【2023-2025年高考生物真题分类汇编】 专题03 物质进出细胞(含解析)

文档属性

名称 【2023-2025年高考生物真题分类汇编】 专题03 物质进出细胞(含解析)
格式 doc
文件大小 3.1MB
资源类型 试卷
版本资源 通用版
科目 生物学
更新时间 2025-06-27 16:38:48

图片预览

文档简介

中小学教育资源及组卷应用平台
三年2023-2025高考生物真题按知识点分类汇编
专题03 物质进出细胞(含解析)
一、选择题
1.(2023·全国甲卷)物质输入和输出细胞都需要经过细胞膜。下列有关人体内物质跨膜运输的叙述,正确的是(  )
A.乙醇是有机物,不能通过自由扩散方式跨膜进入细胞
B.血浆中的K+进入红细胞时需要载体蛋白并消耗ATP
C.抗体在浆细胞内合成时消耗能量,其分泌过程不耗能
D.葡萄糖可通过主动运输但不能通过协助扩散进入细胞
2.(2023·北京)高中生物学实验中,下列实验操作能达成所述目标的是(  )
A.用高浓度蔗糖溶液处理成熟植物细胞观察质壁分离
B.向泡菜坛盖边沿的水槽中注满水形成内部无菌环境
C.在目标个体集中分布的区域划定样方调查种群密度
D.对外植体进行消毒以杜绝接种过程中的微生物污染
3.(2023·湖南)食品保存有干制、腌制、低温保存和高温处理等多种方法。下列叙述错误的是(  )
A.干制降低食品的含水量,使微生物不易生长和繁殖,食品保存时间延长
B.腌制通过添加食盐、糖等制造高渗环境,从而抑制微生物的生长和繁殖
C.低温保存可抑制微生物的生命活动,温度越低对食品保存越有利
D.高温处理可杀死食品中绝大部分微生物,并可破坏食品中的酶类
4.(2020·新高考I)黑藻是一种叶片薄且叶绿体较大的水生植物,分布广泛、易于取材,可用作生物学实验材料。下列说法错误的是(  )
A.在高倍光学显微镜下,观察不到黑藻叶绿体的双层膜结构
B.观察植物细胞的有丝分裂不宜选用黑藻成熟叶片
C.质壁分离过程中,黑藻细胞绿色加深、吸水能力减小
D.探究黑藻叶片中光合色素的种类时,可用无水乙醇作提取液
5.(2023·新课标卷)葡萄糖是人体所需的一种单糖。下列关于人体内葡萄糖的叙述,错误的是(  )
A.葡萄糖是人体血浆的重要组成成分,其含量受激素的调节
B.葡萄糖是机体能量的重要来源,能经自由扩散通过细胞膜
C.血液中的葡萄糖进入肝细胞可被氧化分解或转化为肝糖原
D.血液中的葡萄糖进入人体脂肪组织细胞可转变为甘油三酯
6.(2023·全国甲卷)探究植物细胞的吸水和失水实验是高中学生常做的实验。某同学用紫色洋葱鳞片叶外表皮为材料进行实验,探究蔗糖溶液,清水处理外表皮后,外表皮细胞原生质体和液泡的体积及细胞液浓度的变化。图中所提到的原生质体是指植物细胞不包括细胞壁的部分。下列示意图中能够正确表示实验结果的是(  )
A. B.
C. D.
7.(2023·江苏)某生物社团利用洋葱进行实验。下列相关叙述正确的是(  )
A.洋葱鳞片叶内表皮可代替半透膜探究质膜的透性
B.洋葱匀浆中加入新配制的斐林试剂,溶液即呈砖红色
C.制作根尖有丝分裂装片时,解离、漂洗、按压盖玻片都能更好地将细胞分散开
D.粗提取的DNA溶于2mol/LNaCl溶液中,加入二苯胺试剂后显蓝色
8.(2023·天津)下图是某种植物光合作用及呼吸作用部分过程的图,关于此图说法错误的是(  )
A.HCO3-经主动运输进入细胞质基质
B.HCO3-通过通道蛋白进入叶绿体基质
C.光反应生成的H+促进了HCO3-进入类囊体
D.光反应生成的物质X保障了暗反应的CO2供应
9.(2023·山东)溶酶体膜上的H+载体蛋白和Cl-/H'转运蛋白都能运输H+,溶酶体内H+浓度由H+载体蛋白维持,Cl-/H+转运蛋白在H+浓度梯度驱动下,运出H+的同时把Cl-逆浓度梯度运入溶酶体。Cl-/H+转运蛋白缺失突变体的细胞中,因Cl-转运受阻导致溶酶体内的吞噬物积累,严重时可导致溶酶体破裂。下列说法错误的是(  )
A.H+进入溶酶体的方式属于主动运输
B.H+载体蛋白失活可引起溶酶体内的吞噬物积累
C.该突变体的细胞中损伤和衰老的细胞器无法得到及时清除
D.溶酶体破裂后,释放到细胞质基质中的水解酶活性增强
10.(2023·浙江)植物组织培养过程中,培养基中常添加蔗糖,植物细胞利用蔗糖的方式如图所示。
下列叙述正确的是(  )。
A.转运蔗糖时,共转运体的构型不发生变化
B.使用ATP合成抑制剂,会使蔗糖运输速率下降
C.植物组培过程中蔗糖是植物细胞吸收的唯一碳源
D.培养基的pH值高于细胞内,有利于蔗糖的吸收
11.(2024·海南)许多红树植物从含盐量高的泥滩中吸收盐分,并通过其叶表面的盐腺主动将盐排出体外避免盐害。下列有关这些红树植物的叙述,正确的是(  )
A.根细胞吸收盐提高了其细胞液的浓度,有利于水分的吸收
B.根细胞通过自由扩散的方式吸收泥滩中的K+
C.通过叶表面的盐腺将盐排出体外,不需要ATP提供能量
D.根细胞主要以主动运输的方式吸收水分
12.(2024·浙江)植物细胞胞质溶胶中的、通过离子通道进入液泡,Na+、Ca2+逆浓度梯度转运到液泡,以调节细胞渗透压。白天光合作用合成的蔗糖可富集在液泡中,夜间这些蔗糖运到胞质溶胶。植物液泡中部分离子与蔗糖的转运机制如图所示。下列叙述错误的是(  )
A.液泡通过主动运输方式维持膜内外的H+浓度梯度
B.、通过离子通道进入液泡不需要ATP直接供能
C.Na+、Ca2+进入液泡需要载体蛋白协助不需要消耗能量
D.白天液泡富集蔗糖有利于光合作用的持续进行
13.(2024·安徽)真核细胞的质膜、细胞器膜和核膜等共同构成生物膜系统。下列叙述正确的是(  )
A.液泡膜上的一种载体蛋白只能主动转运一种分子或离子
B.水分子主要通过质膜上的水通道蛋白进出肾小管上皮细胞
C.根尖分生区细胞的核膜在分裂间期解体,在分裂末期重建
D.[H]与氧结合生成水并形成ATP的过程发生在线粒体基质和内膜上
14.(2024·广东)轻微触碰时,兴奋经触觉神经元传向脊髓抑制性神经元,使其释放神经递质 GABA.正常情况下,GABA作用于痛觉神经元引起Cl-通道开放,Cl-内流,不产生痛觉;患带状疱疹后,痛觉神经元上Cl-转运蛋白(单向转运Cl-)表达量改变,引起Cl-的转运量改变,细胞内Cl-浓度升高,此时轻触引起GABA作用于痛觉神经元后,Cl-经Cl-通道外流,产生强烈痛觉。针对该过程(如图)的分析,错误的是(  )
A.触觉神经元兴奋时,在抑制性神经元上可记录到动作电位
B.正常和患带状疱疹时,Cl-经Cl-通道的运输方式均为协助扩散
C.GABA作用的效果可以是抑制性的,也可以是兴奋性的
D.患带状疱疹后Cl-转运蛋白增多,导致轻触产生痛觉
