【2023-2025年高考生物真题分类汇编】 专题10 基因的表达(含解析)

文档属性

名称 【2023-2025年高考生物真题分类汇编】 专题10 基因的表达(含解析)
格式 doc
文件大小 2.7MB
资源类型 试卷
版本资源 通用版
科目 生物学
更新时间 2025-06-27 16:35:41

图片预览

文档简介

中小学教育资源及组卷应用平台
三年2023-2025高考生物真题按知识点分类汇编
专题10 基因的表达(含解析)
一、选择题
1.(2023·全国乙卷)已知某种氨基酸(简称甲)是一种特殊氨基酸,迄今只在某些古菌(古细菌)中发现含有该氨基酸的蛋白质。研究发现这种情况出现的原因是,这些古菌含有特异的能够转运甲的tRNA(表示为tRNA甲)和酶E,酶E催化甲与tRNA甲结合生成携带了甲的tRNA甲(表示为甲-tRNA甲),进而将甲带入核糖体参与肽链合成。已知tRNA甲可以识别大肠杆菌mRNA中特定的密码子,从而在其核糖体上参与肽链的合成。若要在大肠杆菌中合成含有甲的肽链,则下列物质或细胞器中必须转入大肠杆菌细胞内的是(  )
①ATP ②甲 ③RNA聚合酶 ④古菌的核糖体 ⑤酶E的基因 ⑥tRNA甲的基因
A.②⑤⑥ B.①②⑤ C.③④⑥ D.②④⑤
2.(2023·湖南)酗酒危害人类健康。乙醇在人体内先转化为乙醛,在乙醛脱氢酶2(ALDH2)作用下再转化为乙酸,最终转化成CO2和水。头孢类药物能抑制ALDH2的活性。ALDH2基因某突变导致ALDH2活性下降或丧失。在高加索人群中该突变的基因频率不足5%而东亚人群中高达30%下列叙述错误的是(  )
A.相对于高加索人群,东亚人群饮酒后面临的风险更高
B.患者在服用头孢类药物期间应避免摄入含酒精的药物或食物
C.ALDH2基因突变人群对酒精耐受性下降,表明基因通过蛋白质控制生物性状
D.饮酒前口服ALDH2酶制剂可催化乙醛转化成乙酸,从而预防酒精中毒
3.(2023·江苏)翻译过程如图所示,其中反密码子第1位碱基常为次黄嘌呤(I),与密码子第3位碱基A、U、C皆可配对。下列相关叙述正确的是(  )
A.tRNA分子内部不发生碱基互补配对
B.反密码子为5'-CAU-3'的tRNA可转运多种氨基酸
C.mRNA的每个密码子都能结合相应的tRNA
D.碱基I与密码子中碱基配对的特点,有利于保持物种遗传的稳定性
4.(2023·海南)噬菌体ΦX174的遗传物质为单链环状DNA分子,部分序列如图。
下列有关叙述正确的是(  )
A.D基因包含456个碱基,编码152个氨基酸
B.E基因中编码第2个和第3个氨基酸的碱基序列,其互补DNA序列是5′-GCGTAC-3′
C.噬菌体ΦX174的DNA复制需要DNA聚合酶和4种核糖核苷酸
D.E基因和D基因的编码区序列存在部分重叠,且重叠序列编码的氨基酸序列相同
(2023·天津)在细胞中,细胞器结构、功能的稳定对于维持细胞的稳定十分重要。真核生物细胞中的核糖体分为两部分,在结构上与原核生物核糖体相差较大。真核细胞中的线粒体、叶绿体内含有基因,并可以在其中表达,因此线粒体、叶绿体同样含有核糖体,这类核糖体与原核生物核糖体较为相似。植物细胞前质体可在光照诱导下变为叶绿体。
内质网和高尔基体在细胞分裂前期会破裂成较小的结构,当细胞分裂完成后,重新组装。
经合成加工后,高尔基体会释放含有溶酶体水解酶的囊泡,与前溶酶体融合,产生最适合溶酶体水解酶的酸性环境,构成溶酶体。溶酶体对于清除细胞内衰老、损伤的细胞器至关重要。
5.某种抗生素对细菌核糖体有损伤作用,大量摄入会危害人体,其最有可能危害人类细胞哪个细胞器?(  )
A.线粒体 B.内质网
C.细胞质核糖体 D.中心体
6.下列说法或推断,正确的是(  )
A.叶绿体基质只能合成有机物,线粒体基质只能分解有机物
B.细胞分裂中期可以观察到线粒体与高尔基体
C.叶绿体和线粒体内基因表达都遵循中心法则
D.植物细胞叶绿体均由前质体产生
7.下列说法或推断,错误的是(  )
A.经游离核糖体合成后,溶酶体水解酶囊泡进入前溶酶体,形成溶酶体
B.溶酶体分解衰老、损伤的细胞器的产物,可以被再次利用
C.若溶酶体功能异常,细胞内可能积累异常线粒体
D.溶酶体水解酶进入细胞质基质后活性降低
8.(2023·天津)癌细胞来源的某种酶较正常细胞来源的同种酶活性较低,原因不可能是(  )
A.该酶基因突变
B.该酶基因启动子甲基化
C.该酶中一个氨基酸发生变化
D.该酶在翻译过程中肽链加工方式变化
9.(2023·湖南)细菌glg基因编码的UDPG焦磷酸化酶在糖原合成中起关键作用。细菌糖原合成的平衡受到CsrAB系统的调节。CsrA蛋白可以结合glg mRNA分子,也可结合非编码RNA分子CsrB,如图所示。下列叙述错误的是(  )
A.细菌glg基因转录时,RNA聚合酶识别和结合glg基因的启动子并驱动转录
B.细菌合成UDPG焦磷酸化酶的肽链时,核糖体沿glg mRNA从5'端向3'端移动
C.抑制CsrB基因的转录能促进细菌糖原合成
D.CsrA蛋白都结合到CsrB上,有利于细菌糖原合成
10.(2023·湖南)南极雄帝企鹅产蛋后,由雄帝企鹅负责孵蛋,孵蛋期间不进食。下列叙述错误的是(  )
A.帝企鹅蛋的卵清蛋白中N元素的质量分数高于C元素
B.帝企鹅的核酸、多糖和蛋白质合成过程中都有水的产生
C.帝企鹅蛋孵化过程中有mRNA和蛋白质种类的变化
D.雄帝企鹅孵蛋期间主要靠消耗体内脂肪以供能
11.(2023·浙江)某研究小组利用转基因技术,将绿色荧光蛋自基因(GFP)整合到野生型小鼠Gata3基因一端,如图甲所示。实验得到能正常表达两种蛋白质的杂合子雌雄小鼠各1只,交配以期获得Gata3-GFP基因纯合子小鼠。为了鉴定交配获得的4只新生小鼠的基因型,设计了引物1和引物2用于PCR扩增,PCR产物电泳结果如图乙所示。
下列叙述正确的是(  )。
A.Gata3基因的启动子无法控制GFP基因的表达
B.翻译时先合成Gata3蛋白,再合成GFP蛋白
C.2号条带的小鼠是野生型,4号条带的小鼠是Gata3-GFP基因纯合子
D.若用引物1和引物3进行PCR,能更好地区分杂合子和纯合子
12.(2023·浙江)叠氮脱氧胸苷(AZT)可与逆转录酶结合并抑制其功能。下列过程可直接被AZT阻断的是(  )。
A.复制 B.转录 C.翻译 D.逆转录
13.(2023·广东)科学理论随人类认知的深入会不断被修正和补充,下列叙述错误的是(  )
A.新细胞产生方式的发现是对细胞学说的修正
B.自然选择学说的提出是对共同由来学说的修正
C.RNA逆转录现象的发现是对中心法则的补充
D.具催化功能RNA的发现是对酶化学本质认识的补允
14.(2023·浙江)核糖体是蛋白质合成的场所。某细菌进行蛋白质合成时,多个核糖体串联在一条mRNA上形成念珠状结构——多聚核糖体(如图所示)。多聚核糖体上合成同种肽链的每个核糖体都从mRNA同一位置开始翻译,移动至相同的位置结束翻译。多聚核糖体所包含的核糖体数量由mRNA的长度决定。下列叙述正确的是(  )
A.图示翻译过程中,各核糖体从mRNA的3’端向5’端移动
B.该过程中,mRNA上的密码子与tRNA上的反密码子互补配对
C.图中5个核糖体同时结合到mRNA上开始翻译,同时结束翻译
D.若将细菌的某基因截短,相应的多聚核糖体上所串联的核糖体数目不会发生变化
(2023·浙江)阅读下列材料,回答下列小题。
基因启动子区发生DNA甲基化可导致基因转录沉默。研究表明,某植物需经春化作用才能开花,该植物的DNA甲基化水平降低是开花的前提。用5-azaC处理后,该植株开花提前,检测基因组DNA,发现5’胞嘧啶的甲基化水平明显降低,但DNA序列未发生改变,这种低DNA甲基化水平引起的表型改变能传递给后代。
15.这种DNA甲基化水平改变引起表型改变,属于(  )
A.基因突变 B.基因重组 C.染色体变异 D.表观遗传
16.该植物经5-azaC去甲基化处理后,下列各项中会发生显著改变的是(  )
A.基因的碱基数量 B.基因的碱基排列顺序
C.基因的复制 D.基因的转录
17.(2024·福建)人肠道细胞中载脂蛋白B基因转录后,其mRNA上特定位置的碱基C在相关酶的作用下转变为碱基U,造成该位置相应的密码子变为终止密码子UAA,该终止密码子对应的DNA模板链序列为(  )
A.5'-TTG-3' B.5'-ATT-3' C.5'-GTT-3' D.5'-TTA-3'
18.(2024·贵州)大鼠脑垂体瘤细胞可分化成细胞Ⅰ和细胞Ⅱ两种类型,仅细胞Ⅰ能合成催乳素。细胞Ⅰ和细胞Ⅱ中催乳素合成基因的碱基序列相同,但细胞Ⅱ中该基因多个碱基被甲基化。细胞Ⅱ经氮胞苷处理后,再培养可合成催乳素。下列叙述错误的是(  )
A.甲基化可以抑制催乳素合成基因的转录
B.氮胞苷可去除催乳素合成基因的甲基化
C.处理后细胞Ⅱ的子代细胞能合成催乳素
D.该基因甲基化不能用于细胞类型的区分
19.(2024·甘肃) 癌症的发生涉及原癌基因和抑癌基因一系列遗传或表观遗传的变化,最终导致细胞不可控的增殖。下列叙述错误的是(  )
A.在膀胱癌患者中,发现原癌基因H-ras所编码蛋白质的第十二位氨基酸由甘氨酸变为缬氨酸,表明基因突变可导致癌变
B.在肾母细胞瘤患者中,发现抑癌基因WT1的高度甲基化抑制了基因的表达,表明表观遗传变异可导致癌变
C.在神经母细胞瘤患者中,发现原癌基因N-myc发生异常扩增,基因数目增加,表明染色体变异可导致癌变
D.在慢性髓细胞性白血病患者中,发现9号和22号染色体互换片段,原癌基因abl过度表达,表明基因重组可导致癌变
20.(2024·天津)环境因素可通过下图所示途径影响生物性状。有关叙述错误的是(  )
A.①可引起DNA的碱基序列改变
B.②可调节③水平的高低
C.②引起的变异不能为生物进化提供原材料
D.④可引起蛋白质结构或功能的改变
21.(2024·海南)某种鸟的卵黄蛋白原基因的启动子部分区域存在甲基化修饰。成熟雌鸟产生的雌激素可将此甲基化去除,雄鸟因缺乏雌激素仍保持高度甲基化。下列有关叙述正确的是(  )
A.卵黄蛋白原基因在成熟雌鸟中可以表达,在雄鸟中表达受到抑制
B.卵黄蛋白原基因转录出的mRNA中,含有甲基化区域序列的互补序列
C.该种雌鸟和雄鸟交配产生的雌雄后代发育成熟后,体内均无卵黄蛋白原
D.卵黄蛋白原基因的乙酰化和甲基化均可产生表观遗传现象
22.(2024·河北)下列关于DNA复制和转录的叙述,正确的是(  )
A.DNA复制时,脱氧核苷酸通过氢键连接成子链
B.复制时,解旋酶使DNA双链由5'端向3'端解旋
C.复制和转录时,在能量的驱动下解旋酶将DNA双链解开
D.DNA复制合成的子链和转录合成的RNA延伸方向均为由5'端向3'端
