系数,重力加速度,则它降落到地面的时间约为(  )
A. B. C. D.
【答案】B
【知识点】动量定理
【解析】【解答】本题考查牛顿第二定律和运动学公式的综合运用,解题关键掌握沙尘颗粒降落过程中,沙尘颗粒做匀变速直线运动。
沙尘颗粒开始时速度较小时,阻力较小,可知
…………①
沙尘颗粒速率增大,阻力增大,加速度减小,当时,沙尘颗粒速度达到最大且稳定,此时速度满足
…………②
解得
由定理定律可得

则沙尘下落时间为
由于,则
故选B。
【分析】解题关键掌握沙尘颗粒降落过程中,根据牛顿第二定律有mg-kv=ma,解得a的表达式,当a=0时做匀速运动,根据运动学公式求解。
6.(2025·浙江)地球和哈雷彗星绕太阳运行的轨迹如图所示,彗星从a运行到b、从c运行到d的过程中,与太阳连线扫过的面积分别为和,且。彗星在近日点与太阳中心的距离约为地球公转轨道半径的0.6倍,则彗星(  )
A.在近日点的速度小于地球的速度
B.从b运行到c的过程中动能先增大后减小
C.从a运行到b的时间大于从c运行到d的时间
D.在近日点加速度约为地球的加速度的0.36倍
【答案】C
【知识点】开普勒定律;卫星问题;动能
【解析】【解答】本题主要是考查了万有引力定律及其应用;解答此类题目一般要把握两条线:一是在星球表面,忽略星球自转的情况下,万有引力等于重力;二是根据万有引力提供向心力列方程进行解答。
A.地球绕太阳做匀速圆周运动,万有引力提供向心力
哈雷彗星在近日点的曲率半径小于地球半径,因此哈雷彗星在近日点的速度大于地球绕太阳的公转速度,A错误;
B.从b运行到c的过程中万有引力与速度方向夹角一直为钝角,哈雷彗星速度一直减小,因此动能一直减小,B错误;
C.根据开普勒第二定律可知哈雷彗星绕太阳经过相同的时间扫过的面积相同,根据可知从a运行到b的时间大于从c运行到d的时间,C正确;
D.万有引力提供加速度
则哈雷彗星的加速度与地球的加速度比值为
D错误。
故选C。
【分析】根据高轨低速大周期的二级结论分析;根据万有引力做功情况分析;根据开普勒第二定律分析;根据牛顿第二定律分析。
7.(2025·浙江)有关下列四幅图的描述,正确的是(  )
A.图1中,
B.图2中,匀速转动的线圈电动势正在增大
C.图3中,电容器中电场的能量正在增大
D.图4中,增大电容C,调谐频率增大
【答案】C
【知识点】交变电流的产生及规律;变压器原理;电磁振荡
【解析】【解答】了解交变电流的产生、变压器的构造和原理、电磁振荡产生的过程是解决本题的关键,属于基础题。A.理想变压器原副线圈与匝数的关系为,A错误;
B.从图2所示位置转动至线框与磁感线垂直的过程中,逐渐转向中性面,因此线框中的电动势逐渐减小,B错误;
C.电容器中电场强度方向竖直向上,因此下极板带正电,上极板带负电,根据线圈的磁场方向结合安培定则可知电流流向正极板,因此电容器正在充电,电场的能量正在增大,C正确;
D.电容C增大,根据电磁振荡的频率可知调谐频率减小,D错误。
故选C。
【分析】根据变压器电压与匝数的关系进行分析;根据交流发电机及其产生交变电流的原理可知,线圈平面与磁场垂直时,线圈位于中性面位置,此时磁通量最大,磁通量的变化率最小,电动势最小进行分析;根据电磁振荡产生的原理,判断电容器上下极板带电性及根据电感判断电流方向,从而判断出能量的转化;根据调谐频率即可分析。
8.(2025·浙江)如图所示,光滑水平地面上放置完全相同的两长板A和B,滑块C(可视为质点)置于B的右端,三者质量均为。A以的速度向右运动,B和C一起以的速度向左运动,A和B发生碰撞后粘在一起不再分开。已知A和B的长度均为0.75m,C与A、B间动摩擦因数均为0.5,则(  )
A.碰撞瞬间C相对地面静止
B.碰撞后到三者相对静止,经历的时间为0.2s
C.碰撞后到三者相对静止,摩擦产生的热量为
D.碰撞后到三者相对静止,C相对长板滑动的距离为0.6m
【答案】D
【知识点】碰撞模型
【解析】【解答】本题考查板块模型的动量和能量问题,要切实分清运动过程,找准研究对象,运用动量守恒定律进行求解。A.碰撞瞬间C相对地面向左运动,选项A错误;
B.向右为正方向,则AB碰撞过程由动量守恒
解得
v1=1m/s
方向向右;当三者共速时
可知
v=0
即最终三者一起静止,可知经历的时间
选项B错误;
C.碰撞到三者相对静止摩擦产生的热量
选项C错误;
D.碰撞到三者相对静止由能量关系可知
可得
选项D正确。
故选D。