15.(2024·北京)五彩缤纷的月季装点着美丽的京城,其中变色月季“光谱”备受青睐。“光谱”月季变色的主要原因是光照引起花瓣细胞液泡中花青素的变化。下列利用“光谱”月季进行的实验,难以达成目的的是(  )
A.用花瓣细胞观察质壁分离现象
B.用花瓣大量提取叶绿素
C.探索生长素促进其插条生根的最适浓度
D.利用幼嫩茎段进行植物组织培养
16.(2024·北京)胆固醇等脂质被单层磷脂包裹形成球形复合物,通过血液运输到细胞并被胞吞,形成的囊泡与溶酶体融合后,释放胆固醇。以下相关推测合理的是(  )
A.磷脂分子尾部疏水,因而尾部位于复合物表面
B.球形复合物被胞吞的过程,需要高尔基体直接参与
C.胞吞形成的囊泡与溶酶体融合,依赖于膜的流动性
D.胆固醇通过胞吞进入细胞,因而属于生物大分子
17.(2024·江西)农谚有云:“雨生百谷”。“雨”有利于种子的萌发,是“百谷”丰收的基础。下列关于种子萌发的说法,错误的是(  )
A.种子萌发时,细胞内自由水所占的比例升高
B.水可借助通道蛋白以协助扩散方式进入细胞
C.水直接参与了有氧呼吸过程中丙酮酸的生成
D.光合作用中,水的光解发生在类囊体薄膜上
18.(2024·江西)营养物质是生物生长发育的基础。依据表中信息,下列有关小肠上皮细胞吸收营养物质方式的判断,错误的是(  )
方式 细胞外相对浓度 细胞内相对浓度 需要提供能量 需要转运蛋白
甲 低 高 是 是
乙 高 低 否 是
丙 高 低 是 是
丁 高 低 否 否
A.甲为主动运输 B.乙为协助扩散
C.丙为胞吞作用 D.丁为自由扩散
19.(2024·山东)仙人掌的茎由内部薄壁细胞和进行光合作用的外层细胞等组成,内部薄壁细胞的细胞壁伸缩性更大。水分充足时,内部薄壁细胞和外层细胞的渗透压保持相等;干旱环境下,内部薄壁细胞中单糖合成多糖的速率比外层细胞快。下列说法错误的是(  )
A.细胞失水过程中,细胞液浓度增大
B.干旱环境下,外层细胞的细胞液浓度比内部薄壁细胞的低
C.失水比例相同的情况下,外层细胞更易发生质壁分离
D.干旱环境下内部薄壁细胞合成多糖的速率更快,有利于外层细胞的光合作用
20.(2024·山东)心肌损伤诱导某种巨噬细胞吞噬、清除死亡的细胞,随后该巨噬细胞线粒体中NAD+浓度降低,生成NADH的速率减小,引起有机酸ITA的生成增加。ITA可被细胞膜上的载体蛋白L转运到细胞外。下列说法错误的是(  )
A.细胞呼吸为巨噬细胞吞噬死亡细胞的过程提供能量
B.转运ITA时,载体蛋白L的构象会发生改变
C.该巨噬细胞清除死亡细胞后,有氧呼吸产生CO2的速率增大
D.被吞噬的死亡细胞可由巨噬细胞的溶酶体分解
21.(2024·山东)植物细胞被感染后产生的环核苷酸结合并打开细胞膜上的Ca2+通道蛋白,使细胞内Ca2+浓度升高,调控相关基因表达,导致H2O2含量升高进而对细胞造成伤害;细胞膜上的受体激酶BAK1被油菜素内酯活化后关闭上述Ca2+通道蛋白。下列说法正确的是(  )
A.环核苷酸与Ca2+均可结合Ca2+通道蛋白
B.维持细胞Ca2+浓度的内低外高需消耗能量
C.Ca2+作为信号分子直接抑制H2O2的分解
D.油菜素内酯可使BAK1缺失的被感染细胞内H2O2含量降低
22.(2024·浙江选考) 婴儿的肠道上皮细胞可以吸收母乳中的免疫球蛋白,此过程不涉及(  )
A.消耗ATP B.受体蛋白识别
C.载体蛋白协助 D.细胞膜流动性
23.(2024·新课标)人体消化道内食物的消化和吸收过程受神经和体液调节。下列叙述错误的是(  )
A.进食后若副交感神经活动增强可抑制消化液分泌
B.唾液分泌条件反射的建立需以非条件反射为基础
C.胃液中的盐酸能为胃蛋白酶提供适宜的pH环境
D.小肠上皮细胞通过转运蛋白吸收肠腔中的氨基酸
24.(2024·湖北真题)磷酸盐体系(/)和碳酸盐体系(/H2CO3)是人体内两种重要的缓冲体系。下列叙述错误的是(  )
A.有氧呼吸的终产物在机体内可转变为
B.细胞呼吸生成ATP的过程与磷酸盐体系有关
C.缓冲体系的成分均通过自由扩散方式进出细胞
D.过度剧烈运动会引起乳酸中毒说明缓冲体系的调节能力有限
25.(2024·天津)胰岛素的研发走过了:动物提取—化学合成—重组胰岛素—生产胰岛素类似物生产等历程。有关叙述错误的是(  )
A.动物体内胰岛素由胰岛B细胞合成并胞吐出细胞
B.氨基酸是化学合成胰岛素的原料
C.用大肠杆菌和乳腺生物反应器生产胰岛素需相同的启动子
D.利用蛋白质工程可生产速效胰岛素等胰岛素类似物
26.(2024·贵州)茶树根细胞质膜上的硫酸盐转运蛋白可转运硒酸盐。硒酸盐被根细胞吸收后,随着植物的生长;吸收的大部分硒与胞内蛋白结合形成硒蛋白,硒蛋白转移到细胞壁中储存。下列叙述错误的是(  )
A.硒酸盐以离子的形式才能被根细胞吸收
B.硒酸盐与硫酸盐进入细胞可能存在竞争关系
C.硒蛋白从细胞内转运到细胞壁需转运蛋白
D.利用呼吸抑制剂可推测硒酸盐的吸收方式
27.(2024·甘肃) 维持细胞的Na+平衡是植物的耐盐机制之一。盐胁迫下,植物细胞膜(或液泡膜)上的H+-ATP酶(质子泵)和Na+-H+逆向转运蛋白可将Na+从细胞质基质中转运到细胞外(或液泡中),以维持细胞质基质中的低Na+水平(见下图)。下列叙述错误的是(  )
A.细胞膜上的H+-ATP酶磷酸化时伴随着空间构象的改变
B.细胞膜两侧的H+浓度梯度可以驱动Na+转运到细胞外
C.H+-ATP酶抑制剂会干扰H+的转运,但不影响Na+转运
D.盐胁迫下Na+-H+逆向转运蛋白的基因表达水平可能提高
28.(2024·湖南)缢蛏是我国传统养殖的广盐性贝类之一,自身存在抵抗外界盐度胁迫的渗透调节机制。缢蛏体内游离氨基酸含量随盐度的不同而变化,图为缢蛏在不同盐度下鲜重随培养时间的变化曲线。下列叙述错误的是(  )
A.缢蛏在低盐度条件下先吸水,后失水直至趋于动态平衡
B.低盐度培养8~48h,缢蛏通过自我调节以增加组织中的溶质含量
C.相同盐度下,游离氨基酸含量高的组织渗透压也高
D.缢蛏组织中游离氨基酸含量的变化与细胞呼吸有关
29.(2023·湖北)心肌细胞上广泛存在Na+-K+泵和Na+-Ca2+交换体(转入Na+的同时排出Ca2+),两者的工作模式如图所示。已知细胞质中钙离子浓度升高可引起心肌收缩。某种药物可以特异性阻断细胞膜上的Na+-K+泵。关于该药物对心肌细胞的作用,下列叙述正确的是(  )
A.心肌收缩力下降
B.细胞内液的钾离子浓度升高
C.动作电位期间钠离子的内流量减少
D.细胞膜上Na+-Ca2+交换体的活动加强
30.(2023·浙江)缬氨霉素是一种脂溶性抗生素,可结合在微生物的细胞膜上,将K+运输到细胞外(如图所示),降低细胞内外的K+浓度差,使微生物无法维持细胞内离子的正常浓度而死亡。下列叙述正确的是(  )