23.(2024·安徽)真核生物细胞中主要有3类RNA聚合酶,它们在细胞内定位和转录产物见下表。此外,在线粒体和叶绿体中也发现了分子量小的RNA聚合酶。下列叙述错误的是(  )
种类 细胞内定位 转录产物
RNA聚合酶I 核仁 5. 8SrENA、18SrFN4 、28SrRNA
RNA聚合酶II 核质 mRNA
RNA聚合酶Ⅲ 核质 tRNA、5SrRNA
注:各类RNA均为核糖体的组成成分
A.线粒体和叶绿体中都有DNA,两者的基因转录时使用各自的RNA聚合酶
B.基因的 DNA 发生甲基化修饰,抑制RNA聚合酶的结合,可影响基因表达
C.RNA聚合酶I和Ⅲ的转录产物都有rRNA,两种酶识别的启动子序列相同
D.编码 RNA 聚合酶I的基因在核内转录、细胞质中翻译,产物最终定位在核仁
24.(2024·重庆)某种海鱼鳃细胞的NKA酶是一种载体蛋白,负责将细胞内的Na+转运到血液中,为研究NKA与Na+浓度的关系,研究小组将若干海鱼放在低于海水盐度的盐水中,按时间点分组取样检测,部分结果如表。结合数据分析,下列叙述错误的是(  )
时间(h) Na+浓度(单位略) NKA表达(相对值) NKA酶的相对活性
血液 鳃细胞 mRNA 蛋白质
0 320 15 1.0 1.0 1.0
0.5 290 15 1.5 1.0 0.8
3 220 15 0.6 1.0 0.6
6 180 15 0.4 0.4 0.4
12 180 15 0.2 0.2 0.4
A.NKAmRNA和蛋白质表达趋势不一致是NKA基因中甲基化导致的
B.本实验中时间变化不是影响NKA基因转录变化的直接因素
C.NKA酶在维持海鱼鳃细胞内渗透压平衡时需要直接消耗ATP
D.与0h组相比,表中其他时间点的海鱼红细胞体积会增大
25.(2024·广东)研究发现,短暂地抑制果蝇幼虫中PcG 蛋白(具有组蛋白修饰功能)的合成,会启动原癌基因zfhl的表达,导致肿瘤形成。驱动此肿瘤形成的原因属于(  )
A.基因突变 B.染色体变异 C.基因重组 D.表观遗传
26.(2024·河北)细胞内不具备运输功能的物质或结构是(  )
A.结合水 B.囊泡 C.细胞骨架 D.tRNA
27.(2024·贵州)如图是某基因编码区部分碱基序列,在体内其指导合成肽链的氨基酸序列为:甲硫氨酸—组氨酸—脯氨酸—赖氨酸……下列叙述正确的是(  )
注:AUG(起始密码子):甲硫氨酸;CAU、CAC:组氨酸;CCU:脯氨酸;AAG:赖氨酸;UCC:丝氨酸;UAA(终止密码子)
A.①链是转录的模板链,其左侧是5'端,右侧是3'端
B.若在①链5~6号碱基间插入一个碱基G,合成的肽链变长
C.若在①链1号碱基前插入一个碱基G,合成的肽链不变
D.碱基序列不同的mRNA翻译得到的肽链不可能相同
28.(2024·湖南)非酒精性脂肪性肝病是以肝细胞的脂肪变性和异常贮积为病理特征的慢性肝病。葡萄糖在肝脏中以糖原和甘油三酯两种方式储存。蛋白R1在高尔基体膜上先后经S1和S2蛋白水解酶酶切后被激活,进而启动脂肪酸合成基因(核基因)的转录。糖原合成的中间代谢产物UDPG能够通过膜转运蛋白F5进入高尔基体内。抑制S1蛋白水解酶的活性,调控机制如图所示。下列叙述错误的是(  )
A.体内多余的葡萄糖在肝细胞中优先转化为糖原,糖原饱和后转向脂肪酸合成
B.敲除F5蛋白的编码基因会增加非酒精性脂肪肝的发生率
C.降低高尔基体内UDPG量或S2蛋白失活会诱发非酒精性脂肪性肝病
D.激活后的R1通过核孔进入细胞核,肩动脂肪酸合成基因的转录
29.(2024·湖北真题)编码某蛋白质的基因有两条链,一条是模板链(指导mRNA合成),其互补链是编码链。若编码链的一段序列为5'﹣ATG﹣3',则该序列所对应的反密码子是(  )
A.5'﹣CAU﹣3' B.5'﹣UAC﹣3' C.5'﹣TAC﹣3' D.5'﹣AUG﹣3'
30.(2024·黑吉辽)如图表示DNA半保留复制和甲基化修饰过程。研究发现,50岁同卵双胞胎间基因组DNA甲基化的差异普遍比3岁同卵双胞胎间的差异大。下列叙述正确的是(  )
A.酶E的作用是催化DNA复制
B.甲基是DNA半保留复制的原料之一
C.环境可能是引起DNA甲基化差异的重要因素
D.DNA甲基化不改变碱基序列和生物个体表型
31.(2023·海南)某植物的叶形与R基因的表达直接相关。现有该植物的植株甲和乙,二者R基因的序列相同。植株甲R基因未甲基化,能正常表达;植株乙R基因高度甲基化,不能表达。下列有关叙述正确的是(  )
A.植株甲和乙的R基因的碱基种类不同
B.植株甲和乙的R基因的序列相同,故叶形相同
C.植株乙自交,子一代的R基因不会出现高度甲基化
D.植株甲和乙杂交,子一代与植株乙的叶形不同
32.(2024·浙江选考) 某种蜜蜂的蜂王和工蜂具有相同的基因组。雌性工蜂幼虫主要食物是花蜜和花粉,若喂食蜂王浆,也能发育成为蜂王。利用分子生物学技术降低DNA甲基化酶的表达后, 即使一直喂食花蜜花粉,雌性工蜂幼虫也会发育成蜂王。下列推测正确的是(  )
A.花蜜花粉可降低幼虫发育过程中DNA的甲基化
B.蜂王DNA的甲基化程度高于工蜂
C.蜂王浆可以提高蜜蜂DNA的甲基化程度
D.DNA的低甲基化是蜂王发育的重要条件
33.(2025·湖北) 我国科学家对三万余株水稻进行筛选,成功定位并克隆出耐碱—耐热基因ATT,发现该基因编码GA20 氧化酶,从而调控赤霉素的生物合成。适宜浓度的赤霉素通过调节SLR1蛋白的含量,能减少碱性和高温环 境对植株的损伤。下列叙述错误的是(  )
A.该研究表明基因与性状是一一对应关系
B.ATT 基因通过控制酶的合成影响水稻的性状
C.可以通过调节ATT基因的表达调控赤霉素的水平
D.该研究成果为培育耐碱—耐热水稻新品种提供了新思路
34.(2025·河北) M和N是同一染色体上两个基因的部分序列,其转录方向如图所示。表中对M和N转录产物的碱基序列分析正确的是(  )
编号 M的转录产物 编号 N的转录产物
① 5'-UCUACA-3' ③ 5'-AGCUGU-3'
② 5'-UGUAGA-3' ④ 5'-ACAGCU-3'
A.①③ B.①④ C.②③ D.②④
35.(2025·陕晋青宁)某常染色体遗传病致病基因为H,在一些个体中可因甲基化而失活(不表达),又会因去甲基化而恢复表达。由于遗传背景的差异,H基因在精子中为甲基化状态,在卵细胞中为去甲基化状态,且都在受精后被子代保留。该病的某系谱图如下,Ⅲ1的基因型为Hh,不考虑其他表观遗传效应和变异的影响,下列分析错误的是(  )
A.I1和I2均含有甲基化的H基因
B.Ⅱ1为杂合子的概率
C.Ⅱ2和Ⅱ3再生育子女的患病概率是
D.Ⅲ1的h基因只能来自父亲
36.(2025·陕晋青宁)金刚鹦鹉的羽毛色彩缤纷。研究发现乙醛脱氢酶能催化鹦鹉黄素的醛基转化为羧基,造成羽色由红到黄的渐变。同一只鹦鹉不同部位的羽色有红黄差异,该现象最不可能源于(  )
A.乙醛脱氢酶基因序列的差异
B.编码乙醛脱氢酶mRNA量的差异
C.乙醛脱氢酶活性的差异
D.鹦鹉黄素醛基转化为羧基数的差异
37.(2025·江苏)甲基化读取蛋白Y识别甲基化修饰的mRNA,引起基因表达效应改变,如图所示。下列相关叙述正确的是(  )
A.甲基化通过抑制转录过程调控基因表达
B.图中甲基化的碱基位于脱氧核糖核苷酸链上
C.蛋白Y可结合甲基化的mRNA并抑制表达
D.若图中DNA的碱基甲基化也可引起表观遗传效应
38.(2025·山东)镰状细胞贫血是由等位基因H、h控制的遗传病。患者(hh)的红细胞只含异常血红蛋白,仅少数患者可存活到成年;正常人(HH)的红细胞只含正常血红蛋白;携带者(Hh)的红细胞含有正常和异常血红蛋白,并对疟疾有较强的抵抗力。下列说法错误的是(  )
A.引起镰状细胞贫血的基因突变为中性突变
B.疟疾流行区,基因h不会在进化历程中消失
C.基因h通过控制血红蛋白的结构影响红细胞的形态
D.基因h可影响多个性状,不能体现基因突变的不定向性
39.(2025·山东)关于豌豆胞核中淀粉酶基因遗传信息传递的复制、转录和翻译三个过程,下例说法错误的是(  )
A.三个过程均存在碱基互补配对现象
B.三个过程中只有复制和转录发生在细胞核内
C.根据三个过程的产物序列均可确定其模板序列
D.RNA聚合酶与核糖体沿模板链的移动方向不同
40.(2024·广西)科学家通过小鼠低蛋白饮食与正常饮食的对比实验,发现亲代的低蛋白饮食可影响自身基因表达(其机理如图),且这种影响可遗传给子代。据图分析,下列说法正确的是(  )
A.自身基因表达和表型发生变化的现象,称为表观遗传
B.组蛋白甲基化水平增加,将导致相关基因表达水平降低
C.ATF7的磷酸化,将导致组蛋白表观遗传修饰水平提高
D.亲代的低蛋白饮食,会改变子代小鼠的DNA碱基序列
二、非选择题
41.(2023·全国乙卷)GFP是水母体内存在的能发绿色荧光的一种蛋白。科研人员以GFP基因为材料,利用基因工程技术获得了能发其他颜色荧光的蛋白,丰富了荧光蛋白的颜色种类。回答下列问题。
(1)构建突变基因文库,科研人员将GFP基因的不同突变基因分别插入载体,并转入大肠杆菌制备出GFP基因的突变基因文库。通常,基因文库是指   。
(2)构建目的基因表达载体。科研人员从构建的GFP突变基因文库中提取目的基因(均为突变基因)构建表达载体,其模式图如下所示(箭头为GFP突变基因的转录方向)。图中①为   ;②为   ,其作用是   ;图中氨苄青霉素抗性基因是一种标记基因,其作用是   。
(3)目的基因的表达。科研人员将构建好的表达载体导入大肠杆菌中进行表达,发现大肠杆菌有的发绿色荧光,有的发黄色荧光,有的不发荧光。请从密码子特点的角度分析,发绿色荧光的可能原因是   (答出1点即可)。
(4)新蛋白与突变基因的关联性分析。将上述发黄色荧光的大肠杆菌分离纯化后,对其所含的GFP突变基因进行测序,发现其碱基序列与GFP基因的不同,将该GFP突变基因命名为YFP基因(黄色荧光蛋白基因)。若要通过基因工程的方法探究YFP基因能否在真核细胞中表达,实验思路是   。
42.(2023·江苏)帕金森综合征是一种神经退行性疾病,神经元中α-Synuclein蛋白聚积是主要致病因素。研究发现患者普遍存在溶酶体膜蛋白TMEM175变异,如图所示。为探究TMEM175蛋白在该病发生中的作用,进行了一系列研究。请回答下列问题:
(1)帕金森综合征患者TMEM175蛋白的第41位氨基酸由天冬氨酸突变为丙氨酸,说明TMEM175基因发生   而突变,神经元中发生的这种突变   (从“能”“不能”“不一定”中选填)遗传。
(2)突变的TMEM175基因在细胞核中以   为原料,由RNA聚合酶催化形成   键,不断延伸合成mRNA.