【分析】根据动量守恒定律求出A和B碰撞后的共同速度,进而求出三者的共同速度,根据牛顿第二定律结合运动学,可以求出从碰撞到三者相对静止所经历的时间,再由能量守恒定律求出摩擦生热,根据摩擦产生的热量可以求出C相对长板滑动的距离。
9.(2025·浙江)新能源汽车日趋普及,其能量回收系统可将制动时的动能回收再利用,当制动过程中回收系统的输出电压(U)比动力电池所需充电电压()低时,不能直接充入其中。在下列电路中,通过不断打开和闭合开关S,实现由低压向高压充电,其中正确的是(  )
A. B.
C. D.
【答案】B
【知识点】自感与互感
【解析】【解答】 本题考查对感生电动势的理解,熟悉电路图,自感线圈断开或者闭合瞬间会产生自感电动势。A.该电路中当开关S断开时,整个电路均断开,则不能给电池充电,选项A错误;
B.该电路中当S闭合时稳定时,线圈L中有电流通过,当S断开时L产生自感电动势阻碍电流减小,L相当电源,电源U与L中的自感电动势共同加在电池两端,且此时二极管能导体,从而实现给高压充电,选项B正确;
C.该电路中当S闭合时稳定时,线圈L中有电流通过,但当S断开时L也与电路断开,还是只有回收系统的电压U加在充电电池两端,则不能实现给高压充电,选项C错误;
D.该电路中当S闭合时稳定时,线圈L中有电流通过,但当S断开时电源U也断开,只有L产生的自感电动势相当电源加在充电电池两端,则不能实现给高压充电,选项D错误。
故选B。
【分析】只有电源U与L中的自感电动势串联,电压之和高于充电电压时,才能给电池充电,根据电路图分析。
10.(2025·浙江)测量透明溶液折射率的装置如图1所示。在转盘上共轴放置一圆柱形容器,容器被透明隔板平分为两部分,一半充满待测溶液,另一半是空气。一束激光从左侧沿直径方向入射,右侧放置足够大的观测屏。在某次实验中,容器从图2(俯视图)所示位置开始逆时针匀速旋转,此时观测屏上无亮点;随着继续转动,亮点突然出现,并开始计时,经后亮点消失。已知转盘转动角速度为,空气折射率为1,隔板折射率为n,则待测溶液折射率为(  )(光从折射率的介质射入折射率的介质,入射角与折射角分别为与,有)
A. B.
C. D.
【答案】A
【知识点】光的全反射
【解析】【解答】解决几何光学问题的关键是根据题意正确画出光路图,然后根据几何关系以及相关物理知识求解。由题意可知当屏上无光点时,光线从隔板射到空气上时发生了全发射,出现亮点时,光线从溶液射到隔板再射到空气时发生了折射,可知从出现亮点到亮点消失,容器旋转满足
光线能透过液体和隔板从空气中射出时,即出现亮点时,可知光线的在空气中的入射角为θ时,光线在隔板和空气界面发生全反射,在隔板和液体界面,有
在隔板和空气界面
解得
故选A。
【分析】根据题意分析出现亮点到亮点消失过程满足的夹角关系,再根据全反射发生的条件和满足的规律列式求解。
11.(2025·浙江)如图1所示,三束由氢原子发出的可见光P、Q、R分别由真空玻璃管的窗口射向阴极K。调节滑动变阻器,记录电流表与电压表示数,两者关系如图2所示。下列说法正确的是(  )
A.分别射入同一单缝衍射装置时,Q的中央亮纹比R宽
B.P、Q产生的光电子在K处最小德布罗意波长,P大于Q
C.氢原子向第一激发态跃迁发光时,三束光中Q对应的能级最高
D.对应于图2中的M点,单位时间到达阳极A的光电子数目,P多于Q
【答案】B,C
【知识点】玻尔理论与氢原子的能级跃迁;光电效应;粒子的波动性 德布罗意波
【解析】【解答】本题考查光电效应和单缝衍射,德布罗意波长的问题,会根据题意进行准确分析解答。爱因斯坦光电效应方程为:Ek=hν-W0。A.根据
因Q的截止电压大于R,可知Q的频率大于R的频率,Q的波长小于R的波长,则分别射入同一单缝衍射装置时,R的衍射现象比Q更明显,则Q的中央亮纹比R窄,选项A错误;
B.同理可知P、Q产生的光电子在K处Q的最大初动能比P较大,根据
可知最小德布罗意波长,P大于Q,选项B正确;
C.因Q对应的能量最大,则氢原子向第一激发态跃迁发光时,根据
可知三束光中Q对应的能级最高,选项C正确;
D.对应于图2中的M点,P和Q的光电流相等,可知P和Q单位时间到达阳极A的光电子数目相等,选项D错误。
故选BC。
【分析】根据图2,判断三束光的频率关系,结合频率波长关系式,单缝衍射中央亮纹宽度和波长的关系进行分析解答;根据光电效应方程、动能和动量关系式结合德布罗意波长公式进行解答;根据频率关系判断能量关系,再结合跃迁规律进行分析解答;根据交点含义进行分析解答。
12.(2025·浙江)如图1所示,两波源和分别位于与处,以为边界,两侧为不同的均匀介质。时两波源同时开始振动,其振动图像相同,如图2所示。时与两处的质点开始振动。不考虑反射波的影响,则(  )