A.缬氨霉素顺浓度梯度运输K+到膜外
B.缬氨霉素为运输K+提供ATP
C.缬氨霉素运输K+与质膜的结构无关
D.缬氨霉素可致噬菌体失去侵染能力
31.(2025·河北) 下列过程涉及酶催化作用的是(  )
A.Fe3+催化H2O2的分解
B.O2通过自由扩散进入细胞
C.PCR过程中DNA双链的解旋
D.植物体细胞杂交前细胞壁的去除
32.(2025·北京市)“探究植物细胞的吸水和失水”实验中,在清水和0.3g/mL蔗糖溶液中处于稳定状态的细胞如图。以下叙述错误的是(  )
A.图1,水分子通过渗透作用进出细胞
B.图1,细胞壁限制过多的水进入细胞
C.图2,细胞失去的水分子是自由水
D.与图1相比,图2中细胞液浓度小
33.(2025·陕晋青宁)丙酮酸是糖代谢过程的重要中间物质。丙酮酸转运蛋白(MPC)运输丙酮酸通过线粒体内膜的过程如下图。下列叙述错误的是(  )
A.MPC功能减弱的动物细胞中乳酸积累将会增加
B.丙酮酸根、H+共同与MPC结合使后者构象改变
C.线粒体内外膜间隙pH变化影响丙酮酸根转运速率
D.线粒体内膜两侧的丙酮酸根浓度差越大其转运速率越高
34.(2025·陕晋青宁)对下列关于中学生物学实验的描述错误的是(  )
①探究淀粉酶对淀粉和蔗糖的水解作用
②观察植物细胞的质壁分离现象
③探究培养液中酵母菌种群数量的变化
④观察植物细胞的有丝分裂
⑤观察叶绿体和细胞质的流动
⑥DNA的粗提取与鉴定
A.①⑥通过观察颜色判断实验结果
B.③⑥均须进行离心操作
C.②④均可使用洋葱作为实验材料
D.②⑤实验过程均须保持细胞活性
35.(2025·山东)生长于NaCl浓度稳定在100 mmol/L的液体培养基中的酵母菌,可通过离子通道吸收Na+,但细胞质基质中Na+浓度超过30 mmol/L时会导致酵母菌死亡。为避免细胞质基质Na+浓度过高,液泡膜上的蛋白N可将Na+以主动运输的方式转运到液泡中,细胞膜上的蛋白W也可将Na+排出细胞。下列说法错误的是(  )
A.Na+在液泡中的积累有利于酵母细胞吸水
B.蛋白N转运Na+过程中自身构象会发生改变
C.通过蛋白W外排Na+的过程不需要细胞提供能量
D.Na+通过离子通道进入细胞时不需要与通道蛋白结合
36.(2025·浙江)ATP是细胞生命活动的直接能源物质。下列物质运输过程需要消耗ATP的是(  )
A.O2进入红细胞 B.组织细胞排出CO2
C.浆细胞分泌抗体 D.神经细胞内K+顺浓度梯度外流
37.(2025·浙江)某同学利用幼嫩的黑藻叶片完成“观察叶绿体和细胞质流动”实验后,继续进行“质壁分离”实验,示意图如下。
下列叙述正确的是(  )
A.实验过程中叶肉细胞处于失活状态
B.①与②的分离,与①的选择透过性无关
C.与图甲相比,图乙细胞吸水能力更强
D.与图甲相比,图乙细胞体积明显变小
38.(2024·广西)人体心室肌细胞内K+浓度高于胞外,Na+浓度低于胞外。心室肌细胞静息电位和动作电位的产生(如图),主要与K+和Na+的流动有关。图中0期为去极化:1、2和3期Na+通道关闭,同时K+外流;2期出现主要依赖K+和Ca2+的流动。下列说法错误的是(  )
A.静息电位主要由K+外流造成
B.0期的产生依赖于Na+快速内流
C.1期K+外流是通过主动运输进行
D.2期的形成是K+外流和Ca2+内流导致
39.(2024·安徽)变形虫可通过细胞表面形成临时性细胞突起进行移动和摄食。科研人员用特定荧光物质处理变形虫,发现移动部分的细胞质中聚集有被标记的纤维网架结构,并伴有纤维的消长。下列叙述正确的是(  )
A.被荧光标记的网架结构属于细胞骨架,与变形虫的形态变化有关
B.溶酶体中的水解酶进入细胞质基质,将摄入的食物分解为小分子
C.变形虫通过胞吞方式摄取食物,该过程不需要质膜上的蛋白质参与
D.变形虫移动过程中,纤维的消长是由于其构成蛋白的不断组装所致
二、多项选择题
40.(2023·江苏)下列中学实验需要使用显微镜观察,相关叙述错误的有(  )
A.观察细胞中脂肪时,脂肪颗粒被苏丹Ⅲ染液染成橘黄色
B.观察酵母菌时,细胞核、液泡和核糖体清晰可见
C.观察细胞质流动时,黑藻叶肉细胞呈正方形,叶绿体围绕细胞核运动
D.观察植物细胞质壁分离时,在低倍镜下无法观察到质壁分离现象
41.(2023·湖南)盐碱化是农业生产的主要障碍之一。植物可通过质膜H+泵把Na+排出细胞,也可通过液泡膜H+泵和液泡膜NHX载体把Na+转入液泡内,以维持细胞质基质Na+稳态。下图是NaCl处理模拟盐胁迫,钒酸钠(质膜H+泵的专一抑制剂)和甘氨酸甜菜碱(GB)影响玉米Na+的转运和相关载体活性的结果。下列叙述正确的是(  )
A.溶质的跨膜转运都会引起细胞膜两侧渗透压的变化
B.GB可能通过调控质膜H+泵活性增强Na+外排,从而减少细胞内Na+的积累
C.GB引起盐胁迫下液泡中Na+浓度的显著变化,与液泡膜H+泵活性有关
D.盐胁迫下细胞质基质Na+排出细胞或转入液泡都能增强植物的耐盐性
42.(2024·黑吉辽)研究人员对小鼠进行致病性大肠杆菌接种,构建腹泻模型。用某种草药进行治疗,发现草药除了具有抑菌作用外,对于空肠、回肠黏膜细胞膜上的水通道蛋白3(AQP3)的相对表达量也有影响,结果如图所示。下列叙述正确的是(  )
A.水的吸收以自由扩散为主、水通道蛋白的协助扩散为辅
B.模型组空肠黏膜细胞对肠腔内水的吸收减少,引起腹泻
C.治疗后空肠、回肠AQP3相对表达量提高,缓解腹泻,减少致病菌排放
D.治疗后回肠AQP3相对表达量高于对照组,可使回肠对水的转运增加
43.(2025·江苏)研究小组开展了Cl-胁迫下,添加脱落酸(ABA)对植物根系应激反应的实验,机理如图所示。下列相关叙述错误的有(  )
A.Cl-通过自由扩散进入植物细胞
B.转运蛋白甲、乙的结构和功能相同
C.ABA进入细胞核促进相关基因的表达
D.细胞质膜发挥了物质运输、信息交流的功能
三、非选择题
44.(2023·江苏)帕金森综合征是一种神经退行性疾病,神经元中α-Synuclein蛋白聚积是主要致病因素。研究发现患者普遍存在溶酶体膜蛋白TMEM175变异,如图所示。为探究TMEM175蛋白在该病发生中的作用,进行了一系列研究。请回答下列问题:
(1)帕金森综合征患者TMEM175蛋白的第41位氨基酸由天冬氨酸突变为丙氨酸,说明TMEM175基因发生   而突变,神经元中发生的这种突变   (从“能”“不能”“不一定”中选填)遗传。
(2)突变的TMEM175基因在细胞核中以   为原料,由RNA聚合酶催化形成   键,不断延伸合成mRNA.