(3)mRNA转移到细胞质中,与   结合,合成一段肽链后转移到粗面内质网上继续合成,再由囊泡包裹沿着细胞质中的   由内质网到达高尔基体。突变的TMEM175基因合成的肽链由于氨基酸之间作用的变化使肽链的   改变,从而影响TMEM175蛋白的功能。
(4)基因敲除等实验发现TMEM175蛋白参与溶酶体内酸碱稳态调节。如图1所示,溶酶体膜的   对H+具有屏障作用,膜上的H+转运蛋白将H+以   的方式运入溶酶体,使溶酶体内pH小于细胞质基质。TMEM175蛋白可将H+运出,维持溶酶体内pH约为4.6.据图2分析,TMEM175蛋白变异将影响溶酶体的功能,原因是   。
(5)综上推测,TMEM175蛋白变异是引起α-Synuclein蛋白聚积致病的原因,理由是   。
43.(2023·湖北)乙烯(C2H4)是一种植物激素,对植物的生长发育起重要作用。为研究乙烯作用机制,进行了如下三个实验。
【实验一】乙烯处理植物叶片2小时后,发现该植物基因组中有2689个基因的表达水平升高,2374个基因的表达水平下降。
【实验二】某一稳定遗传的植物突变体甲,失去了对乙烯作用的响应(乙烯不敏感型)。将该突变体与野生型植株杂交,F1植株表型为乙烯不敏感。F1自交产生的F2植株中,乙烯不敏感型与敏感型的植株比例为9:7。
【实验三】科学家发现基因A与植物对乙烯的响应有关,该基因编码一种膜蛋白,推测该蛋白能与乙烯结合。为验证该推测,研究者先构建含基因A的表达载体,将其转入到酵母菌中,筛选出成功表达蛋白A的酵母菌,用放射性同位素14C标记乙烯(14C2H4),再分为对照组和实验组进行实验,其中实验组是用不同浓度的14C2H4与表达有蛋白A的酵母菌混合6小时,通过离心分离酵母菌,再检测酵母菌结合14C2H4的量。结果如图所示。
回答下列问题:
(1)实验一中基因表达水平的变化可通过分析叶肉细胞中的   (填“DNA”或“mRNA”)含量得出。
(2)实验二F2植株出现不敏感型与敏感型比例为9:7的原因是   。
(3)实验三的对照组为:用不同浓度的14C2H4与   混合6小时,通过离心分离酵母菌,再检测酵母菌结合14C2H4的量。
(4)实验三中随着14C2H4相对浓度升高,实验组曲线上升趋势变缓的原因是   。
(5)实验三的结论是   。
44.(2023·广东)放射性心脏损伤是由电离辐射诱导的大量心肌细胞凋亡产生的心脏疾病。一项新的研究表明,circRNA可以通过miRNA调控P基因表达进而影响细胞凋亡,调控机制见下图。miRNA是细胞内一种单链小分子RNA,可与mRNA靶向结合并使其降解。circRNA是细胞内.种闭合环状RNA,可靶向结合miRNA使其不能与mRNA结合,从而提高mRNA的翻译水平。
回答下列问题:
(1)放射刺激心肌细胞产生的   会攻击生物膜的磷脂分子,导致放射性心肌损伤。
(2)前体mRNA是通过   酶以DNA的一条链为模板合成的,可被剪切成circRNA等多种RNA。circRNA和mRNA在细胞质中通过对   的竞争性结合,调节基因表达。
(3)据图分析,miRNA表达量升高可影响细胞凋亡,其可能的原因是   。
(4)根据以上信息,除了减少miRNA的表达之外,试提出一个治疗放射性心脏损伤的新思路   。
45.(2023·全国乙卷)某种观赏植物的花色有红色和白色两种。花色主要是由花瓣中所含色素种类决定的,红色色素是由白色底物经两步连续的酶促反应形成的,第1步由酶1催化,第2步由酶2催化,其中酶1的合成由A基因控制,酶2的合成由B基因控制。现有甲、乙两个不同的白花纯合子,某研究小组分别取甲、乙的花瓣在缓冲液中研磨,得到了甲、乙花瓣的细胞研磨液,并用这些研磨液进行不同的实验。
实验一:探究白花性状是由A或B基因单独突变还是共同突变引起的
①取甲、乙的细胞研磨液在室温下静置后发现均无颜色变化。
②在室温下将两种细胞研磨液充分混合,混合液变成红色。
③将两种细胞研磨液先加热煮沸,冷却后再混合,混合液颜色无变化。
实验二:确定甲和乙植株的基因型
将甲的细胞研磨液煮沸,冷却后与乙的细胞研磨液混合,发现混合液变成了红色。
回答下列问题。
(1)酶在细胞代谢中发挥重要作用,与无机催化剂相比,酶所具有的特性是   (答出3点即可);煮沸会使细胞研磨液中的酶失去催化作用,其原因是高温破坏了酶的   。
(2)实验一②中,两种细胞研磨液混合后变成了红色,推测可能的原因是   。
(3)根据实验二的结果可以推断甲的基因型是   ,乙的基因型是   ;若只将乙的细胞研磨液煮沸,冷却后与甲的细胞研磨液混合,则混合液呈现的颜色是   。
46.(2024·全国甲卷)袁隆平研究杂交水稻,对粮食生产具有突出贡献。回答下列问题。
(1)用性状优良的水稻纯合体(甲)给某雄性不育水稻植株授粉,杂交子一代均表现雄性不育;杂交子一代与甲回交(回交是杂交后代与两个亲本之一再次交配),子代均表现雄性不育;连续回交获得性状优良的雄性不育品系(乙)。由此推测控制雄性不育的基因(A)位于    (填“细胞质”或“细胞核”)。
(2)将另一性状优良的水稻纯合体(丙)与乙杂交,F1均表现雄性可育,且长势与产量优势明显,F1即为优良的杂交水稻。丙的细胞核基因R的表达产物能够抑制基因A的表达。基因R表达过程中,以mRNA为模板翻译产生多肽链的细胞器是    。F1自交子代中雄性可育株与雄性不育株的数量比为    。
(3)以丙为父本与甲杂交(正交)得F1,F1自交得F2,则F2中与育性有关的表现型有    种。反交结果与正交结果不同,反交的F2中与育性有关的基因型有    种。
(2024·天津)阅读下列材料,完成下面小题。
蛋白质的2-羟基异丁酰化(Khib)修饰与去修饰对植物抗病性具有重要调节作用。棉花M蛋白是去除Khib修饰的酶,大丽轮枝菌感染可以诱导易感棉M基因表达上调,而抗病棉无论感染与否,M基因一直低表达。
H4是结合并稳定染色质DNA的组蛋白之一。M蛋白可降低H4的Khib修饰,导致DNA螺旋化程度提高,使转录相关酶更难与DNA结合,降低抗病相关基因(如水杨酸受体基因)的表达。
P蛋白由核内P基因编码,经翻译后转移并定位于叶绿体中,参与捕光复合体Ⅱ的损伤修复。M蛋白可降低P蛋白的Khib修饰,从而削弱P蛋白对捕光复合体Ⅱ的修复功能,进而降低叶绿体产生活性氧的能力,导致易感棉抗病性下降。
47.H4的Khib修饰改变了(  )
A.染色质的DNA序列 B.水杨酸受体基因的转录水平
C.转录相关酶的活性 D.M蛋白的活性
48.为提高易感棉的抗病性,采取的措施正确的是(  )
A.将抗病棉的M基因转入易感棉 B.上调M基因表达
C.降低H4的Khib修饰 D.增加P蛋白的Khib修饰
49.棉花通过复杂的机制调节其抗病能力,下列说法错误的是(  )
A.P基因表达及其产物行使功能涉及细胞核、核糖体和叶绿体等
B.棉花的抗病能力既受核蛋白也受叶绿体蛋白的调控
C.Khib修饰从基因表达和蛋白质功能两个层面影响棉花抗病性
D.水杨酸受体和捕光复合体Ⅱ的Khib修饰可提高棉花抗病性
50.(2024·北京)玉米是我国栽培面积最大的农作物,籽粒大小是决定玉米产量的重要因素之一,研究籽粒的发育机制,对保障粮食安全有重要意义。
(1)研究者获得矮秆玉米突变株,该突变株与野生型杂交,F1表型与   相同,说明矮秆是隐性性状。突变株基因型记作rr。
(2)观察发现,突变株所结籽粒变小。籽粒中的胚和胚乳经受精发育而成,籽粒大小主要取决于胚乳体积。研究发现,R基因编码DNA去甲基化酶,亲本的该酶在本株玉米所结籽粒的发育中发挥作用。突变株的R基因失活,导致所结籽粒胚乳中大量基因表达异常,籽粒变小。野生型及突变株分别自交,检测授粉后14天胚乳中DNA甲基化水平,预期实验结果为   。
(3)已知Q基因在玉米胚乳中特异表达,为进一步探究R基因编码的DNA去甲基化酶对Q基因的调控作用,进行如下杂交实验,检测授粉后14天胚乳中Q基因的表达情况,结果如表1。
表1
组别 杂交组合 Q基因表达情况
1 RRQQ(♀)×RRqq(♂) 表达
2 RRqq(♀)×RRQQ(♂) 不表达
3 rrQQ(♀)×RRqq(♂) 不表达
4 RRqq(♀)×rrQQ(♂) 不表达
综合已有研究和表1结果,阐述R基因对胚乳中Q基因表达的调控机制。
(4)实验中还发现另外一个籽粒变小的突变株甲,经证实,突变基因不是R或Q。将甲与野生型杂交,F1表型正常,F1配子的功能及受精卵活力均正常。利用F1进行下列杂交实验,统计正常籽粒与小籽粒的数量,结果如表2。
表2
组别 杂交组合 正常籽粒:小籽粒
5 F1(♂)×甲(♀) 3:1
6 F1(♀)×甲(♂) 1:1
已知玉米子代中,某些来自父本或母本的基因,即使是显性也无功能。
①根据这些信息,如何解释基因与表2中小籽粒性状的对应关系?请提出你的假设。
②若F1自交,所结籽粒的表型及比例为 ,则支持上述假设。
51.(2024·黑吉辽)作物在成熟期叶片枯黄,若延长绿色状态将有助于提高产量。某小麦野生型在成熟期叶片正常枯黄(熟黄),其单基因突变纯合子m1在成熟期叶片保持绿色的时间延长(持绿)。回答下列问题。
(1)将m1与野生型杂交得到F1表型为    (填“熟黄”或“持绿”),则此突变为隐性突变(A1基因突变为a1基因)。推测A1基因控制小麦熟黄,将A1基因转入    个体中表达,观察获得的植株表型可验证此推测。
(2)突变体m2与m1表型相同,是A2基因突变为a2基因的隐性纯合子,A2基因与A1基因是非等位的同源基因,序列相同。A1、A2、a1和a2基因转录的模板链简要信息如图1。据图1可知,与野生型基因相比,a1基因发生了    ,a2基因发生了    ,使合成的mRNA都提前出现了    ,翻译出的多肽链长度变    ,导致蛋白质的空间结构改变,活性丧失。A1(A2)基因编码A酶,图2为检测野生型和两个突变体叶片中A酶的酶活性结果,其中    号株系为野生型的数据。
(3)A1和A2基因位于非同源染色体上,m1的基因型为    ,m2的基因型为    。若将m1与m2杂交得到F1,F1自交得到F2,F2中自交后代不发生性状分离个体的比例为    。