A.时两列波开始相遇
B.在间波的波长为
C.两列波叠加稳定后,处的质点振动减弱
D.两列波叠加稳定后,在间共有7个加强点
【答案】B,C
【知识点】波长、波速与频率的关系;波的干涉现象
【解析】【解答】本题既要理解振动图像和波动图像各自的物理意义,由振动图像能判断出质点的速度方向,同时要把握两种图像的内在联系,能由质点的速度方向,判断出波的传播方向。A.波在左侧的波速
右侧的波速
从0.1s开始,再经过时间相遇
所以
选项A错误;
B.在间波的波长为
选项B正确;
C.左侧波传到时用时间为
此时右侧波在该质点已经振动
即此时刻左侧波在该点的振动在平衡位置向上运动,右侧波在该点的振动也在平衡位置向下振动,可知该点的振动减弱,选项C正确;
D.当右侧波传到x=6m位置时用时间为0.1s=5T,即此时x=6m处质点从平衡位置向上振动;此时x=0处的波源S1也在平衡位置向上振动,即振动方向相同,可知在内到x=0和x=6m两点的路程差为波长整数倍时振动加强,波在该区间内的波长
可知
即x=3+0.4n
其中n取0、±1、±2、±3、±4、±5、±6、±7
则共有15个振动加强点,选项D错误。
故选BC。
【分析】求出波在0~6m处的介质中的传播速度和在6m~12m处的介质中的传播速度,再根据运动学公式求解相遇时间;根据波长的计算公式求解波长;将x=6m处视为S1波的新波源,根据起振方向结合加强、减弱的条件进行分析;将x=6m处视为S2的新波源,0<x<6m的加强点对两波源的波程差应为波长的整数倍,由此分析。
13.(2025·浙江)如图1所示,在平面内存在一以O为圆心、半径为r的圆形区域,其中存在一方向垂直平面的匀强磁场,磁感应强度B随时间变化如图2所示,周期为。变化的磁场在空间产生感生电场,电场线为一系列以O为圆心的同心圆,在同一电场线上,电场强度大小相同。在同一平面内,有以O为圆心的半径为的导电圆环I,与磁场边界相切的半径为的导电圆环Ⅱ,电阻均为R,圆心O对圆环Ⅱ上P、Q两点的张角;另有一可视为无限长的直导线CD。导电圆环间绝缘,且不计相互影响,则(  )
A.圆环I中电流的有效值为
B.时刻直导线CD电动势为
C.时刻圆环Ⅱ中电流为
D.时刻圆环Ⅱ上PQ间电动势为
【答案】B,D
【知识点】感应电动势及其产生条件;交变电流的峰值、有效值、平均值与瞬时值
【解析】【解答】此题是电磁感应中电路问题,要注意法拉第电磁感应定律的应用,搞清电路的结构,根据电磁感应规律和电路知识相结合解答。有效值是根据电流的热效应定义的一个等效概念。A.由题图可知,在内和内圆环I中的电流大小均为
在内圆环I中的电流大小为
设圆环I中电流的有效值为,根据有效值定义可得
联立解得
故A错误;
B.设右侧又一无限长的直导线对称的无限长的直导线与构成回路,则时刻,、回路产生的总电动势为
根据对称性可知时刻直导线CD电动势为,故B正确;
C.由于圆环Ⅱ处于磁场外部,通过圆环Ⅱ的磁通量一直为0,所以圆环Ⅱ不会产生感应电流,则时刻圆环Ⅱ中电流为0,故C错误;
D.以O点为圆心,过程P、Q两点圆轨道,在时刻产生的电动势为
则P、Q两点间圆弧的电动势为
由于P、Q两点间圆弧与圆环Ⅱ上PQ构成回路不会产生感应电流,则圆环Ⅱ上PQ间电动势为,故D正确。
故选BD。
【分析】圆环Ⅱ中没有磁场,磁通量恒为零无变化,无电流;根据法拉第电磁感应定律结合有效值的概念计算;根据分压规律分析。
14.(2025·浙江)“探究加速度与力、质量的关系”的实验装置如图所示。
(1)如图是某次实验中得到的纸带的一部分。每5个连续打出的点为一个计数点,电源频率为,打下计数点3时小车速度为   (保留三位有效数字)。
(2)下列说法正确的是_____(多选)
A.改变小车总质量,需要重新补偿阻力
B.将打点计时器接到输出电压为的交流电源上
C.调节滑轮高度,使牵引小车的细线跟长木板保持平行
D.小车应尽量靠近打点计时器,并应先接通电源,后释放小车
(3)改用如图1所示的气垫导轨进行实验。气垫导轨放在水平桌面上并调至水平,滑块在槽码的牵引下先后通过两个光电门,配套的数字计时器记录了遮光条通过光电门1、2的遮光时间分别为,测得两个光电门间距为x,用游标卡尺测量遮光条宽度d,结果如图2所示,其读数   mm,则滑块加速度   (用题中所给物理量符号表示)。
【答案】(1)0.390
(2)C;D
(3)10.00;
【知识点】探究加速度与力、质量的关系