(3)mRNA转移到细胞质中,与   结合,合成一段肽链后转移到粗面内质网上继续合成,再由囊泡包裹沿着细胞质中的   由内质网到达高尔基体。突变的TMEM175基因合成的肽链由于氨基酸之间作用的变化使肽链的   改变,从而影响TMEM175蛋白的功能。
(4)基因敲除等实验发现TMEM175蛋白参与溶酶体内酸碱稳态调节。如图1所示,溶酶体膜的   对H+具有屏障作用,膜上的H+转运蛋白将H+以   的方式运入溶酶体,使溶酶体内pH小于细胞质基质。TMEM175蛋白可将H+运出,维持溶酶体内pH约为4.6.据图2分析,TMEM175蛋白变异将影响溶酶体的功能,原因是   。
(5)综上推测,TMEM175蛋白变异是引起α-Synuclein蛋白聚积致病的原因,理由是   。
45.(2023·江苏)气孔对植物的气体交换和水分代谢至关重要,气孔运动具有复杂的调控机制。图1所示为叶片气孔保卫细胞和相邻叶肉细胞中部分的结构和物质代谢途径。①~④表示场所。请回答下列问题:
(1)光照下,光驱动产生的NADPH主要出现在   (从①~④中选填);NADPH可用于CO2固定产物的还原,其场所有   (从①~④中选填)。液泡中与气孔开闭相关的主要成分有H2O、   (填写2种)等。
(2)研究证实气孔运动需要ATP,产生ATP的场所有   (从①~④中选填)。保卫细胞中的糖分解为PEP,PEP再转化为   进入线粒体,经过TCA循环产生的   最终通过电子传递链氧化产生ATP。
(3)蓝光可刺激气孔张开,其机理是蓝光激活质膜上的AHA,消耗ATP将H+泵出膜外,形成跨膜的   ,驱动细胞吸收K+等离子。
(4)细胞中的PEP可以在酶作用下合成四碳酸OAA,并进一步转化成Mal,使细胞内水势下降(溶质浓度提高),导致保卫细胞   ,促进气孔张开。
(5)保卫细胞叶绿体中的淀粉合成和分解与气孔开闭有关,为了研究淀粉合成与细胞质中ATP的关系,对拟南芥野生型WT和NTT突变体ntt1(叶绿体失去运入ATP的能力)保卫细胞的淀粉粒进行了研究,其大小的变化如图2.下列相关叙述合理的有____。
A.淀粉大量合成需要依赖呼吸作用提供ATP
B.光照诱导WT气孔张开与叶绿体淀粉的水解有关
C.光照条件下突变体ntt1几乎不能进行光合作用
D.长时间光照可使WT叶绿体积累较多的淀粉
46.(2024·河北)心率为心脏每分钟搏动的次数。心肌P细胞可自动产生节律性动作电位以控制心脏搏动。同时,P细胞也受交感神经和副交感神经的双重支配。受体阻断剂A和B能与各自受体结合,并分别阻断两类自主神经的作用,以受试者在安静状态下的心率为对照,检测了两种受体阻断剂对心率的影响,结果如图。
回答下列问题:
(1)调节心脏功能的基本中枢位于   。大脑皮层通过此中枢对心脏活动起调节作用,体现了神经系统的   调节。
(2)心肌P细胞能自动产生动作电位,不需要刺激,该过程涉及的跨膜转运。神经细胞只有受刺激后,才引起   离子跨膜转运的增加,进而形成膜电位为   的兴奋状态。上述两个过程中离子跨膜转运方式相同,均为   。
(3)据图分析,受体阻断剂A可阻断   神经的作用。兴奋在此神经与P细胞之间进行传递的结构为   。
(4)自主神经被完全阻断时的心率为固有心率。据图分析,受试者在安静状态下的心率   (填“大于”“小于”或“等于”)固有心率。若受试者心率为每分钟90次,比较此时两类自主神经的作用强度:   。
47.(2025·河北) 砷可严重影响植物的生长发育。拟南芥对砷胁迫具有一定的耐受性,为探究其机制,研究者进行了相关实验。回答下列问题:
(1)砷通过转运蛋白F进入根细胞时需消耗能量,该运输方式属于   。砷的累积可导致细胞内自由甚含量升高。自由基造成细胞损伤甚至死亡的原因为   (答出两点即可)。
(2)针对砷吸收相关基因C缺失和过量表达的拟南芥,研究者检测了其根细胞中砷的含量,结果如图。由此推测,蛋白C可   (填“增强”或“减弱”)根对砷的吸收。进一步研究表明,砷激活的蛋白C可使F磷酸化、磷酸化的F诱导细胞膜内陷、形成含有蛋白F的囊泡。由此判断,激活的蛋白C可使细胞膜上转运蛋白F的数量   ,造成根对砷吸收量的改变。囊泡的形成过程体现了细胞膜在结构上具有   的特点。
(3)砷和磷可竞争性通过转运蛋白F进入细胞。推测在砷胁迫下植物对磷的吸收量   (填“增加”或“减少”),结合(2)和(3)的信息,分析其原因:   (答出两点即可)。
48.(2025·北京市)某同学因颈前部疼痛,伴有发热、心慌、多汗而就医。医生发现其甲状腺有触痛,血液中甲状腺激素T4水平升高,诊断为亚急性甲状腺炎。该同学查阅有关资料,了解到甲状腺由许多滤泡构成,每个滤泡由一层滤泡上皮细胞围成(图1),T4在滤泡腔中合成并储存;发病之初,甲状腺滤泡上皮细胞受损;多数患者发病后,甲状腺摄碘率和血液中相关激素水平的变化如图2。
(1)在人体各系统中,甲状腺属于   系统。
(2)在滤泡上皮细胞内的碘浓度远高于组织液的情况下,细胞依然能摄取碘,这种吸收方式是   。
(3)发病后的2个月内,血液中T4水平高于正常的原因是:甲状腺滤泡上皮细胞受损导致   。
(4)发病7个月时,该同学复查结果显示:T4水平恢复正常,但摄碘率高于正常。家长担心摄碘率会居高不下。请根据T4分泌的调节过程向家长做出解释以打消其顾虑   。
(5)发病8个月后,T4会在正常范围内上下波动,表明甲状腺功能恢复正常。由此推测,甲状腺中的   结构已恢复完整。
答案解析部分
1.【答案】B
【解析】【解答】A、乙醇是脂溶性的小分子有机物,与细胞膜的成分磷脂相似相溶,可以通过自由扩散的方式进入细胞,A错误;
B、血浆中K+浓度低,红细胞内K+浓度较高,K+进入红细胞为逆浓度梯度运输,属于主动运输,故需要消耗能量和载体蛋白,B正确;
C、抗体是浆细胞分泌到细胞外的蛋白质,是分泌蛋白的一种,故分泌过程为胞吐,需要消耗能量,C错误;
D、葡萄糖进入小肠上皮细胞的方式属于主动运输,而进入哺乳动物成熟的红细胞的方式是协助扩散,D错误。
故答案为:B。
【分析】本题考查物质跨膜运输的方式,所需要的条件,相关物质进出细胞的方式。
(1)物质以扩散方式进出细胞,不需要消耗细胞内化学反应所释放的能量,这种物质跨膜运输方式称为被动运输。被动运输又分为自由扩散和协助扩散两类。物质通过简单的扩散作用进出细胞的方式,叫作自由扩散,也叫简单扩散。需要借助膜上的转运蛋白进出细胞的物质扩散方式,叫作协助扩散,也叫易化扩散。
(2)物质逆浓度梯度进行跨膜运输,需要载体蛋白的协助,同时还需要消耗细胞内化学反应所释放的能量,这种方式叫作主动运输。