52.(2025·湖北) 某种昆虫病毒的遗传物质为双链环状DNA.该病毒具有包膜结构,包膜上的蛋白A与宿主细胞膜上的受 体结合后,两者的膜发生融合,从而使病毒DNA进入细胞内进行自我复制。回答下列问题:
(1)要清楚观察病毒的形态结构需要使用的显微镜类型是   。
(2)体外培养的梭形昆虫细胞,被上述病毒感染后会转变为圆球形,原因是病毒感染引起了昆虫细胞内    (填细胞结构名称)的改变。
(3)这类病毒的基因组中通常含有抗细胞凋亡的基因,这类基因对病毒的生物学意义是:    。
(4)该病毒DNA能在宿主细胞中自我复制,却无法在大肠杆菌中复制。为解决这一问题,可在该病毒的 DNA中插入   序列,以实现利用大肠杆菌扩增该病毒DNA的目的。
(5)用该病毒感染哺乳动物细胞,可以在细胞内检测到该病毒完整的基因组DNA,但无对应的转录产物。 推测其无法转录的原因是:   。
(6)采用脂溶剂处理该病毒颗粒可使病毒失去对宿主细胞的感染性,其原因是:   。
53.(2025·江苏)真核细胞进化出精细的基因表达调控机制,图示部分调控过程。请回答下列问题:
(1)细胞核中,DNA缠绕在组蛋白上形成   。由于核膜的出现,实现了基因的转录和   在时空上的分隔。
(2)基因转录时,   酶结合到DNA链上催化合成RNA。加工后转运到细胞质中的RNA,直接参与蛋白质肽链合成的有rRNA、mRNA和   。分泌蛋白的肽链在   完成合成后,还需转运到高尔基体进行加工。
(3)转录后加工产生的lncRNA、miRNA参与基因的表达调控。据图分析,lncRNA调控基因表达的主要机制有   。
miRNA与AGO 等蛋白结合形成沉默复合蛋白,引导降解与其配对结合的RNA。据图可知,miRNA 发挥的调控作用有   。
(4)外源 RNA 进人细胞后,经加工可形成 siRNA 引导的沉默复合蛋白,科研人员据此研究防治植物虫害的RNA 生物农药。根据 RNA 的特性及其作用机理,分析 RNA 农药的优点有   。
54.(2025·黑吉辽蒙)科学家系统解析了豌豆7对性状的遗传基础,以下为部分实验,回答下列问题。
(1)将控制花腋生和顶生性状的基因定位于4号染色体上,用F/f表示。在大多数腋生纯系与顶生纯系的杂 交中,F2 腋生:顶生约为3:1,符合孟德尔的   定律。
(2)然而,某顶生个体自交,子代个体中20%以上表现为腋生。此现象   (填“能”或“不能”)用 基因突变来解释,原因是   。
(3)定位于6号染色体上的基因D/d可能与(2)中的现象有关。为了验证这个假设,用两种纯种豌豆杂交得 到F1 ,F1 自交产生的F2 表型和基因型的对应关系如下表,表格内“+”、“-”分别表示有、无相应基因型的个体。
腋生表型 顶生表型
基因型 FF Ff ff 基因型 FF Ff ff
DD + + - DD - - +
Dd + + - Dd - - +
dd + + + dd - - -
结果证实了上述假设,则F2 中腋生:顶生的理论比例为   ,并可推出(2)中顶生亲本的基因型是   。
(4)研究发现群体中控制黄色子叶的Y基因有两种突变形式y-1和y-2,基因结构示意图如下。Y突变为y-1 导致其表达的蛋白功能丧失,Y突变为y-2导致   。y-1和y-2纯合突变体都表现为绿色子叶。
在一次y-1纯合体与y-2纯合体杂交中,F1 全部为绿色子叶,F2 出现黄色子叶个体,这种现象可因减数分裂过 程中发生染色体互换引起。图中哪一个位点发生断裂并交换能解释上述现象?   (填“①”或“②”或 “③”)。若此F1 个体的20个花粉母细胞(精母细胞)在减数分裂中各发生一次此类交换,在减数分裂完成 时会产生   个具有正常功能Y基因的子细胞。
答案解析部分
1.【答案】A
【解析】【解答】甲这种氨基酸只存在于某些古细菌中,所以要让大肠杆菌中合成含有甲的肽链,必须转入②甲。同时转运氨基酸甲的tRNA只能是tRNA甲,而大肠杆菌中没有tRNA甲,所以要让大肠杆菌中合成含有甲的肽链,必须转入⑥tRNA甲的基因,可以让大肠杆菌转录出tRNA甲。要让甲与tRNA甲结合生成携带了甲的tRNA甲需要酶E的催化,而大肠杆菌中没有酶E,所以必须要给大肠杆菌转入⑤酶E的基因,让该基因在大肠杆菌细胞中表达,合成出酶E。至于①ATP、③RNA聚合酶,大肠杆菌中都有,不需要转入大肠杆菌细胞中。古菌的核糖体没有特异性,与大肠杆菌中的核糖体功能是相同的,所以不需要给大肠杆菌转入④古菌的核糖体。综上所述,若要在大肠杆菌中合成含有甲的肽链,则②⑤⑥必须转入大肠杆菌细胞内,故A符合题意,B、C、D不符合题意。
故答案为:A。
【分析】1、转录:在细胞核中,以DNA的一条链为模板,按照碱基互补配对原则,合成RNA的过程。(注:叶绿体、线粒体也有转录)
转录的条件:模板(DNA)、原料(四种核糖核苷酸)、能量(ATP)、酶(解旋酶和RNA聚合酶)。
2、翻译:游离在细胞质中的各种氨基酸,以mRNA为模板,合成具有一定氨基酸顺序的蛋白质的过程。(注:叶绿体、线粒体也有翻译)
翻译的条件:模板(mRNA)、原料(氨基酸)、能量(ATP)、酶、核糖体、tRNA。
2.【答案】D
【解析】【解答】A、乙醇在人体内转化为乙醛后,可以在ALDH2作用下再转化为乙酸,最终转化成CO2和水,减少对人体的危害。但ALDH2基因某突变会使ALDH2活性下降或丧失,使乙醛不能最终转化成CO2和水,导致乙醛积累危害人体。东亚人群中该基因突变频率较高,故与高加索人群相比,东亚人群饮酒后面临的风险更高,A正确;
B、头孢类药物能抑制ALDH2的活性,使乙醛不能正常转化成乙酸,最终转化成CO2和水。导致乙醛在人体积累对人体造成危害。故患者在服用头孢类药物期间应避免摄人含酒精的药物或食物,B正确;
C、ALDH2基因表达产物为乙醛脱氢酶2,是一种蛋白质。因此该基因通过控制酶的合成来控制代谢过程,进而控制生物体的性状,表明基因通过蛋白质控制生物性状 ,C正确;
D、ALDH2酶制剂属于蛋白质,饮酒前口服进入消化道会被蛋白酶水解而失去作用,故饮酒前口服ALDH2酶制剂不能起到预防酒精中毒的作用,D错误。
故答案为:D。
【分析】对性状控制的两种方式:①基因可以通过控制酶的合成控制细胞代谢进而控制生物的性状;②基因通过控制蛋白质的结构直接控制生物的性状。
3.【答案】D
【解析】【解答】A、tRNA链经过折叠,看上去像三叶草的叶形,局部会发生碱基互补配对,A不符合题意;
B、反密码子为5'-CAU-3'的tRNA中的反密码子只对应一种密码子,一种密码子只对应一种氨基酸,所以该tRNA只能转运一种氨基酸,B不符合题意;
C、mRNA上的终止密码子没有对应的氨基酸,也就没有相应的tRNA与之结合,C不符合题意;
D、若基因发生突变,则会导致mRNA碱基顺序发生改变,使密码子发生改变,反密码子第1位碱基常为次黄嘌呤(I)与密码子第3位碱基A、U、C皆可配对,可使氨基酸的种类及排列顺序保持不变,从而
有利于保持物种遗传的稳定性,D符合题意。
故答案为:D。
【分析】1、mRNA、tRNA和rRNA都是由DNA转录而来的产物。
2、mRNA上3个相邻的碱基决定一个氨基酸,每3个这样的碱基叫作1个密码子,由于密码子具有简并性,所以一种氨基酸可对应多种密码子,而一种密码子只能对应一种氨基酸。
3、每种tRNA只能识别并转运一种氨基酸,tRNA比mRNA小的多,分子结构也很特别:RNA链经过折叠,看上去像三叶草的叶形,其一端是携带氨基酸的部位,另一端有三个相邻的碱基。每个tRNA的这三个碱基可以与mRNA上的密码子互补配对,叫作反密码子。
4.【答案】B
【解析】【解答】A、由图可知,D基因编码152个氨基酸,但是D基因还包括D基因终止部分的碱基,所以D基因共有459个碱基,A不符合题意;
B、由图可知,E基因中编码第2个和第3个氨基酸的碱基序列是5′-GTACGC-3′,所以其互补DNA序列是5′-GCGTAC-3′,B符合题意;
C、DNA的基本组成单位是脱氧核糖核苷酸,所以噬菌体ΦX174的DNA复制需要DNA聚合酶和4种脱氧核糖核苷酸,C不符合题意;
D、由图可知,D基因包含E基因的编码序列,即E基因和D基因的编码区序列存在部分重叠,但重叠序列编码的氨基酸序列不同,D不符合题意。
故答案为:B。
【分析】1、分析图解:D基因包含E基因的编码序列,即E基因和D基因的编码区序列存在部分重叠,但重叠序列编码的氨基酸序列不同。
2、双链DNA中,A与T配对,G与C配对,在书写DNA序列时,要按照5′端到3′端的方向书写。
【答案】5.A
6.C
7.A
【解析】【分析】(1)一定条件下,细胞会将受损或功能退化的细胞结构等,通过溶酶体降解后再利用,这就是细胞自噬。处于营养缺乏条件下的细胞,通过细胞自噬可以获得维持生存所需的物质和能量:在细胞受到损伤、微生物入侵或细胞衰老时,通过细胞自噬,可以清除受损或衰老的细胞器,以及感染的微生物和毒素,从而维持细胞内部环境的稳定。
(2)溶酶体中含有多种水解酶,能够分解很多种物质以及衰老、损伤的细胞器,清除侵入细胞的病毒或病菌,被比喻为细胞内的“酶仓库”“消化系统”。
5.结合题干信息可知,某种抗生素对细菌核糖体有损伤作用,而真核生物的线粒体、叶绿体同样含有核糖体,这类核糖体与原核生物核糖体较为相似,由此推测抗生素大量摄入会危害人体,其最有可能危害人类细胞线粒体内核糖体,A正确,B、C、D错误。
故答案为:A。
6.A、叶绿体基质中也能分解ATP,线粒体基质中也能合成ATP,A错误;
B、结合题干信息可知,内质网和高尔基体在细胞分裂前期会破裂成较小的结构,所以细胞分裂中期不能观察到高尔基体,B错误;
C、叶绿体和线粒体内含有基因,这些基因也能通过转录和翻译进行表达,进而指导蛋白质合成,所以 叶绿体和线粒体内基因表达都遵循中心法则,C正确;
D、结合题干信息可知,植物细胞前质体可在光照诱导下变为叶绿体,但不能说明植物细胞叶绿体均由前质体产生,D错误。
故答案为:C。
7.A、溶酶体内的蛋白质是由附着在内质网上的核糖体合成的,不是游离的核糖体合成的,A错误;