【解析】【解答】本题考查探究牛顿第二定律的问题和纸带的数据处理,结合实验原理及匀变速直线运动规律解答。
(1)相邻计数点间的时间间隔T=0.1s打计数点3时的速度
(2)A.平衡摩擦力时满足
两边质量消掉,改变小车质量时不需要重新平衡摩擦力,选项A错误;
B.电火花计时器需要接220V交流电源,选项B错误;
C.调节滑轮高度,使牵引小车的细线根长木板保持平行,选项C正确;
D.小车应尽量接近打点计时器,并应该先接通电源后释放小车,以充分利用纸带,选项D正确。
故选CD。
(3)遮光条宽度d=10mm+0.05mm×0=10.00mm
经过两光电门时的速度分别为
根据
解得
【分析】(1)根据匀变速直线运动规律计算速度;
(2)根据实验原理分析判断;
(3)根据游标卡尺精确度读数;根据速度—位移公式计算。
(1)相邻计数点间的时间间隔T=0.1s打计数点3时的速度
(2)A.平衡摩擦力时满足
两边质量消掉,改变小车质量时不需要重新平衡摩擦力,选项A错误;
B.电火花计时器需要接220V交流电源,选项B错误;
C.调节滑轮高度,使牵引小车的细线根长木板保持平行,选项C正确;
D.小车应尽量接近打点计时器,并应该先接通电源后释放小车,以充分利用纸带,选项D正确。
故选CD。
(3)[1]遮光条宽度d=10mm+0.05mm×0=10.00mm
[2]经过两光电门时的速度分别为
根据
解得
15.(2025·浙江)在“探究影响感应电流方向的因素”实验中,当电流从“-”接线柱流入灵敏电流表,指针左偏:从“”或“”接线柱流入,指针右偏。如图所示是某次实验中指针偏转角度最大的瞬间,则
(1)此时磁铁的运动状态是   (选填“向上拔出”、“静止”或“向下插入”)。
(2)只做以下改变,一定会增大图中电流表指针偏转角度的是_____(多选)
A.磁铁静止,向上移动线圈
B.增大(1)中磁铁运动速度
C.将导线从接线柱移接至接线柱
D.将一个未与电路相接的闭合线圈套在图中线圈外
【答案】(1)向上拔出
(2)B;C
【知识点】电磁感应的发现及产生感应电流的条件
【解析】【解答】本题考查电磁感应现象,涉及的知识点有楞次定律以及右手螺旋定则,理解楞次定律并会应用是解题关键。
(1)由图可知,灵敏电流表指针左偏,可知感应电流从“-”极流入,根据楞次定律可知,螺线管中产生的感应电流从上到下,可知磁铁的N极向上拔出;
(2)A.磁铁静止,向上移动线圈,则产生的感应电流不一定增加,指针偏角不一定会增加,选项A错误;
B.增大(1)中磁铁的速度,产生的感应电动势会增加,指针偏角会增大,选项B正确;
C.减小电流计的量程,即将导线从接线柱G1移接到G0,可是电流计指针偏角变大,选项C正确;
D.将一个未与电路相接的闭合线圈套在线圈外,线圈中的感应电流不变,电流计指针偏角不变,选项D错误。
故选BC。
【分析】(1)根据灵敏电流计指针的偏转方向与通过电流计的电流方向的关系,需要知道电流方向。根据题意以及楞次定律判断磁铁的运动状态;
(2)要增大灵敏电流计的偏转角度,则要增大磁通量的变化率。
(1)由图可知,灵敏电流表指针左偏,可知感应电流从“-”极流入,根据楞次定律可知,螺线管中产生的感应电流从上到下,可知磁铁的N极向上拔出;
(2)A.磁铁静止,向上移动线圈,则产生的感应电流不一定增加,指针偏角不一定会增加,选项A错误;
B.增大(1)中磁铁的速度,产生的感应电动势会增加,指针偏角会增大,选项B正确;
C.减小电流计的量程,即将导线从接线柱G1移接到G0,可是电流计指针偏角变大,选项C正确;
D.将一个未与电路相接的闭合线圈套在线圈外,线圈中的感应电流不变,电流计指针偏角不变,选项D错误。
故选BC。
16.(2025·浙江)某同学研究半导体热敏电阻(其室温电阻约为几百欧姆)的阻值随温度规律,设计了如图所示电路。器材有:电源E(),电压表(),滑动变阻器R(A:“”或B:“”),电阻箱(),开关、导线若干。
(1)要使cd两端电压在实验过程中基本不变,滑动变阻器选   (选填“A”或“B”);
(2)正确连线,实验操作如下:
①滑动变阻器滑片P移到最左端,电阻箱调至合适阻值,合上开关;
②开关切换到a,调节滑片P使电压表示数为;再将开关切换到b,电阻箱调至,记录电压表示数、调温箱温度。则温度下   (保留三位有效数字):
③保持、滑片P位置和开关状态不变,升高调温箱温度,记录调温箱温度和相应电压表示数,得到不同温度下的阻值。
(3)请根据题中给定的电路且滑片P位置保持不变,给出另一种测量电阻的简要方案。