(3)当细胞摄取大分子时,首先是大分子与膜上的蛋白质结合,从而引起这部分细胞膜内陷形成小囊,包围着大分子。然后,小囊从细胞膜上分离下来,形成囊泡,进入细胞内部,这种现象叫胞吞。细胞需要外排的大分子,先在细胞内形成囊泡,囊泡移动到细胞膜处,与细胞膜融合,将大分子排出细胞,这种现象叫胞吐。在物质的跨膜运输过程中,胞吞、胞吐是普遍存在的现象,它们也需要消耗细胞呼吸所释放的能量。
2.【答案】A
【解析】【解答】A、成熟的植物细胞有中央大液泡,原生质层相当于半透膜,用高浓度蔗糖溶液处理,与细胞液之间形成浓度差,因外界浓度较高细胞会失水发生质壁分离,因此用高浓度蔗糖溶液处理成熟植物细胞观察质壁分离,A正确;
B、向泡菜坛盖边沿的水槽中注满水创造内部无氧环境,B错误;
C、用样方法调查种群密度时应该做到随机取样,而不是在目标个体集中分布的区域划定样方调查种群密度,C错误;
D、对外植体进行消毒可以减少外植体上的微生物,与接种过程中的微生物是否污染无关,D错误。
故答案为:A。
【分析】质壁分离发生的条件是:①外界溶液浓度大于细胞液浓度;②成熟的植物细胞具有细胞壁,具有中央大液泡,细胞膜、液泡膜及两层膜之间的细胞质构成原生质层,原生质层相当于一层半透膜,细胞壁的伸缩性小于原生质层。质壁分离发生时表现为液泡由大变小,细胞液浓度变大,颜色由浅变深,原生质层与细胞壁分离。
3.【答案】C
【解析】【解答】A、干制过程去除水分,使微生物代谢减慢,不易生长和繁殖,延长食品保存时间,A正确;
B、腌制过程中添加食盐、糖等可增加环境溶液溶度,从而微生物渗透失水不能正常生长和繁殖,B正确;
C、低温条件下新陈代谢减慢,微生物的生命活动受到抑制,但不是温度越低越好,例如水果蔬菜的保存需要零上低温,C错误;
D、高温处理可杀死食品中绝大部分微生物,酶在高温条件下会变性失活,减少对营养物质的水解,D正确。
故答案为:C。
【分析】延长对食物的保存时间可以通过降低新陈代谢水平,杀死杂菌等方式实现。
4.【答案】C
【解析】【解答】A、黑藻叶绿体的双层膜结构属于亚显微结构,需要用电子显微镜来观察,A正确;
B、黑藻成熟叶片为高度分化的细胞,不具有分裂能力,故不能用来观察植物细胞的有丝分裂,B正确;
C、质壁分离过程中,植物细胞失水,原生质层体积变小,绿色会加深,而随着不断失水,细胞液的浓度增大,吸水能力增强,C错误;
D、叶绿体中的色素易溶于乙醇、丙酮等有机溶剂,提取黑藻叶片中光合色素时,可用无水乙醇作提取液,D正确。
故答案为:C。
【分析】黑藻叶片细胞含有较多的叶绿体,可以用于观察植物细胞中的叶绿体,也可以用于叶绿体中色素的提取与分离实验。提取色素的原理:色素能溶解在乙醇或丙酮等有机溶剂中,所以可用无水乙醇等提取色素;同时,黑藻叶片细胞是成熟的植物细胞,含有大液泡,可用于观察质壁分离和复原;但黑藻叶片细胞已经高度分化,不再分裂,不能用于观察植物细胞的有丝分裂。
5.【答案】B
【解析】【解答】A、葡萄糖是血浆的重要组成成分,血糖平衡受胰岛素和胰高血糖素等激素的调节,A正确;
B、葡萄糖是机体重要的能量来源,通过主动运输或者协助扩散(进入红细胞)的方式通过细胞膜,B错误;
CD、血糖较高时,血液中的葡萄糖可以进入组织细胞进行氧化分解,也可以转化为肝糖原和肌糖原,也可以进入脂肪细胞转化为脂肪,C、D正确。
故答案为:B。
【分析】葡萄糖是重要的单糖,是细胞的主要能源物质。
血糖的来源:食物中的糖类的消化吸收、肝糖原的分解、脂肪等非糖物质的转化;
血糖的去向:血糖氧化分解为CO2、H2O和能量、合成肝糖原、肌糖原(肌糖原不能水解为葡萄糖)、血糖转化为脂肪、某些氨基酸。
6.【答案】C
【解析】【解答】AB、用 30%的蔗糖溶液处理细胞之后,细胞发生渗透失水,出现质壁分离现象,原生质体和液泡的体积都会减小,细胞液浓度上升;用清水处理之后,细胞发生渗透吸水,出现质壁分离复原现象,原生质体和液泡的体积会增大,细胞液浓度下降,AB 错误。
CD、随着所用蔗糖溶液浓度上升,当蔗糖浓度大于细胞液浓度之后,细胞发生渗透失水,原生质体和液泡体积下降,细胞液浓度上升。所以C正确,D 错误。
故答案为:C。
【分析】 考查植物细胞的吸水和失水,质壁分离和复原实验。植物细胞通过渗透作用吸水和失水,当外界溶液浓度高,植物细胞失水,细胞体积略有减小,细胞液浓度增大。
7.【答案】A
【解析】【解答】A、洋葱鳞片叶内表皮细胞具有原生质层,原生质层相当于一层半透膜,可用于探究膜的透性,A符合题意;
B、洋葱匀浆中加入新配制的斐林试剂,且需要在50~65℃温水条件下反应产生砖红色沉淀,B不符合题意;
C、制作根尖有丝分裂装片时,解离、按压盖玻片都能更好地将细胞分散开,漂洗的目的是将解离液洗去,防止解离过度,C不符合题意;
D、粗提取的DNA溶于2mol/LNaCl溶液中,加入二苯胺试剂后,需在水浴条件下才能显蓝色,D不符合题意。
故答案为:A。
【分析】观察植物根尖细胞有丝分裂制片流程
①解离:用解离液使组织中的细胞相互分离开来;
②漂洗:洗去解离液,防止解离过度;
③染色:用甲紫溶液或醋酸洋红液能使染色体着色;
④制片:用镊子将处理过的根尖放在载玻片上,加一滴清水,并用镊子尖将根尖弄碎,盖上盖玻片。然后,用拇指轻轻按压盖玻片,使细胞分散开来,有利于观察。
8.【答案】B
【解析】【解答】A、结合题图可知,HCO3-进入细胞质基质需要膜上的蛋白质协助,同时需要线粒体产生的ATP提供能量,由此推断HCO3-进入细胞质基质的方式是主动运输,A正确;
B、结合题图可知,HCO3-由细胞质基质进入叶绿体基质需要叶绿体膜上的蛋白质协助,同时需要线粒体产生的ATP题供能量,由此推断HCO3-进入细胞质基质的方式是主动运输,而通道蛋白只能参与协助扩散,所以HCO3-进入叶绿体基质不是通过通道蛋白,B错误;
C、结合题图可知,光反应中水的光解产生的H+促进HCO3-进入类囊体中,C正确;
D、结合题图可知,光反应中水的光解会产生物质X,而物质X会进入线粒体,由此确定物质X是O2。O2能够促进线粒体进行有氧呼吸,产生更多的ATP,利于HCO3-进入叶绿体基质,产生CO2,所以说 光反应生成的物质X保障了暗反应的CO2供应,D正确。
故答案为:B。
【分析】光合作用分为光反应阶段和暗反应阶段。(1)光反应阶段:①场所:叶绿体类囊体的薄膜。②过程:叶绿体中光合色素吸收的光能将水分解为氧和H+,氧直接以氧分子的形式释放出去,H+与氧化型辅酶Ⅱ(NADP+)结合,形成还原型辅酶Ⅱ(NADPH)。在有关酶的催化作用下,提供能量促使ADP与Pi反应形成ATP。③能量变化:光能转变为活跃的化学能。(2)暗反应阶段:①场所:叶绿体基质。②过程:在酶的作用下,二氧化碳与五碳化合物结合,形成两个三碳化合物。在有关酶的催化作用下,三碳化合物接受ATP和NADPH释放的能量,并且被NADPH还原。一些接受能量并被还原的三碳化合物,在酶的作用下经过一系列的反应转化为糖类;另一些接受能量并被还原的三碳化合物,经过一系列变化,又形成五碳化合物。③能量变化:活跃的化学能转变为有机物中稳定的化学能。