B、溶酶体分解衰老、损伤的细胞器的产物,其中对细胞有利的物质可以被再次利用,对细胞有害的物质要排出体外,B正确;
C、溶酶体能够分解损伤、异常的细胞器,若溶酶体功能异常,细胞内可能积累异常线粒体,C正确;
D、结合题干信息可知,溶酶体内是酸性环境,溶酶体水解酶进入细胞质基质后,pH会发生改变,进而使水解酶活性降低,D正确。
故答案为:A。
8.【答案】B
【解析】【解答】A、基因突变后可能导致蛋白质结构发生改变,进而导致蛋白质功能发生改变,表现为酶活性降低,A正确;
B、启动子是RNA聚合酶识别与结合的位点,用于启动基因的转录,若该酶基因启动子甲基化,可能导致该基因的转录过程无法进行,不能合成该种酶,B错误;
C、若该酶中一个氨基酸发生变化,会导致该酶结构发生改变,从而导致功能改变,酶活性降低,C正确;
D、该酶在翻译过程中肽链加工方式变化,可能导致该酶的空间结构变化从而导致其功能改变,酶活性降低,D正确。
故答案为:B。
【分析】(1)蛋白质的结构决定功能,蛋白质结构与氨基酸的种类、数目、排列顺序以及肽链盘曲折叠的方式等有关。
(2)癌细胞是细胞基因突变产生的,易诱发生物发生基因突变并提高突变频率的因素可分为三类:物理因素,化学因素和生物因素;基因突变也会由于DNA复制偶尔发生错误等原因自发产生。癌细胞的特征:能够无限增殖;形态结构发生显著改变;细胞表面发生变化,细胞膜的糖蛋白等物质减少。
9.【答案】C
【解析】【解答】A、启动子是RNA聚合酶识别和结合的位点,基因转录时RNA聚合酶识别并结合到基因的启动子区域从而启动转录,A正确;
B、翻译时核糖体沿着mRNA移动且方向是是由5'端向3'端移动,B正确;
C、抑制CsrB基因转录会使CsrB减少,CsrA会更多地与glg mRNA结合,形成不稳定构象,glg mRNA被核糖核酸酶降解,无法翻译出UDPG焦磷酸化酶。而glg基因编码的UDPG焦磷酸化酶在糖原合成中起关键作用,故抑制CxrB基因的转录能抑制细菌糖原合成,C错误;
D、若CsrA都结合到CsrB上,则CsrA不与gg mRNA结合,从而使glg mRNA不被降解而正常进行翻译产生UDPG焦磷酸化酶,有利于细菌糖原的合成,D正确。
故答案为:C。
【分析】转录主要发生在细胞核中,模板是DNA的一条链,四种核糖核苷酸为原料,在RNA聚合酶的催化作用下产生RNA;翻译的场所为核糖体,以信使RNA为模版,氨基酸为原料合成蛋白质,在翻译过程中mRNA并不移动,而是核糖体沿着mRNA移动,进而依次读取密码子,最终因为模板mRNA相同,合成的多个多肽的氨基酸序列完全相同。
10.【答案】A
【解析】【解答】A、蛋白质是以碳链为基本骨架形成的生物大分子,因此帝企鹅蛋的卵清蛋白中C元素的质量分数高于N元素,A错误;
B、核酸、糖原、蛋白质都是生物大分子,由单体形成多聚体过程中都有水的产生,B正确;
C、孵化过程中会发生细胞分化,涉及基因的选择性表达,因此帝企鹅蛋孵化过程有mRNA和蛋白质种类的变化,C正确;
D、雄帝企鹅孵蛋期间不进食,无外界能量供应,主要消耗体内有机物供能,脂肪是良好的储能物质,因此主要靠消耗体内脂肪以供能,D正确。
故答案为:A。
【分析】(1)蛋白质、核酸和多糖都是生物大分子,都是由许多基本组成单位连接而成的,这些基本单位称为单体。生物大分子又称为单体的多聚体,每一个单体都是以若干个相连的碳原子构成的碳链为基本骨架,由许多单体连接成的多聚体。
(2)细胞分化是指在个体发育中,由一个或一种细胞增殖产生的后代,在形态,结构和生理功能上发生稳定性差异的过程。细胞分化的实质是基因的选择性表达。
11.【答案】B
【解析】【解答】A、由图可知,Gata3基因的启动子在Gata3基因和GFP基因的上游,可以控制GFP基因的表达,A错误;
B、由图可知,Gata3基因的启动子在Gata3基因和GFP基因的上游,可以控制二者的表达,且Gata3基因距离启动子较近,先合成Gata3蛋白,再合成绿色荧光蛋白,B正确;
C、分析图甲和图乙可知,引物1和引物2用于PCR扩增,扩增出的是Gata3基因和GFP基因大片段,2号条带的小鼠只含有大条带是Gata3-GFP基因纯合子,4号条带的小鼠只有小片段是野生型,C错误;
D、由图甲可知,若用引物1和引物3进行PCR,野生型和Gata3-GFP基因重组型获得的片段大小差异不大,不能区分杂合子和纯合子,D错误。
故答案为:B。
【分析】PCR技术
(1)概念:PCR全称为聚合酶链式反应,是一项在生物体外复制特定DNA的核酸合成技术。
(2)原理:DNA复制。
(3)前提:要有一段已知目的基因的核苷酸序列以便合成一对引物
(4)条件:模板DNA、四种脱氧核苷酸、一对引物、热稳定DNA聚台酶(Taq酶)。
(5)过程:①高温变性:DNA解旋过程;②低温复性:引物结合到互补链DNA上;③中温延伸:合成子链。PCR扩増中双链DNA解开不需要解旋酶,高温条件下氢键可自动解开。
12.【答案】D
【解析】【解答】由题意可知,AZT可与逆转录酶结合并抑制其功能,逆转录酶在逆转录过程中起作用,D正确,A、B、C错误。
故答案为:A。
【分析】逆转录是在逆转录酶的作用下,以RNA为模板合成DNA的过程。
13.【答案】B
【解析】【解答】A、施莱登和施旺最初建立的细胞学说认为新细胞是由老细胞产生的,后来耐格里、魏尔肖发现“细胞通过分裂产生新细胞”是对细胞学说的修正,A正确;
B、自然选择学说的提出是对拉马克的“用进废退,获得性遗传”,学说的修正,而共同由来学说为自然选择学说的提出奠定了基础,揭示了适应的形成和物种形成的原因,B错误;
C、科学家克里克首先预见了遗传信息传递的一般规律,并于1957年提出了中心法则:遗传信息可以从DNA流向DNA,即DNA的复制;也可以从DNA流向RNA,进而流向蛋白质,即遗传信息的转录和翻译。随着研究的不断深入,科学家对中心法则作出了补充:少数生物(如一些RNA病毒)的遗传信息可以从RNA流向RNA以及从RNA流向DNA,C正确;
D、科学家萨姆纳从刀豆种子中提取出脲酶并证明其本质为蛋白质,后来美国科学家切赫和奥尔特曼发现少数RNA也具有生物催化功能,也就是说酶的本质绝大多数是蛋白质,少数是RNA,因此这一发现对酶化学本质的认识进行了补充,D正确。
故答案为:B。
【分析】本题是对教材细胞学说的建立过程、现代生物进化理论的提出历程、中心法则的构建以及酶的发现与探索历程四段科学史的考查。
14.【答案】B
【解析】【解答】A、由图可知,图示翻译过程中,各核糖体从mRNA的5’端向3’端移动,A错误;
B、密码子上mRNA上决定1个氨基酸的3个相邻碱基,反密码子在tRNA上,是与密码子互补配对的3个碱基,在翻译时mRNA上的密码子与tRNA上的反密码子互补配对,B正确;
C、由图可知,5个核糖体先后结合到mRNA上开始翻译,并非是同时开始同时结束,C错误;
D、若将细菌的某基因截短,则转录形成的mRNA则变短,相应的多聚核糖体上所串联的核糖体数目可能会减少,D错误。
【分析】1、一个mRNA分子上可以相继结合多个核糖体,形成的结构叫做多聚核糖体,同时进行多条肽链的合成,因此,少量的mRNA分子就可以迅速合成出大量的蛋白质。
2、密码子:(1)概念:密码子是mRNA上相邻的3个碱基;(2)种类:64种,其中有3种是终止密码子,不编码氨基酸;(3)特点:a、密码子的简并性,一种密码子只能编码一种氨基酸,但一种氨基酸可能由一种或多种密码子编码;b、密码子具有通用性,即自然界所有的生物共用一套遗传密码。
3、tRNA:(1)结构:单链,存在局部双链结构,含有氢键;(2)种类:61种(3种终止密码子没有对应的tRNA);(3)特点:专一性,即一种tRNA只能携带一种氯基酸,但一种氨基酸可由一种或几种特定的tRNA来转运;(4)作用:识别密码子并转运相应的氨基酸。
【答案】15.D
16.D
【解析】【分析】DNA甲基化是指在DNA甲基化转移酶的作用下,在DNA某些区域结合一个甲基基团;DNA甲基化能引起染色质结构、DNA稳定性及DNA与蛋白质相互作用方式的改变,从而控制基因表达;这种DNA甲基化修饰可以遗传给后代。
15.A、基因突变是指基因中碱基对的增添、缺失或替换,这会导致基因结构的改变,进而产生新基因,A不符合题意;
B、基因重组是指在生物体进行有性生殖的过程中,控制不同性状的非等位基因重新组合,包括两种类型:自由组合型和交叉互换型,B不符合题意;
C、染色体变异包括染色体结构变异(重复、缺失.易位、倒位)和染色体数目变异,C不符合题意;
D、DNA的甲基化引起的表观遗传是指DNA序列不发生变化,但基因的表达却发生了可遗传的改变,即基因型未发生变化而表现型却发生了改变,D符合题意;
故答案为:D。
16.甲基化的Leyc基因不能与RNA聚合酶结合,故无法进行转录产生mRNA,也就无法进行翻译最终合成Leyc蛋白,从而抑制了基因的表达;植物经5-azaC去甲基化处理后,基因启动子正常解除基因转录沉默,基因能正常转录产生mRNA,D符合题意,ABC不符合题意。
故答案为:D。
17.【答案】A
【解析】【解答】根据题干信息分析,在人体肠道细胞内,载脂蛋白B基因转录生成的mRNA会发生特异性编辑——特定位置的胞嘧啶(C)在编辑酶催化下转变为尿嘧啶(U),导致该位点密码子变为终止密码子UAA。由此可推断:编辑前的密码子序列应为5'-CAA-3'(谷氨酰胺密码子),对应的DNA模板链互补序列为3'-GTT-5',根据碱基配对原则,DNA编码链序列即为5'-TTG-3',BCD错误,A正确。
故选A。
【分析】RNA是在细胞核中,通过RNA聚合酶以DNA的一条链为模板合成的,这一过程叫作转录。
18.【答案】D
【解析】【解答】A、由题意可知,细胞I和细胞II中催乳素合成基因的碱基序列相同,但细胞II中该基因多个碱基被甲基化,导致仅细胞I能合成催乳素,说明甲基化可以抑制催乳素合成基因的转录, A正确;
B、细胞II经氮胞苷处理后,再培养可合成催乳素,说明氮胞苷可去除催乳素合成基因的甲基化,B正确;
C、甲基化可以遗传,同理,细胞II经氮胞苷处理后,再培养可合成催乳素,这一特性也可遗传,所以处理后细胞II的子代细胞能合成催乳素,C正确;