【答案】(1)A
(2)157
(3)题中滑片P位置保持不变,则电阻箱R1与热敏电阻Rt两端电压之和保持不变,先让S2接a,此时电压表读数为U,然后接b,读出电阻箱R1的读数和电压表读数U',可得
则以后保持S2接a,改变电阻箱的阻值R1,根据
可得热敏电阻Rt的值。
【知识点】特殊方法测电阻
【解析】【解答】本题考查了欧姆定律、串并联电路的规律等知识,此实验侧重对电学基本实验原理和实验方法的考查,要求同学们对这部分内容要做到足够熟练,加强练习,注重归纳与总结。
(1)要使得cd两端电压U0在实验中基本不变,则滑动变阻器应该选择阻值较小的A;
(2)由电路可知
(3)题中滑片P位置保持不变,则电阻箱R1与热敏电阻Rt两端电压之和保持不变,先让S2接a,此时电压表读数为U,然后接b,读出电阻箱R1的读数和电压表读数U',可得
则以后保持S2接a,改变电阻箱的阻值R1,根据
可得热敏电阻Rt的值。
【分析】 (1)根据实验的原理选择滑动变阻器。
(2)根据串并联电路的规律和欧姆定律分析求解。
(3)电阻箱R1与热敏电阻Rt两端电压之和保持不变,结合串联电路电压之比等于电阻之比求解。
(1)要使得cd两端电压U0在实验中基本不变,则滑动变阻器应该选择阻值较小的A;
(2)由电路可知
(3)题中滑片P位置保持不变,则电阻箱R1与热敏电阻Rt两端电压之和保持不变,先让S2接a,此时电压表读数为U,然后接b,读出电阻箱R1的读数和电压表读数U',可得
则以后保持S2接a,改变电阻箱的阻值R1,根据
可得热敏电阻Rt的值。
17.(2025·浙江)如图所示,导热良好带有吸管的瓶子,通过瓶塞密闭T1 = 300 K,体积V1 = 1 × 103 cm3处于状态1的理想气体,管内水面与瓶内水面高度差h = 10 cm。将瓶子放进T2 = 303 K的恒温水中,瓶塞无摩擦地缓慢上升恰好停在瓶口,h保持不变,气体达到状态2,此时锁定瓶塞,再缓慢地从吸管中吸走部分水后,管内和瓶内水面等高,气体达到状态3。已知从状态2到状态3,气体对外做功1.02 J;从状态1到状态3,气体吸收热量4.56 J,大气压强p0 = 1.0 × 105 Pa,水的密度ρ = 1.0 × 103 kg/m3;忽略表面张力和水蒸气对压强的影响。
(1)从状态2到状态3,气体分子平均速率   (“增大”、“不变”、“减小”),单位时间撞击单位面积瓶壁的分子数   (“增大”、“不变”、“减小”);
(2)求气体在状态3的体积V3;
(3)求从状态1到状态3气体内能的改变量ΔU。
【答案】(1)不变;减小
(2)V3 = 1.0201 × 103 cm3
(3)ΔU = 2.53 J
【知识点】气体压强的微观解释;热力学第一定律及其应用;气体的等温变化及玻意耳定律;气体的等压变化及盖-吕萨克定律
【解析】【解答】 本题考查水银柱类问题,此类问题一般要选择封闭气体为研究对象,分析理想气体发生的是何种变化,根据平衡条件分析初末状态的压强,并结合题意分析初末状态气体的体积、温度,利用理想气体状态方程或者气体实验定律列等式求解。分析气体内能变化时,要使用热力学第一定律。其中气体做功通过W=pΔV求解。
(1)从状态2到状态3,温度保持不变,气体分子的内能保持不变,则气体分子平均速率不变,由于气体对外做功,则气体压强减小,故单位时间撞击单位面积瓶壁的分子数减小。
(2)气体从状态1到状态2的过程,由盖—吕萨克定律
其中,,
解得
此时气体压强为
气体从状态2到状态3的过程,由玻意耳定律
其中
代入数据解得,气体在状态3的体积为
(3)气体从状态1到状态2的过程中,气体对外做功为
由热力学第一定律
其中,
代入解得,从状态1到状态3气体内能的改变量为
【分析】(1)由温度分析气体分子平均速率的变化;根据气体压强的变化分析单位时间撞击单位面积瓶壁的分子数的变化;
(2)由盖—吕萨克定律和玻意耳定律列式求解;
(3)由W=pΔV求出气体从状态1到状态2的过程中,气体对外做的功,再由热力学第一定律计算从状态1到状态3气体内能的改变量。
(1)[1][2]从状态2到状态3,温度保持不变,气体分子的内能保持不变,则气体分子平均速率不变,由于气体对外做功,则气体压强减小,故单位时间撞击单位面积瓶壁的分子数减小。
(2)气体从状态1到状态2的过程,由盖—吕萨克定律
其中
,,
解得
此时气体压强为
气体从状态2到状态3的过程,由玻意耳定律
其中
代入数据解得,气体在状态3的体积为
(3)气体从状态1到状态2的过程中,气体对外做功为
由热力学第一定律
其中

