最短路径问题从本质上说其实就是最值问题,作为八年级的学生,在此之前很少接触,解决这方面问题的经验尚显不足,特别是面对具有实际背景的最值问题,更会感到陌生,无从下手。
对于直线异侧的两点,怎样在直线上找到一点,使这一点到这两点的距离之和最小,学生很容易想到连接这两点,所连线段与直线的交点就是所求的点。但对于直线异侧的两点,如何在直线上找到一点,使这点到这两点的距离之和最小,一些学生会感到茫然,找不到解决问题的思路。
在证明“最短”时,需要在直线上任取一点(与所求作的点不重合),证明所连线段和大于所求作的线段和,这种思路和想法,学生基本想不到,不会做。
教学时,教师可从“直线异侧的两点”过渡到“直线同侧的两点”,为学生搭建“脚手架”。在证明“最短”时,教师可告诉学生,证明“最大”“最小”这类问题,常常要另选一个量,通过与求证的那个“最大”“最小”的量进行比较来证明,由于另取的点具有任意性,所以结论对于直线上的每一点(C点除外)都成立。
本节课通过复习以前学过的“两点之间,线段最短”、“垂线段最短”等问题,使学生对最短路径问题有初步的认识,并且,这里的“直线异侧两点问题”为后面探究的“直线同侧两点问题”做好了铺垫,符合学生的认知规律,学生反映较好。
利用数学史上著名的“将军饮马问题” 引入问题时,调动了学生的学习热情,提高了学习兴趣。
在探究新知部分,教师充分发挥了引导作用,通过轴对称变换,将“直线同侧两点问题”转化为“直线异侧两点问题”,然后利用“两点之间,线段最短”使问题得到解决,在这个过程中,学生很好地理解了解决问题的方法。
在证明“最短”时,部分学生理解的不好。首先是这种证明问题的方法,学生以前没接触过,感到比较陌生,其次,为什么任意选一个点C’就能说明问题,学生也比较迷茫。
反思本节课,整个教学过程比较顺利,衔接的比较自然,重点明确,基本达到了教学目的。但是,也有做的不足的地方:
一、教态不够自然,教师在教学过程中明显地比较紧张,语调单一,课堂氛围没能调动起来。
二、师生互动有形无实,学生在交流讨论时,教师要参与进去
,倾听学生的意见,不恰当的地方要给予指导,对于较好的意见要充分的表扬。
三、板书设计不合理,特别是在证明“最短”时,证明的过程最好让学生板书,然后师生共同点评,而不应该仅分析证明的思路,简单的演示一遍课件就完了,这个地方教师处理的不好。
四、普通话不标准,声音较小。
13.4 课题学习 最短路径问题
【教学目标】
教学知识点
能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用;感悟转化思想.
能力训练要求
在将实际问题抽象成几何图形的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.
情感与价值观要求
通过有趣的问题提高学习数学的兴趣.在解决实际问题的过程中,体验数学学习的实用性,体现人人都学有所用的数学.
【教学重难点】
重点:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题.
难点:如何利用轴对称将最短路径问题转化为线段和最小问题.
突破难点的方法:利用轴对称性质,作任意已知点的对称点,连接对称点和已知点,得到一条线段,利用两点之间线段最短来解决.
【教学过程】
一、创设情景 引入课题
问题1:如图所示,从A地到B地有三条路可供选择,你会选走哪条路最近?你的理由是什么?
问题2:如图,要在燃气管道L上修建一个泵站,分别向A、B两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短?
问题3:如图:在铁路旁边有一张庄,现在要建一火车站,为了使张庄人乘火车最方便(即距离最近),请你在铁路上选一点来建火车站,并说明理由。
﹒
师:前面我们研究过一些关于“两点的所有连线中,线段最短”、“连接直线外一点与直线上各点的所有线段中,垂线段最短”等的问题,我们称它们为最短路径问题.现实生活中经常涉及到选择最短路径的问题,本节将利用数学知识探究数学史中著名的“将军饮马问题”.
二、自主探究 合作交流 建构新知
展示问题:
相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:
从图中的A 地出发,到一条笔直的河边l 饮马,然后到B 地.到河边什么地方饮马可使他所走的路线全程最短?
精通数学、物理学的海伦稍加思索,利用轴对称的 知识回答了这个问题.这个问题后来被称为“将军饮马 问题”.
你能将这个问题抽象为数学问题吗?
追问1:观察思考,抽象为数学问题
这是一个实际问题,你打算首先做什么?
活动1:思考画图、得出数学问题
将A,B 两地抽象为两个点,将河l 抽象为一条直线.
追问2 你能用自己的语言说明这个问题的意思, 并把它抽象为数学问题吗?
师生活动:学生尝试回答, 并互相补充,最后达成共识:(1)从A 地出发,到河边l 饮马,然后到B 地; (2)在河边饮马的地点有无穷多处,把这些地点与A,B 连接起来的两条线段的长度之和,就是从A 地到饮马地点,再回到B 地的路程之和;(3)现在的问题是怎样找出使两条线段长度之和为最短的直线l上的点.设C 为直线上的一个动点,上面的问题就转化为:当点C 在l 的什么位置时,AC 与CB 的和最小(如图).
强调:将最短路径问题抽象为“线段和最小问题”
活动2:尝试解决数学问题
问题1 : 如图,点A,B 在直线l 的同侧,点C 是直线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小?
追问1 你能利用轴对称的有关知识,找到上问中符合条件的点B'吗?
问题2 如图,点A,B 在直线l 的同侧,点C 是直线上的一个动点,当点C 在l 的什么位置时,AC 与CB的和最小?
师生活动:学生独立思考,画图分析,并尝试回答,互相补充
如果学生有困难,教师可作如下提示
作法:
(1)作点B 关于直线l 的对称点B';
(2)连接AB',与直线l 相交于点C,则点C 即为所求.
如图所示:
问题3 你能用所学的知识证明AC +BC最短吗?
教师展示:证明:如图,在直线l 上任取一点C'(与点C 不重合),连接AC',BC',B'C'.
由轴对称的性质知,
BC =B'C,BC'=B'C'.
∴AC +BC= AC +B'C = AB',
AC'+BC'= AC'+B'C'.
在△AC'B'中,
AC'+B'C'>AB',
∴当只有在C点位置时,
AC+BC最短.
方法提炼:
将最短路径问题抽象为“线段和最小问题”.
三、巩固训练
练习 如图,一个旅游船从大桥AB 的P 处前往山脚下的Q 处接游客,然后将游客送往河岸BC 上,再返回P 处,请画出旅游船的最短路径.
基本思路:由于两点之间线段最短,所以首先可连接PQ,线段PQ 为旅游船最短路径中的必经线路.将河岸抽象为一条直线BC,这样问题就转化为“点P,Q 在直线BC 的同侧,如何在BC上找到一点R,使PR与QR 的和最小”.
四、反思小结
(1)本节课研究问题的基本过程是什么?
(2)轴对称在所研究问题中起什么作用?
解决问题中,我们应用了哪些数学思想方法?
你还有哪些收获?
五、作业布置
课本93页第15题.