D、题中细胞I和细胞II两种类型就是按基因是否甲基化划分的,D错误。
故答案为:D。
【分析】表观遗传是指DNA序列不发生变化,但基因表达却发生了可遗传的改变。这种改变是细胞内除了遗传信息以外的其他可遗传物质发生的改变,且这种改变在发育和细胞增殖过程中能稳定传递。
19.【答案】D
【解析】【解答】A、在膀胱癌患者中,发现原癌基因H-ras所编码蛋白质的第十二位氨基酸由甘氨酸变为缬氨酸,可能是由于碱基的替换造成的属于基因突变,表明基因突变可导致癌变,A正确;
B、抑癌基因WT1的高度甲基化抑制了基因的表达,表明表观遗传变异可导致癌变,B正确;
C、原癌基因N-myc发生异常扩增,基因数目增加,属于染色体变异中的重复,表明染色体变异可导致癌变,C正确;
D、9号和22号染色体互换片段,原癌基因abl过度表达,表明染色体变异可导致癌变,D错误。
故答案为:D。
【分析】染色体结构变异是指染色体在结构上的改变,这种变异是由内因和外因共同作用的结果。以下是对染色体结构变异的详细解释:
一、内因和外因
内因:主要包括生物体内代谢过程的失调和衰老等自然因素。
外因:主要包括各种射线(如X射线、γ射线等)、化学药剂(如某些药物、农药等)、温度的剧变等环境因素。
二、主要类型
染色体结构变异的主要类型包括:
1. 缺失
描述:染色体上的一部分基因序列缺失或删除。
影响:常常导致染色体上的一些基因缺乏,从而影响蛋白质的合成和功能表达。
示例:猫叫综合征是人的第5号染色体部分缺失引起的遗传病,患者哭声轻、音调高,类似猫叫,同时伴随生长发育迟缓、智力障碍等症状。
2. 重复
描述:染色体上的一段基因序列复制一次或多次,导致重复片段的出现。
影响:可能导致基因表达的异常或蛋白质功能的改变。
示例:果蝇的棒眼现象就是X染色体上的部分重复引起的。
3. 倒位
描述:染色体上的一段基因序列发生颠倒,即片段按照相反的方向排列。
影响:通常会导致染色体上的基因顺序发生改变,从而影响基因的表达和功能。
示例:女性习惯性流产可能与第9号染色体长臂倒置有关。
4. 易位
描述:染色体的某一片段移接到另一条非同源染色体上或同一条染色体上的不同区域。
影响:通常会导致两个基因的调控序列发生改变,从而影响其表达和功能。
示例:人慢性粒白血病是由第22号染色体的一部分易位到第14号染色体上造成的。
20.【答案】C
【解析】【解答】A、①表示诱变,诱变因素(如物理、化学、生物因素)可引起DNA的碱基序列改变,即发生基因突变,A不符合题意;
B、②是甲基化修饰,可影响DNA的转录(③过程),从而调节转录水平的高低,进而影响生物性状,B不符合题意;
C、②引起的甲基化修饰导致的变异属于表观遗传变异,表观遗传变异可以使生物的性状发生改变,这种改变可以遗传给后代,能为生物进化提供原材料,C符合题意;
D、④表示环境因素影响蛋白质,可引起蛋白质结构或功能的改变,从而影响生物性状,D不符合题意。
故答案为:C。
【分析】(1)在大多数情况下,基因与性状的关系并不是简单的一一对应的关系。一个性状可以受到多个基因的影响。同时,生物体的性状也不完全是由基因决定的,环境对性状也有着重要影响。基因对性状的控制方式有两种,一种是通过控制酶的合成来控制代谢过程,进而间接控制性状;另一种是直接控制蛋白质的结构来控制性状。基因与基因、基因与基因表达产物、基因与环境之间存在着复杂的相互作用,这种相互作用形成了一个错综复杂的网络,精细地调控着生物体的性状。
(2)适应是自然选择的结果;种群是生物进化的基本单位;突变和基因重组提供进化的原材料,自然选择导致种群基因频率的定向改变,进而通过隔离形成新的物种;生物进化的过程实际上是生物与生物、生物与无机环境协同进化的过程;生物多样性是协同进化的结果。
21.【答案】A
【解析】【解答】A、已知成熟雌鸟产生的雌激素可将卵黄蛋白原基因启动子部分区域的甲基化去除,基因启动子甲基化会抑制基因表达,去除甲基化后基因可正常表达;雄鸟因缺乏雌激素,卵黄蛋白原基因启动子保持高度甲基化,基因表达受抑制。所以卵黄蛋白原基因在成熟雌鸟中可以表达,在雄鸟中表达受到抑制,A符合题意;
B、甲基化发生在卵黄蛋白原基因的启动子部分区域,启动子是基因上的一段DNA序列,不编码RNA,所以卵黄蛋白原基因转录出的mRNA中,不含有甲基化区域序列的互补序列,B不符合题意;
C、该种雌鸟和雄鸟交配产生的雌性后代发育成熟后,会产生雌激素,可去除卵黄蛋白原基因启动子的甲基化,卵黄蛋白原基因可表达,体内有卵黄蛋白原;雄性后代发育成熟后,缺乏雌激素,卵黄蛋白原基因启动子高度甲基化,基因表达受抑制,体内卵黄蛋白原少,但不是均无,C不符合题意;
D、表观遗传是指生物体基因的碱基序列保持不变,但基因表达和表型发生可遗传变化的现象,卵黄蛋白原基因的甲基化可影响基因表达,产生表观遗传现象;而题干未提及乙酰化对该基因的影响,不能得出乙酰化可产生表观遗传现象的结论,D不符合题意。
故答案为:A。
【分析】来自同一个受精卵的细胞,尽管基因组成都相同,也会出现形态、结构和功能的分化,其实质是基因的选择性表达。基因之所以能够选择性表达是由于细胞有调控基因表达的机制。DNA甲基化等因素导致基因在其碱基序列不变的情况下,表达情况发生可遗传的变化,这就是表观遗传。
22.【答案】D
23.【答案】C
24.【答案】A
【解析】【解答】A、基因的转录和翻译不是同步的,基因的甲基化可能会影响基因的转录不影响翻译,因此,NKAmRNA和蛋白质表达趋势之所以不一致,可能与NKA基因的转录和翻译不同步有关,而不是由NKA基因中甲基化导致的,A错误;
B、依据题干信息,NKA酶是一种载体蛋白,负责将海鱼鳃细胞内的Na+转运到血液中,将海鱼放在低于海水盐度的盐水中,随着时间的延长,血液中的Na+浓度逐渐降低,说明NKA酶参与向外转运的Na+减少,由此可推知,时间变化不是影响NKA基因转录变化的直接因素,B正确;
C、由表格数据可知,血液中Na+浓度高于鳃细胞, NKA酶 将海鱼鳃细胞内的Na+转运到血液中的运输是一种主动运输,因此,NKA酶在维持海鱼鳃细胞内渗透压平衡时需要直接消耗ATP,C正确;
D、血浆的渗透压主要与Na+与Cl-有关,与0h组相比,其他时间点的血液Na+浓度降低,血浆的渗透压降低,与红细胞内溶液渗透压的浓度差减小,红细胞会吸水,体积会增大,D正确。
故选A。
【分析】1、表观遗传:生物体基因的碱基序列保持不变,但基因表达和表型发生可遗传变化的现象,叫做表观遗传。
2、血浆渗透压大小主要与无机盐和蛋白质的含量有关,在组成细胞外液的各种无机盐离子中含量上占有明显优势的是Na+和Cl-,细胞外液渗透压的90%与Na+和Cl-有关。
25.【答案】D
【解析】【解答】由题意可知,短暂地抑制果蝇幼虫中PcG 蛋白(具有组蛋白修饰功能)的合成,会启动原癌基因zfhl的表达,导致肿瘤形成,即基因型未发生变化而表现型却发生了改变,所以驱动此肿瘤形成的原因属于表观遗传,ABC错误、D正确。
故发答案为:D。
【分析】生物体基因的碱基序列保持不变,但基因表达和表型发生可遗传变化的现象,叫作表观遗传。如DNA的甲基化不会使基因的碱基序列发生改变,但是会不同程度的影响基因的表达水平,进而影响生物的性状。
26.【答案】A
27.【答案】C
【解析】【解答】A、转录是以DNA的一条链为模板,按照碱基互补配对原则合成RNA的过程,由于起始密码子是AUG,故①链是转录的模板链,转录时模板链读取的方向是3'→5',即左侧是3'端,右侧是5'端,A错误;
B、在①链5~6号碱基间插入一个碱基G,将会导致终止密码子提前出现,故合成的肽链变短,B错误;
C、若在①链1号碱基前插入一个碱基G,在起始密码子之前加了一个碱基,不影响起始密码子和终止密码子之间的序列,故合成的肽链不变,C正确;
D、由于mRNA是翻译模板,但由于密码子的简并性,故碱基序列不同的mRNA翻译得到的肽链也可能相同,D错误。
故答案为:C。
【分析】转录是在细胞核中,以DNA的一条链为模板,按照碱基互补配对原则,合成RNA的过程。(注:叶绿体、线粒体也有转录)
(1)过程:
①解旋:DNA解旋,碱基得以暴露
②配对:以DNA一条链为模板,游离的核糖核苷酸,与DNA分子上的碱基互补配对,形成氢键
③连接:新结合的核糖核苷酸与正在合成的RNA连接,形成mRNA
④释放:mRNA从DNA上释放,DNA双链回复
(2)条件:模板:DNA的一条链(模板链)
原料:4种核糖核苷酸
能量:ATP
酶:解旋酶、RNA聚合酶等
(3)原则:碱基互补配对原则(A—U、T—A、G—C、C—G)
(4)产物:信使RNA(mRNA)、核糖体RNA(rRNA)、转运RNA(tRNA)
28.【答案】C
【解析】【解答】A、糖原合成的中间代谢产物UDPG抑制S1蛋白水解酶的活性,蛋白R1需要经过S1和S2蛋白水解酶酶切后才被激活,进而启动脂肪酸合成基因的转录,据此可知糖原合成的中间代谢产物UDPG可抑制脂肪酸的合成,因此体内多余的葡萄糖在肝细胞中优先转化为糖原,糖原饱和后转向脂肪酸合成,A正确;
B、中间代谢产物UDPG通过F5膜转运蛋白进入高尔基体内,抑制S1蛋白水解酶的活性,进而抑制脂肪酸的合成,因此敲除F5蛋白的编码基因有利于脂肪酸的合成,会增加啡酒精性脂肪肝的发生率,B正确;
C、中间代谢产物UDPG进入高尔基体不利于脂肪酸的合成,降低高尔基体中UDPG量有利于脂肪酸的合成,从而会诱发非酒精性脂肪性肝病;蛋白R1经S1、S2蛋白水解酶酶切后被激活,进而启动脂肪酸合成基因的转录,S2蛋白失活不利于脂肪酸的合成,不会诱发非酒精性脂肪性肝病,C错误;
D、转录发生在细胞核中,因此R1可通过核孔进入细胞核,启动脂肪酸合成基因的转录,D正确。
故答案为:C。
【分析】遗传信息:
29.【答案】A
【解析】【解答】若编码链的一段序列为5'-ATG一3',则模板链的一段序列为3'-TAC-5',则mRNA碱基序列为5'-AUG-3',该序列所对应的反密码子是5'-CAU-3',A正确,BCD错误。
故答案为:A。