代入解得,从状态1到状态3气体内能的改变量为
18.(2025·浙江)一游戏装置的竖直截面如图所示。倾斜直轨道AB、半径为R的竖直螺旋轨道、水平轨道BC和、倾角为的倾斜直轨道EF平滑连接成一个抛体装置。该装置除EF段轨道粗糙外,其余各段均光滑,F点与水平高台GHI等高。游戏开始,一质量为m的滑块1从轨道AB上的高度h处静止滑下,与静止在C点、质量也为m的滑块2发生完全非弹性碰撞后组合成滑块3,滑上滑轨。若滑块3落在GH段,反弹后水平分速度保持不变,竖直分速度减半;若滑块落在H点右侧,立即停止运动。已知,EF段长度,FG间距,GH间距,HI间距,EF段。滑块1、2、3均可视为质点,不计空气阻力,,。
(1)若,求碰撞后瞬间滑块3的速度大小;
(2)若滑块3恰好能通过圆轨道,求高度h;
(3)若滑块3最终落入I点的洞中,则游戏成功。讨论游戏成功的高度h。
【答案】(1)对滑块1由动能定理
解得滑块1与滑块2碰前的速度大小为
滑块1与滑块2碰撞过程中,由动量守恒定律
解得碰撞后瞬间滑块3的速度大小为
(2)在轨道D点,由牛顿第二定律
解得
滑块3从D点到C'点,由机械能守恒定律
解得
结合