9.【答案】D
【解析】【解答】A、由题意可知,Cl-/H+转运蛋白在H+浓度梯度驱动下,运出H+的同时把Cl-逆浓度梯度运入溶酶体,即溶酶体内H+浓度高于细胞质基质,H+载体蛋白将H+运输进溶酶体为主动运输,A正确;
B、H+载体蛋白失活影响溶酶体膜两侧的H+浓度,Cl-转运受阻导致溶酶体内的吞噬物积累,B正确;
C、Cl-/H+转运蛋白缺失突变体的细胞中,因Cl-转运受阻导致溶酶体内的吞噬物积累,严重时可导致溶酶体破裂,溶酶体功能不能正常进行,不能及时清除细胞中损伤和衰老的细胞器,C正确;
D、溶酶体中H+浓度高pH较低,为溶酶体中水解酶的最适pH,溶酶体破裂后细胞质基质中的水解酶由于pH升高酶活性下降,D错误。
故答案为:D。
【分析】1、溶酶体:(1)形态:内含有多种水解酶;膜上有许多糖,防止本身的膜被水解;(2)作用:能分解衰老、损伤的细胞器,吞噬并杀死侵入细胞的病毒或病菌。2、自由扩散的方向是从高浓度向低浓度,不需载体和能量,常见的有水、CO2、O2、甘油、苯、酒精等;协助扩散的方向是从高浓度向低浓度,需要载体,不需要能量,如红细胞吸收葡萄糖;主动运输的方向是从低浓度向高浓度,需要载体和能量,常见的如小肠绒毛上皮细胞吸收氨基酸、葡萄糖,K+等。
10.【答案】B
【解析】【解答】A、共转运体是一种载体蛋白,转运蛋白在转运物质时构象会发生改变,A错误;
B、由图可知,蔗糖的转运是依靠细胞两侧H+浓度差的电势能,H+浓度差的形成伴随着ATP的水解,使用使用ATP合成抑制剂,会减少H+向膜外的运输,H+浓度差下降,则蔗糖运输速率下降,B正确;
C、植物组织培养过程中,蔗糖可以维持渗透压并作为碳源,但不是蔗糖唯一碳源,C错误;
D、由图可知,蔗糖的转运是依靠细胞两侧H+浓度差的电势能,培养基的pH值高于细胞内,则细胞膜外的H+浓度下降,不利于蔗糖的吸收,D正确。
故答案为:B。
【分析】1、转运蛋白可以分为载体蛋白和通道蛋白两种类型,载体蛋白只容许与自身结合部位相适应的分子或离子通过,而且每次转运时都会发生自身构想的改变;通道蛋白只容许与自身通道的直径和形状相适配、大小和电荷相适宜的分子或离子通过,分子或离子通过通道蛋白时,不需要与通道蛋白结合。
2、自由扩散的方向是从高浓度向低浓度,不需载体和能量,常见的有水、CO2、O2、甘油、苯、酒精等;协助扩散的方向是从高浓度向低浓度,需要载体,不需要能量,如红细胞吸收葡萄糖;主动运输的方向是从低浓度向高浓度,需要载体和能量,常见的如小肠绒毛上皮细胞吸收氨基酸、葡萄糖,K+等。
11.【答案】A
12.【答案】C
13.【答案】B
14.【答案】D
15.【答案】B
【解析】【解答】A、花瓣细胞含有中央大液泡和细胞壁,且由于液泡含有花青素而呈现出一定的颜色,所以可用于观察质壁分离现象,A不符合题意;
B、花瓣中含有花青素,而不含叶绿素,所以不可用于提取叶绿素,B符合题意;
C、生长素能促进月季的茎段生根,可利用月季的茎段为材料来探索生长素促进其插条生根的最适浓度,C不符合题意;
D、月季的幼嫩茎段能分裂,能利用幼嫩茎段的外植体进行植物组织培养,D不符合题意。
故选B。
【分析】植物细胞质壁分离及复原实验的原理
①内因:成熟的植物细胞的原生质层相当于一层半透膜;原生质层比细胞壁的伸缩性大。
②外因:细胞液和外界溶液存在浓度差,细胞能渗透吸水或失水。
16.【答案】C
【解析】【解答】A、磷脂分子头部亲水,尾部疏水,所以头部位于复合物表面,A错误;
B、球形复合物被胞吞的过程中不需要高尔基体直接参与,直接由细胞膜形成囊泡,然后与溶酶体融合后,释放胆固醇,B错误;
C、胞吞形成的囊泡(单层膜)能与溶酶体融合,依赖于膜具有一定的流动性,C正确;
D、胆固醇属于固醇类物质,是小分子物质,D错误。
故选C。
【分析】1、细胞膜基本支架为磷脂双分子层。磷脂分子以疏水性尾部相对朝向膜的内侧,亲水性头部朝向膜的外侧。
2、大分子物质一般通过胞吞和胞吐的方式进行运输,它们均需要消耗能量,依赖于细胞膜的流动性。
3、生物大分子都是多聚体,由许多单体连接而成。包括蛋白质,多糖和核酸。
17.【答案】C
【解析】【解答】A、种子萌发时,细胞新陈代谢加快,细胞内自由水所占的比例升高,A正确;
B、水可以通过自由扩散方式进入细胞,也可借助通道蛋白以协助扩散方式进入细胞,B正确;
C、有氧呼吸过程中,丙酮酸是第一阶段生成的,该阶段没有水的参与,水直接参与的是第二阶段,C错误;
D、光合作用中,水的光解发生在光反应阶段,该阶段的场所是类囊体薄膜,因此水的光解发生在类囊体薄膜上,D正确。
故答案为:C。
【分析】 自由扩散、协助扩散、主动运输:
  自由扩散 协助扩散 主动运输
运输方向 顺相对含量梯度 顺相对含量梯度 能逆相对含量梯度
能量 不消耗 不消耗 消耗
载体 不需要 需要 需要
影响因素 浓度差 浓度差、载体 载体、能量
举例 水、O2等气体、甘油等脂溶性物质 血浆中葡萄糖进入红细胞 离子进入细胞
氨基酸、葡萄糖被上皮细胞吸收
18.【答案】C
【解析】【解答】A、甲表示的运输方向为低浓度向高浓度进行,需要消耗能量,并通过转运蛋白,为主动运输,A正确;
B、乙为从高浓度向低浓度进行,需要转运蛋白,不需要消耗能量,为协助扩散, B正确;
C、丙为从高浓度向低浓度进行,需要转运蛋白,不需要消耗能量,为协助扩散, C错误;
D、丁从高浓度向低浓度进行吸收,不需要转运蛋白和能量,为自由扩散,D正确。
故答案为:C。
【分析】
19.【答案】B
【解析】【解答】A、细胞失水过程中,水从细胞液流出,使细胞液水分减少,细胞液浓度增大,A不符合题意;
B、干旱环境下,内部薄壁细胞中单糖合成多糖的速率比外层细胞快,则外层细胞的细胞液单糖多,且外层细胞还能进行光合作用合成单糖,故外层细胞液浓度比内部薄壁细胞的细胞液浓度高,B符合题意;
C、失水条件下,由于原生质层伸缩性大于细胞壁伸缩性,故出现质壁分离。依题意,内部薄壁细胞细胞壁的伸缩性比外层细胞的细胞壁伸缩性更大,故质壁分离的现象不如外层细胞明显,失水比例相同的情况下,外层细胞更易发生质壁分离,C不符合题意;
D、干旱环境下,内部薄壁细胞中单糖合成多糖的速率比外层细胞快,有利于外层细胞将光合产物转移到内部薄壁细胞,可促进外层细胞的光合作用,故有利于外层细胞的光合作用,D不符合题意。
故答案为:B。