【分析】1、转录:以DNA的一条链为模板,按照碱基互补配对原则,通过RNA聚合酶合成mRNA的过程。
(1)场所:细胞核(主要)、线粒体、叶绿体。
(2)过程:解旋、原料与DNA碱基互补并通过氢键结合、RNA新链延伸、合成的mRNA从DNA链上释放、DNA双链恢复。
(3)原则:碱基互补配对原则。A-U,G-C,C-G,T-A。
2、翻译:游离在细胞质中的各种氨基酸,以mRNA为模板合成具有一定氨基酸顺序的蛋白质的过程。
(1)场所:细胞质中的核糖体。
(2)模板:mRNA。
(3)原料:21种游离的氨基酸。
(4)原则:碱基互补配对原则。A-U,G-C,C-G,U-A。
3、mRNA上每三个相邻的碱基决定1个氨基酸,每三个这样的碱基称为一个密码子,因此密码子位于mRNA上;反密码子与密码子互补配对,位于tRNA上。
30.【答案】C
【解析】【解答】A、由图可知,酶E的作用是催化DNA发生甲基化,A错误;
B、甲基不是DNA半保留复制的原料,DNA复制的原料是四种脱氧核苷酸,B错误;
C、同卵双胞胎的基因型完全相同,但50岁同卵双胞胎间基因组DNA甲基化的差异普遍比3岁同卵双胞胎间的差异大,说明环境可能是引起DNA甲基化差异的重要因素,C正确;
D、DNA甲基化不改变碱基序列,但由于DNA甲基化后会影响基因的转录,因此可能会改变生物个体表型,D错误。
故答案为:C。
【分析】生物体基因的碱基序列保持不变,但基因表达和表型发生可遗传变化的现象,叫作表观遗传。除了DNA甲基化,构成染色体的组蛋白发生甲基化、乙酰化等修饰也会影响基因的表达。
31.【答案】D
【解析】【解答】A、由题意可知,植株甲和乙,二者R基因的序列相同,可推知它们的R基因的碱基种类相同,A不符合题意;
B、由题意可知,植株甲R基因未甲基化,能正常表达;植株乙R基因高度甲基化,不能表达,所以二者的叶形不同,B不符合题意;
C、基因的高度甲基化是可遗传变异,所以植株乙自交,子一代的R基因会出现高度甲基化,C不符合题意;
D、植株甲和乙杂交,子一代植株一半的R基因高度甲基化,另一半高度甲基化,所以子一代与植株乙叶形不同。
故答案为:D。
【分析】生物体基因的碱基序列保持不变,但基因表达和表型发生可遗传变化的现象,叫作表观遗传。
32.【答案】D
【解析】【解答】A、降低DNA甲基化酶的表达后, 即使一直喂食花蜜花粉,雌性工蜂幼虫也会发育成蜂王,说明甲基化不利于其发育成蜂王,而工蜂幼虫主要食物是花蜜和花粉,不会发育成蜂王,因此花蜜花粉可增强幼虫发育过程中DNA的甲基化,A错误;
B、甲基化不利于其发育成蜂王,故蜂王DNA的甲基化程度低于工蜂,B错误;
C、蜂王浆可以降低蜜蜂DNA的甲基化程度,使其发育成蜂王,C错误;
D、甲基化不利于发育成蜂王,因此DNA的低甲基化是蜂王发育的重要条件,D正确。
故答案为:D。
【分析】表观遗传:(1)概念:生物基因的碱基序列保持不变,但基因表达和表型发生可遗传变化的现象。 (2)主要原因:①DNA甲基化:DNA分子中的碱基被选择性加上甲基的现象。某个基因发生足够多的甲基化后,其转录会被阻止,从而被关闭,甲基化被移除,基因就会被开启。②组蛋白修饰:组成染色体的蛋白质分为组蛋白和非组蛋白。其中组蛋白是决定染色体螺旋程度的重要因素,组蛋白常受到多种化学修饰,如甲基化、乙酰化等,被称为组蛋白修饰。组蛋白修饰可影响染色体螺旋化程度,从而影响基因的表达。
33.【答案】A
【解析】【解答】A、题干中ATT基因被描述为“耐碱—耐热基因”,表明该基因同时影响耐碱和耐热两个性状,这反映了基因的多效性,即一个基因可以影响多个性状,而非一一对应关系,A错误;
B、题干明确指出,ATT基因编码GA20氧化酶,该酶调控赤霉素的生物合成,进而通过调节SLR1蛋白来减轻损伤,从而影响水稻的耐碱和耐热性状,B正确;
C、由于ATT基因编码GA20氧化酶,而GA20氧化酶直接参与赤霉素的生物合成,因此通过调节ATT基因的表达,可以改变GA20氧化酶的产量,进而调控赤霉素的水平,C正确;
D、科学家成功定位和克隆ATT基因,揭示了其作用机制,这为基因工程或分子育种提供了靶点,D正确。
故选A。
【分析】1、在大多数情况下,基因与性状的关系并不是简单的一一对应的关系。一个性状可以受到多个基因的影响。
2、基因表达产物与性状的关系:①基因通过控制酶的合成来控制代谢过程,进而控制生物体的性状。②基因还能通过控制蛋白质的结构直接控制生物体的性状。
34.【答案】C
35.【答案】B
【解析】【解答】A、由于遗传背景的差异,H基因在精子中为甲基化状态,在卵细胞中为去甲基化状态,且都在受精后被子代保留,Ⅲ1个体因携带H基因而患病,说明其是由H卵细胞和h精子结合而形成基因型为Hh的男性个体且患病,则其H基因来自表现正常的母亲Ⅱ2,而Ⅱ2的H基因又源自同样不患病的外祖父Ⅰ1(其H基因呈甲基化状态);同时患病的Ⅱ1个体其致病基因H来自不患病的外祖母Ⅰ2(该H基因也呈甲基化),A正确;
B、根据遗传分析,Ⅲ1的基因型为 Hh,其中 H 基因遗传自 Ⅱ2,由于 Ⅱ2 不患病,其 H 基因应来自 Ⅰ1,而 Ⅱ1 患病,其 H 基因只能来自 Ⅰ2,由于 Ⅰ1 和 Ⅰ2 均携带 H 基因但未患病,因此他们的基因型均为 Hh。为了区分 Ⅰ1 和 Ⅰ2 的 H 基因,设 Ⅰ1 的基因型为 H1h,Ⅰ2 的基因型为 H2h,已知 Ⅱ1 患病,其 H 基因必须来自母亲(Ⅰ2),因此 Ⅱ1 的基因型可能是 H1H2 或 H2h,其中杂合子(H2h)的概率为 1/2,B错误;
C、在Ⅱ2(基因型Hh)与Ⅱ3的生育组合中,子代是否患病完全取决于是否从母亲获得H基因,有50%概率获得H基因而患病,另有50%概率获得h基因保持正常,因此Ⅱ2和Ⅱ3再生育子女的患病概率是1/2,C正确;
D、题干明确表示Ⅲ1的基因型为Hh,且患病,其H基因必然来自母亲Ⅱ2,而h基因则必定遗传自父亲Ⅱ1,D正确。
故选B。
【分析】遗传分析表明,子代个体的患病表型取决于是否从母本遗传获得H基因:携带母源H基因的个体表现为患病,而未获得该基因的个体则表现正常。
36.【答案】A
【解析】【解答】A、同一鹦鹉个体的所有体细胞均起源于同一个受精卵的有丝分裂,理论上应具有完全相同的基因组序列,因此羽色差异不可能源于乙醛脱氢酶基因序列的变异,A符合题意;
B、羽色渐变现象与乙醛脱氢酶的催化功能直接相关,该酶通过将鹦鹉黄素的醛基氧化为羧基实现颜色转变。若不同细胞中乙醛脱氢酶mRNA表达量存在差异,将导致酶蛋白合成量的变化,最终表现为羽色转化能力的差异,B不符合题意;
C、细胞特异性微环境可能导致乙醛脱氢酶活性呈现区域差异,这种酶活性的波动会影响羽色转化效率,从而在同一鹦鹉个体不同部位形成红黄相间的羽色分布模式,C不符合题意;
D、羽色渐变本质上是鹦鹉黄素分子修饰程度的连续变化,若不同部位醛基向羧基转化的数量存在梯度差异,则可能直接导致红黄色谱的区域性分布,D不符合题意。
故选A。
【分析】同一生物个体内所有细胞均携带相同的遗传物质,其羽色表现的多样性主要由以下两个机制决定:(1)基因的选择性表达调控,即特定基因在不同细胞中呈现差异性的转录激活状态;(2)微环境因素对基因表达产物的修饰作用。
37.【答案】D
【解析】【解答】A、甲基化发生在mRNA上,影响的是翻译或mRNA稳定性,而非抑制转录过程,A错误;
B、图中甲基化发生在mRNA上,其基本单位是核糖核苷酸,而非脱氧核糖核苷酸(DNA),B错误;
C、蛋白Y结合甲基化的mRNA后,仍能促进其表达(而非抑制),否则该mRNA会被降解,C错误;
D、DNA甲基化是典型的表观遗传修饰方式,可影响基因表达而不改变DNA序列,D正确。
故选D。
【分析】基因的碱基序列没有变化,但部分碱基发生了甲基化修饰,抑制了基因的表达,进而对表型产生影响。这种DNA甲基化修饰可以遗传给后代,使后代出现同样的表型。像这样,生物体基因的碱基序列保持不变,但基因表达和表型发生可遗传变化的现象,叫作表观遗传。
38.【答案】A
【解析】【解答】A、中性突变是指对生物适应度没有显著影响的基因突变。然而镰状细胞贫血突变基因(h)在杂合状态(Hh)能提高疟疾抵抗力,在纯合状态(hh)却会导致严重贫血,这表明该突变对生存适应性具有显著影响,不符合中性突变的定义,A错误;
B、在疟疾流行地区,由于杂合子(Hh)具有抗疟疾的选择优势,h基因频率会维持在较高水平,即基因h不会在进化历程中消失,B正确;
C、该疾病的发生机制是h基因编码异常的血红蛋白分子,导致红细胞形态改变为镰刀状,这直接证明了基因通过控制蛋白质结构来影响细胞形态,C正确;
D、虽然h基因表现出影响多个性状,即红细胞形态和疟疾抗性,但与基因突变的不定向性(一个基因可能产生多种等位突变)是不同概念,突变不定向性强调的是突变方向的随机性,而非单个突变基因影响多个性状,D正确。
故选A。
【分析】1、基因突变是生物变异的根本来源,具有以下核心特点:首先,突变具有普遍性,可发生于所有生物的任何基因中,如人类的白化病和果蝇的残翅突变;其次,突变表现出随机性(不定向性),其发生时间和方向均无法预测,但会通过自然选择被定向筛选,例如抗药性细菌的产生就是随机突变后经药物选择的结果。突变通常具有低频性,自然状态下发生率较低(约10-6~10-5/代),但辐射等诱变因素可显著提高突变率。从效应来看,突变具有多害少利性,多数对生物有害(如镰状细胞贫血),少数中性或有利(如Hh基因型对疟疾的抗性)。此外,突变具有可逆性,可能发生回复突变;也具有多向性,可产生复等位基因(如人类ABO血型系统)。值得注意的是,基因突变常表现出多效性,一个基因突变可能影响多个性状(如h基因同时影响血红蛋白结构和抗疟能力)。最后,部分突变属于中性突变,对表型无显著影响,但其"中性"是相对的,可能在某些环境中显现效应。
39.【答案】C
【解析】【解答】A、DNA复制、转录和翻译过程均遵循碱基互补配对原则,DNA复制以双链为模板通过碱基配对合成子代DNA;转录以单链DNA为模板按A-U/T-A/G-C配对生成mRNA;翻译时tRNA反密码子与mRNA密码子通过碱基互补识别,A正确;