联立解得
(3)滑块3从C'点到F点的过程中,由动能定理
若滑块3直接落入洞中,则竖直方向
水平方向
结合

联立解得
若经一次反弹落入洞中,则
水平方向
结合

联立解得
【知识点】斜抛运动;生活中的圆周运动;动能定理的综合应用;机械能守恒定律;碰撞模型
【解析】【分析】(1)应用动能定理求出碰撞前滑块1的速度大小,碰撞过程系统动量守恒,应用动量守恒定律求出碰撞后瞬间滑块3的速度大小。
(2)滑块3恰好通过圆轨道,在圆轨道最高点,重力提供向心力,应用牛顿第二定律求出滑块3的速度,应用动能定理与动量守恒定律求解。
(3)滑块3可能直接落入洞中,也可能反弹一次后落入洞中,应用动能定理、动量守恒定律与运动学公式求解。
(1)对滑块1由动能定理
解得滑块1与滑块2碰前的速度大小为
滑块1与滑块2碰撞过程中,由动量守恒定律
解得碰撞后瞬间滑块3的速度大小为
(2)在轨道D点,由牛顿第二定律
解得
滑块3从D点到C'点,由机械能守恒定律
解得
结合

联立解得
(3)滑块3从C'点到F点的过程中,由动能定理
若滑块3直接落入洞中,则竖直方向
水平方向
结合

联立解得
若经一次反弹落入洞中,则
水平方向
结合

联立解得
19.(2025·浙江)如图所示,接有恒流源的正方形线框边长、质量m、电阻R,放在光滑水平地面上,线框部分处于垂直地面向下、磁感应强度为B的匀强磁场中。以磁场边界CD上一点为坐标原点,水平向右建立轴,线框中心和一条对角线始终位于轴上。开关S断开,线框保持静止,不计空气阻力。
(1)线框中心位于,闭合开关S后,线框中电流大小为I,求
①闭合开关S瞬间,线框受到的安培力大小;
②线框中心运动至过程中,安培力做功及冲量;
③线框中心运动至时,恒流源提供的电压;
(2)线框中心分别位于和,闭合开关S后,线框中电流大小为I,线框中心分别运动到所需时间分别为和,求。
【答案】(1)①闭合开关S瞬间,线框在磁场中的有效长度为
所以线框受到的安培力大小为
②线框运动到x时,安培力大小为
则初始时和线框中心运动至时的安培力分别为

则线框中心运动至过程中,安培力做功为
由动能定理
可得
则安培力的冲量为
③由能量守恒定律
可得,恒流源提供的电压为
(2)类比于简谐运动,则回复力为
根据简谐运动周期公式
由题意可知,两次简谐运动周期相同,两次都从最大位移运动到平衡位置,时间均相同,则有