【分析】(1)成熟的植物细胞由于中央液泡占据了细胞的大部分空间,将细胞质挤成一薄层,所以细胞内的液体环境主要指的是液泡里面的细胞液。细胞膜和液泡膜以及两层膜之间的细胞质称为原生质层。原生质层有选择透过性,相当于一层半透膜,植物细胞也能通过原生质发生吸水或失水现象。
(2)质壁分离的条件:具有大液泡;具有细胞壁。质壁分离产生的内因:原生质层伸缩性大于细胞壁伸缩性;质壁分离产生的外因:外界溶液浓度>细胞液浓度。
20.【答案】C
【解析】【解答】A、巨噬细胞吞噬死亡细胞的过程为胞吞作用,该过程需要呼吸作用供能,故细胞呼吸为巨噬细胞吞噬死亡细胞的过程提供能量,A不符合题意;
B、载体蛋白参与主动运输或协助扩散,需要与被运输的物质结合,发生自身构象的改变,故转运ITA时,载体蛋白L的构象会发生改变,B不符合题意;
C、由题干“心肌损伤诱导某种巨噬细胞吞噬、清除死亡的细胞,随后该巨噬细胞线粒体中NAD+浓度降低,生成NADH的速率减小”可知,巨噬细胞清除死亡细胞后,有氧呼吸减弱,产生CO2的速率降低,C符合题意;
D、溶酶体可分解衰老、损伤的细胞器、吞噬并杀死侵入细胞的病菌、病毒等,故被吞噬的死亡细胞可由巨噬细胞的溶酶体分解,为机体的其他代谢提供营养物质,D不符合题意。
故答案为:C。
【分析】(1)大分子物质一般通过胞吞和胞吐的方式进行运输,它们均需要消耗能量,并且能够体现细胞膜的流动性。
(2)载体蛋白参与主动运输或协助扩散,需要与被运输的物质结合,发生自身构象的改变;而通道蛋白参与协助扩散,不需要与被运输物质结合,自身不发生构象改变。
(3)由题意可知,心肌损伤诱导某种巨噬细胞吞噬、清除死亡的细胞,随后该巨噬细胞线粒体中NAD+浓度降低,生成NADH的速率减小,说明有氧呼吸减弱。
21.【答案】B
【解析】【解答】A、由题意”植物细胞被感染后产生的环核苷酸结合并打开细胞膜上的Ca2+通道蛋白“可知,环核苷酸可结合细胞膜上的Ca2+通道蛋白;分子或离子通过通道蛋白时,不需要与通道蛋白结合,故Ca2+不需要与通道蛋白结合,A不符合题意;
B、维持细胞Ca2+浓度的内低外高,需要将Ca2+泵出细胞,是逆浓度梯度的,属于主动运输,这一过程需消耗能量,B符合题意;
C、细胞内Ca2+浓度升高,可调控相关基因表达,导致H2O2含量升高,但作为信号分子,不能直接参与生化反应,故不能直接抑制H2O2的分解,C不符合题意;
D、BAK1被油菜素内酯活化后关闭Ca2+通道蛋白,若BAK1缺失,就无法关闭Ca2+通道蛋白,细胞内 Ca2+浓度升高,调控相关基因表达,会导致H2O2含量升高,D不符合题意。
故答案为:B。
【分析】(1)物质跨膜运输方式比较:自由扩散是物质从浓度高的一侧通过细胞膜向浓度低的一侧运转,不需要消耗能量,不需要载体蛋白协助。协助扩散不需要消耗能量,是在细胞膜上的特殊蛋白的“帮助”下,顺着浓度梯度或电位梯度进行的跨膜转运。主动运输是沿逆化学浓度梯度差的运输方式,要借助于细胞膜上的一种特异性的传递蛋白质分子作为载体,还必须消耗细胞代谢所产生的能量。
(2)转运蛋白可以分为载体蛋白和通道蛋白两种类型。载体蛋白只容许与自身结合部位相适应的分子或离子通过,而且每次转运时都会发生自身构象的改变;通道蛋白只容许与自身通道的直径和形状相适配、大小和电荷相适宜的分子或离子通过。分子或离子通过通道蛋白时,不需要与通道蛋白结合。
22.【答案】C
【解析】【解答】AD、免疫球蛋白的化学本质是蛋白质,是大分子物质,通过胞吞的方式进入细胞,需要消耗ATP,胞吞体现了细胞膜具有一定的流动性的结构特点,A、D正确;
BC、免疫球蛋白通过胞吞的方式进入细胞时,需要受体蛋白的识别,不需要载体蛋白的协助,B正确,C错误。
故答案为:C。
【分析】胞吞:当细胞摄取大分子物质时,大分子会与膜上的蛋白质结合,从而引起这部分细胞膜内陷形成小囊,包围着大分子,然后小囊从细胞膜上分离下来,形成囊泡,进入细胞内部,该过程需要能量。
23.【答案】A
【解析】【解答】A、副交感神经活动增强,促进胃肠的蠕动和消化液的分泌,有利于食物的消化和营养物质的吸收,A错误;
B、条件反射是在非条件反射的基础上,通过学习和训练而建立的。即唾液分泌条件反射的建立需以非条件反射为基础,B正确;
C、胃蛋白酶的最适pH为1.5,胃液中的盐酸能为胃蛋白酶提供适宜的pH环境,C正确;
D、小肠上皮细胞吸收氨基酸的方式通常为主动运输,过程中需要转运蛋白,D正确。
故答案为:A。
【分析】1、自主神经系统:自主神经系统由交感神经和副交感神经两部分组成。它们的作用通常是相反的。当人体处于兴奋状态时,交感神经活动占据优势,心跳加快,支气管扩张,但胃肠的蠕动和消化腺的分泌活动减弱;当人处于安静状态时,副交感神经活动占据优势,此时,心跳减慢,但胃肠的蠕动和消化液的分泌会加强,有利于食物的消化和营养物质的吸收。
2、条件反射和非条件反射的比较:
  非条件反射 条件反射
概念 通过遗传获得,与生俱来 在后天生活过程中逐渐训练形成
特点 不经过大脑皮层,先天性;终生性;数量有限 经过大脑皮层;后天性;可以建立,也能消退;数量可以不断增加
意义 使机体初步适应环境 使机体具有更强的预见性、灵活性和适应性,大大提高了动物应对复杂环境变化的能力
实例 眨眼、啼哭、膝跳反射、吃东西时分泌唾液等 “望梅止渴”“画饼充饥”等
3、主动运输的方向是从低浓度向高浓度,需要载体和能量,常见的如小肠绒毛上皮细胞吸收氨基酸、葡萄糖,K+等。
24.【答案】C
【解析】【解答】A、有氧呼吸的终产物为二氧化碳和水,二氧化碳溶于水后形成H2CO3,再由H2CO3形成H+和HCO3-,A正确;
B、细胞呼吸生成ATP的过程与磷酸盐体系有关,如在细胞呼吸中磷酸盐作为底物参与了糖酵解和柠檬酸循环等过程,B正确;
C、缓冲体系的成分如HCO3-、HPO42 携带电荷,不能通过自由扩散方式进出细胞,C错误;
D、机体内环境中的缓冲物质能够对乳酸起缓冲作用,但过度剧烈运动会引起乳酸中毒说明缓冲体系的调节能力有限,D正确。
故答案为:C。
【分析】1、有氧呼吸全过程:第一阶段:在细胞质基质中,一分子葡萄糖形成两分子丙酮酸、少量的[H]和少量能量,这一阶段不需要氧的参与。第二阶段:丙酮酸进入线粒体的基质中,分解为二氧化碳、大量的[H]和少量能量。第三阶段:在线粒体的内膜上,[H]和氧气结合,形成水和大量能量,这一阶段需要氧的参与。
2、物质跨膜运输的方式 (小分子物质)
运输方式 运输方向 是否需要载体 是否消耗能量 示例
自由扩散 高浓度到低浓度 否 否 水、气体、脂类(如甘油,因为细胞膜的主要成分是脂质)
协助扩散 高浓度到低浓度 是 否 葡萄糖进入红细胞
主动运输 低浓度到高浓度 是 是 几乎所有离子、氨基酸、葡萄糖等