B、在真核细胞豌豆中,淀粉酶基因存在于细胞核中,DNA复制和转录都以DNA为模板,发生在细胞核内,B正确;
C、虽然复制和转录产物与模板严格互补可以反向推导,但翻译产物(蛋白质)因密码子简并性(如亮氨酸6种密码子)无法唯一确定mRNA序列,C错误;
D、转录时RNA聚合酶沿DNA模板链由3'→5'方向移动,而翻译时核糖体沿mRNA模板由5'→3'方向移动,因此RNA聚合酶与核糖体沿模板链的移动方向不同,D正确。
故选C。
【分析】1、遗传信息的的复制、转录和翻译三个过程关系如下:
40.【答案】B
【解析】【解答】A、表观遗传是指在不改变基因碱基序列的情况下,基因表达及表型特征出现可遗传变异的现象,A错误;
B、除DNA甲基化外,组蛋白的甲基化和乙酰化等修饰同样能调控基因表达。当组蛋白甲基化程度升高时,往往会使相关基因的表达受到抑制,B正确;
C、分析图示数据可知,磷酸化的ATF7会阻碍组蛋白甲基化,最终导致组蛋白的表观遗传修饰水平降低,C错误;
D、研究表明,亲代采用低蛋白饮食会增强ATF7的磷酸化,从而影响组蛋白甲基化水平,但不会引起子代小鼠DNA序列的改变,D错误。
故选B。
【分析】表观遗传现象表现为基因碱基序列稳定不变,但表达模式和表型特征发生可遗传变化,该机制参与调控生物体从出生到衰老的全过程。
41.【答案】(1)含有某种生物不同基因的许多DNA片段,导入受体菌的群体中储存,各个受体菌分别含有这种生物的不同的基因
(2)终止子;启动子;RNA聚合酶识别和结合的部位,驱动基因转录;鉴别受体细胞中是否含有目的基因,从而将含有目的基因的细胞筛选出来
(3)密码子具有简并性
(4)将构建好的表达载体(含有目的基因YFP基因)导入酵母菌中进行表达
【解析】【解答】(1)基因文库是指含有某种生物不同基因的许多DNA片段,导入受体菌的群体中储存,各个受体菌分别含有这种生物的不同的基因。
故答案为:含有某种生物不同基因的许多DNA片段,导入受体菌的群体中储存,各个受体菌分别含有这种生物的不同的基因。
(2)图中结构是基因表达载体,GFP突变基因是目的基因,目的基因位于启动子和终止子之间,所以初步确定①、②是启动子或者终止子。由于箭头指的是目的基因转录的方向,②位于目的基因的上游,①位于目的基因的下游,所以可判断①是终止子,②是启动子。启动子的作用是RNA聚合酶识别和结合的部位,驱动基因转录。标记基因的作用是鉴别受体细胞中是否含有目的基因,从而将含有目的基因的细胞筛选出来。
故答案为:终止子;启动子;RNA聚合酶识别和结合的部位,驱动基因转录;鉴别受体细胞中是否含有目的基因,从而将含有目的基因的细胞筛选出来。
(3)由于密码子具有简并性,不同的密码子可能决定相同的氨基酸,所以GFP突变的基因转录出的mRNA与原来正常基因转录出的mRNA翻译出的蛋白质仍然可能是相同的。因此从密码子特点的角度分析,发绿色荧光的可能原因是密码子具有简并性。
故答案为:密码子具有简并性。
(4)题干信息指出要通过基因工程的方法探究YFP基因能否在真核细胞中表达,那么就需要将目的基因YFP插入到运载体上构建基因表达载体,再将其导入基因工程中常用的真核生物(如酵母菌)体内从而让目的基因在真核生物体内表达,因此实验思路是:将构建好的表达载体(含有目的基因YFP基因)导入酵母菌中进行表达。
故答案为:将构建好的表达载体(含有目的基因YFP基因)导入酵母菌中进行表达。
【分析】1、将含有某种生物不同基因的许多DNA片段,导入受体菌的群体中储存,各个受体菌分别含有这种生物的不同的基因,称为基因文库。包含一种生物所有基因的文库,叫做基因组文库。包含一种生物的一部分基因的文库叫做部分基因文库,如cDNA文库。
2、基因表达载体的组成:目的基因、启动子、终止子、标记基因、复制原点。
3、简并性:绝大多数氨基酸都有几个密码子的现象。意义:(1)当密码子中有一个碱基发生改变时,由于密码子的简并,可能并不会改变其对应的氨基酸。(2)当某种氨基酸使用频率高时,几种不同的密码子都编码一种氨基酸可保证翻译的效率。
42.【答案】(1)碱基对替换;不能
(2)核糖核苷酸;磷酸二酯
(3)核糖体;细胞骨架;空间结构
(4)磷脂双分子层;主动运输;TMEM175蛋白结构变化使其不能把溶酶体中多余的氢离子转运到细胞质基质中,进而使溶酶体中的pH下降,而pH会影响酶的活性,影响溶酶体的消化功能
(5)TMEM175蛋白结构的改变导致无法行使正常的功能,即使得溶酶体中的氢离子无法转运到细胞质基质,导致溶酶体中的pH下降,影响了溶酶体中相关酶的活性,导致细胞中α-Synuclein蛋白无法被分解,进而聚积致病。
【解析】【解答】(1)DNA分子中发生碱基的替换、增添或缺失,而引起的基因碱基序列的改变,叫作基因突变。碱基的替换只会改变某个位点的氨基酸种类,而帕金森综合征患者TMEM175蛋白的第41位氨基酸由天冬氨酸突变为丙氨酸,说明TMEM175基因发生碱基的增添和缺失会影响多个位点的氨基酸种类,所以
碱基对替换而突变,神经元是体细胞,所以神经元中发生的基因突变不能遗传给后代。
(2)真核细胞的细胞核内,以DNA的一条链为模板,核糖核苷酸为原料,由RNA聚合酶催化形成磷酸二酯键,不断延伸合成mRNA,该过程即转录过程。
(3)在翻译过程中,mRNA转移到细胞质中,与核糖体结合,合成一段肽链后转移到粗面内质网上继续合成,合成的多肽链再由囊泡包裹沿着细胞质中的细胞骨架移动,由内质网到达高尔基体。蛋白质的结构与功能相适应,所以突变的TMEM175基因合成的肽链由于氨基酸之间作用的变化使肽链的空间结构改变,从而影响TMEM175蛋白的功能。
(4)溶酶体膜是生物膜,它是以磷脂双分子层为基本骨架的,所以磷脂双分子层对H+具有屏障作用,氢离子需要依靠膜上的转运蛋白从溶酶体外运输至细胞内,由图可知,细胞质基质的H+浓度小于溶酶体内侧,所以H+是逆浓度梯度进入溶酶体,属于主动运输。图中显示,TMEM175蛋白的功能是将H+从溶酶体内运输至细胞质基质,若TMEM175蛋白变异,即TMEM175蛋白结构变化使其不能把溶酶体中多余的氢离子转运到细胞质基质中,进而使溶酶体中的pH下降,而pH会影响酶的活性,影响溶酶体的消化功能。
(5)溶酶体内有多种水解酶,能够分解α-Synuclein蛋白,结合(4)分析可知,TMEM175蛋白结构的改变导致无法行使正常的功能,即使得溶酶体中的氢离子无法转运到细胞质基质,导致溶酶体中的pH下降,影响了溶酶体中相关酶的活性,导致细胞中α-Synuclein蛋白无法被分解,进而聚积致病。
【分析】1、转录是指以DNA为模板,四种核糖核苷酸为原料,在RNA聚合酶的作用下合成RNA的过程。该过程需要DNA、4种核糖核苷酸、 RNA聚合酶、线粒体等。
2、分泌蛋白的合成过程
首先,在游离的核糖体中以氨基酸为原料开始多钛链的合成。当合成了一段肽链后这段肽链会与核糖体一起转移到粗面内质网上继续其合成过程,并且边合成边转移到内质网腔内,再经过加工、折叠,形成具有一定空间结构的蛋白质。内质网膜鼓出形成囊泡,包裹着蛋白质离开内质网,到达高尔基体,与高尔基体膜融合,囊泡膜成为高尔基体膜的一部分。高尔基体还能对蛋白质做进一步的修饰加工,然后由高尔基体膜形成包裹着蛋白质的囊泡。囊泡转运到细胞膜,与细胞膜融合,将蛋白质分泌到细胞外。在分泌蛋白的合成、加工、运输的过程中,需要消耗能量。这些能量主要来自线粒体。
3、物质跨膜运输的方式主要有三种:
自由扩散:物质从高浓度向低浓度转运,不需要消耗能量,也不需要转运蛋白;
协助扩散:物质从高浓度向低浓度转运,不需要消耗能量,但需要转运蛋白;
主动运输:物质从低浓度向高浓度转运,需要消耗能量和转运蛋白。
43.【答案】(1)mRNA
(2)控制对乙烯敏感度的基因有两对,这两对基因遵循自由组合定律
(3)不表达蛋白A的酵母菌
(4)导入酵母菌的蛋白A基因控制合成的蛋白A数量有限
(5)基因A与植物对乙烯的响应有关
【解析】【解答】(1)基因表达包括转录和翻译,转录的产物是RNA,mRNA是RNA的一种,也是翻译的模板,所以基因表达水平的变化可通过分析叶肉细胞中的1mRNA含量得出。
故填:mRNA。
(2)F2植株中乙烯不敏感型与敏感型的植株比例为9:7,该比例是9:3:3:1的变式,说明控制乙烯敏感度的基因有两对,并且这两对基因遵循基因自由组合定律。
故填:控制对乙烯敏感度的基因有两对,这两对基因遵循自由组合定律。
(3)该实验目的是验证基因A编码的一种膜蛋白与乙烯结合,从而实现植物对乙烯的响应。自变量是有无蛋白A,根据单一变量原则和对照原则,实验组是不同浓度的14C2H4与表达有蛋白A的酵母菌混合,对照组则是与不表达蛋白A的酵母菌混合。
故填:不表达蛋白A的酵母菌。
(4)纵坐标是酵母菌结合14C2H4的量,由题意可知酵母菌是通过膜蛋白A与14C2H4结合的。通过基因工程导入了基因A的酵母菌膜表面的蛋白A数量是有限的,因此随着14C2H4相对浓度升高,与之结合的蛋白A达到饱和,实验组的曲线上升趋势变慢。
故填:导入酵母菌的蛋白A基因控制合成的蛋白A数量有限。
(5)该实验目的是验证基因A编码的一种膜蛋白与乙烯结合,从而实现植物对乙烯的响应,证明基因A与植物对乙烯的相应有关。
故填:基因A与植物对乙烯的响应有关。
【分析】1、实验设计过程中要遵循对照原则和单一变量原则。
(1)单一变量原则:即除自变量(实验变量)以外,应使实验组与对照组的无关变量保持相同且适宜。如生物材料相同(大小、生理状况、年龄、性别等)、实验器具相同(型号、洁净程度等)、实验试剂相同(用量、浓度、使用方法等)和条件相同(保温或冷却、光照或黑暗、搅拌、振荡等)。
(2)对照原则:对照实验是除了一个因素之外,其他因素都保持不变的实验,通常分为实验组和对照组,实验组是接受实验变量处理的对象组,对照组是不接受实验变量处理的对象组。
2、乙烯:促进果实成熟;促进器官的脱落;促进多开雌花。
44.【答案】(1)自由基
(2)RNA聚合;miRNA
(3)P蛋白能抑制细胞凋亡,miRNA表达量升高,与P基因的mRNA结合并将其降解的概率上升,导致合成的P蛋白减少,无法抑制细胞凋亡
(4)可通过增大细胞内circRNA的
同课章节目录