【知识点】简谐运动;安培力的计算;电磁感应中的磁变类问题
【解析】【分析】(1)①根据F=BIL计算安培力大小;
②先根据安培力的平均值计算安培力做功,然后根据动能定理合动量与动能的关系计算安培力的冲量;
③根据能量守恒计算;
(2)把线框的运动类比于简谐运动,得到线框的运动周期,结合运动时间比较即可。
(1)①闭合开关S瞬间,线框在磁场中的有效长度为
所以线框受到的安培力大小为
②线框运动到x时,安培力大小为
则初始时和线框中心运动至时的安培力分别为

则线框中心运动至过程中,安培力做功为
由动能定理
可得
则安培力的冲量为
③由能量守恒定律
可得,恒流源提供的电压为
(2)类比于简谐运动,则回复力为
根据简谐运动周期公式
由题意可知,两次简谐运动周期相同,两次都从最大位移运动到平衡位置,时间均相同,则有

20.(2025·浙江)同位素相对含量的测量在考古学中有重要应用,其测量系统如图1所示。将少量古木样品碳化、电离后,产生的离子经过静电分析仪ESA-I、磁体-I和高电压清除器,让只含有三种碳同位素、、的离子束(初速度可忽略不计)进入磁体-Ⅱ.磁体-Ⅱ由电势差为U的加速电极P,磁感应强度为B、半径为R的四分之一圆弧细管道和离子接收器F构成。通过调节U,可分离、、三种同位素,其中、的离子被接收器F所接收并计数,它们的离子数百分比与U之间的关系曲线如图2所示,而离子可通过接收器F,进入静电分析仪ESA-Ⅱ,被接收器D接收并计算。
(1)写出中子与发生核反应生成,以及发生衰变生成的核反应方程式:
(2)根据图2写出的离子所对应的U值,并求磁感应强度B的大小(计算结果保留两位有效数字。已知,原子质量单位,元电荷);
(3)如图1所示,ESA-Ⅱ可简化为间距两平行极板,在下极板开有间距的两小孔,仅允许入射角的离子通过。求两极板之间的电势差U:
(4)对古木样品,测得与离子数之比值为;采用同样办法,测得活木头中与的比值为,由于它与外部环境不断进行碳交换,该比例长期保持稳定。试计算古木被砍伐距今的时间(已知的半衰期约为5700年,)
【答案】(1)中子与发生核反应生成的核反应方程式为
发生衰变生成的核反应方程式为
(2)在加速电场中,由动能定理得
解得
磁场中,洛伦兹力提供向心力
联立解得

相比,的比荷更大,通过圆形管道所需要的电压更大,通过图2可知当电压为时,与的离子数百分比为,故的离子所对应的U值为。
根据整理得
(3)由题意知,粒子在板间做类斜抛运动,水平方向有

竖直方向有
,,
联立解得
(4)古木中与比值是活木头中的,说明经过衰变后只剩下,已知经过一个半衰期剩下,设经过n个半衰期,则有
解得
则砍伐时间
【知识点】原子核的衰变、半衰期;原子核的人工转变;带电粒子在电场中的偏转;带电粒子在电场与磁场混合场中的运动;α、β、γ射线及特点
【解析】【分析】(1)根据质量数守恒和电荷数守恒写出核反应方程;
(2)由动能定理分析带电粒子在电场中的加速运动,再由洛伦兹力提供向心力分析粒子在磁场中的运动;
(3)粒子在板间做类斜抛运动,水平方向方向匀速运动,竖直方向自由落体运动,根据类平抛规律分析求解;
(4)根据半衰期的定义结合数学知识分析求解。
(1)中子与发生核反应生成的核反应方程式为
发生衰变生成的核反应方程式为
(2)在加速电场中,由动能定理得
解得
磁场中,洛伦兹力提供向心力
联立解得

相比,的比荷更大,通过圆形管道所需要的电压更大,通过图2可知当电压为时,与的离子数百分比为,故的离子所对应的U值为。
根据整理得
(3)由题意知,粒子在板间做类斜抛运动,水平方向有

竖直方向有
,,
联立解得
(4)古木中与比值是活木头中的,说明经过衰变后只剩下,已知经过一个半衰期剩下,设经过n个半衰期,则有
解得
则砍伐时间
1 / 1
同课章节目录