3、内环境稳态的实质是内环境的成分和理化性质都处于动态平衡中,理化性质包括渗透压、酸碱度和温度:(1)人体细胞内环境的温度一般维持在37℃左右;(2)正常人的血浆接近中性,pH为7.35~7.45之间,血浆的pH值能够稳定与含有各种缓冲物质有关,如HCO3-、HPO42-等离子;(3)血浆渗透压大小主要与无机盐和蛋白质的含量有关,在组成细胞外液的各种无机盐离子中含量上占有明显优势的是Na+和Cl-,细胞外液渗透压的90%与Na+和Cl-有关。
25.【答案】C
【解析】【解答】A、胰岛B细胞合成胰岛素后,通过胞吐的方式分泌到细胞外,这是因为胰岛素是大分子蛋白质,胞吐有利于其分泌到细胞外发挥作用,A不符合题意;
B、胰岛素的化学本质是蛋白质,蛋白质的基本组成单位是氨基酸,所以氨基酸是化学合成胰岛素的原料,B不符合题意;
C、大肠杆菌是原核生物,乳腺生物反应器是真核生物(动物)。原核生物和真核生物的启动子结构和功能不同,用大肠杆菌生产胰岛素时,需要原核生物的启动子;用乳腺生物反应器生产胰岛素时,需要真核生物(动物)的启动子(如乳腺蛋白基因的启动子),二者启动子不同,C符合题意;
D、蛋白质工程可以通过对胰岛素基因进行改造,进而生产出速效胰岛素等胰岛素类似物,以满足不同的医疗需求,D不符合题意。
故答案为:C。
【分析】(1)胰岛内有多种分泌细胞,胰岛B细胞分泌胰岛素、胰岛A细胞分泌胰高血糖素,这两种激素在糖代谢中发挥重要的调节作用。
(2)不同的激素,化学组成不同。例如,胰岛素是一种含有51个氨基酸的蛋白质,而性激素主要是类固醇。
(3)蛋白质工程是指以蛋白质分子的结构规律及其与生物功能的关系作为基础,通过改造或合成基因,来改造现有蛋白质,或制造一种新的蛋白质,以满足人类生产和生活的需求。它是在基因工程的基础上,延伸出来的第二代基因工程,是涉及多学科的综合科技工程。
(4)基因的表达是指基因通过mRNA指导蛋白质的合成,包括遗传信息的转录和翻译两个阶段。转录是以DNA的一条链为模板,按照碱基互补配对原则,在细胞核内合成mRNA的过程。翻译是以mRNA为模板,按照密码子和氨基酸之间的对应关系,在核糖体上合成具有一定氨基酸顺序的蛋白质的过程。
26.【答案】C
【解析】【解答】A、根细胞通过主动运输方式吸收土壤中的无机离子;硒酸盐是无机盐,必需以离子的形式才能被根细胞吸收,A正确;
B、由于根细胞质膜上的硫酸盐转运蛋白可转运硒酸盐,故硒酸盐与硫酸盐进入细胞可能存在竞争关系,B正确;
C、硒蛋白从细胞内转运到细胞壁是通过胞吐的方式实现的,不需要转运蛋白参与,C错误;
D、利用呼吸抑制剂处理根细胞,根据处理前后根细胞吸收硒酸盐的量可推测硒酸盐的吸收是否需要能量,进而推出吸收方式,D正确。
故答案为:C。
【分析】 自由扩散、协助扩散、主动运输:
  自由扩散 协助扩散 主动运输
运输方向 顺相对含量梯度 顺相对含量梯度 能逆相对含量梯度
能量 不消耗 不消耗 消耗
载体 不需要 需要 需要
影响因素 浓度差 浓度差、载体 载体、能量
举例 水、O2等气体、甘油等脂溶性物质 血浆中葡萄糖进入红细胞 离子进入细胞
氨基酸、葡萄糖被上皮细胞吸收
27.【答案】C
【解析】【解答】A、细胞膜上的H+-ATP酶介导H+向细胞外转运时为主动运输,需要载体蛋白的协助。载体蛋白需与运输分子结合,引起载体蛋白空间结构改变,A正确;
B、H+顺浓度梯度进入细胞所释放的势能是驱动Na+转运到细胞外的直接动力,B正确;
C、H+-ATP酶抑制剂干扰H+的转运,进而影响膜两侧H+浓度,对Na+的运输同样起到抑制作用,C错误;
D、耐盐植株的Na+-H+逆向转运蛋白比普通植株多,以适应高盐环境,因此盐胁迫下Na+-H+逆向转运蛋白的基因表达水平可能提高,D正确。
故答案为:C。
【分析】1、由图可知,H+-ATP酶(质子泵)向细胞外转运 H+时伴随着ATP的水解,且为逆浓度梯度运输,推出H+-ATP酶向细胞外转运H+为主动运输;
2、由图可知,H+进入细胞为顺浓度梯度运输,Na+出细胞为逆浓度梯度运输,均通过Na+-H+逆向
转运蛋白,H+顺浓度梯度进入细胞所释放的势能是驱动Na+转运到细胞外的直接动力,由此推出Na+- H+逆向转运蛋白介导的Na+跨膜运输为主动运输。
物质进出细胞的方式主要有以下几种:
① 自由扩散:物质通过简单扩散作用进出细胞,其特点包括沿浓度梯度(或电化学梯度)扩散、不需要提供能量、没有膜蛋白的协助。例如,氧气、二氧化碳、水、甘油、乙醇、苯、脂肪酸、尿素、胆固醇、脂溶性维生素、气体小分子等。
②协助扩散(促进扩散、易化扩散):物质的运输速率比自由扩散高,存在最大转运速率。在一定限度内,运输速率同物质浓度成正比。有特异性,即与特定溶质结合。如红细胞摄取葡萄糖。载体蛋白能够与溶剂结合,通过对自身构象的改变而介导该溶质跨膜运输,具有高度特异性(其上有结合点,只能与某种物质进行结合)。通道蛋白能形成贯穿膜两层的充满液体的通道,孔开放时溶质通过孔道运输。
③主动运输:物质通过消耗能量,将物质从低浓度区域运往高浓度区域。例如,离子泵、钙泵等。
④胞吞和胞吐作用:细胞通过形成囊泡将物质从外部环境或细胞内运出。例如,受体介导的胞吞作用、网格蛋白依赖的胞吞作用等。
28.【答案】B
【解析】【解答】A、低盐度条件下缢蛏的鲜重先增大后减小,说明其先吸水后失水,最后趋于动态平衡,A正确;
B、低盐度培养时,缢蛏组织渗透压大于外界环境,导致缢蛏吸水,为恢复正常状态,缢蛏应通过自我调节使组织中的溶质含量减少,从而降低组织渗透压,引起组织失水,B错误;
C、组织渗透压的高低与其中的溶质含量有关,溶质越多,渗透压相对越高,因此,相同盐度下,游离氨基酸含量高的组织渗透压也高,C正确;
D、细胞呼吸过程中产生的中间产物可转化为氨基酸、甘油等非糖物质,由此推测缢蛏组织中游离氨基酸含量的变化与细胞呼吸有关,D正确。
故答案为:B。
【分析】渗透作用指两种不同浓度的溶液隔以半透膜(允许溶剂分子通过,不允许溶质分子通过的膜),水分子或其它溶剂分子从低浓度的溶液通过半透膜进入高浓度溶液中的现象。或水分子从水势高的一方通过半透膜向水势低的一方移动的现象。
29.【答案】C
【解析】【解答】ABD、该药物可以特异性阻断细胞膜上的Na+-K+泵,Na+运出细胞,K+运进细胞的数量均减少。K+在细胞内液中数量减少,浓度降低;Na+在细细胞外数量减少,胞膜上的钠钙交换体(即细胞内钙流出细胞外的同时使钠离子进入细胞内)活动减弱,使细胞外钠离子进入细胞内减少,钙离子外流减少,细胞内钙离子浓度增加,心肌收缩力增强,A、B、D错误;
C、该种药物可以阻断细胞膜上的Na+-K+泵,Na+外流减少,故细胞外钠离子浓度降低,动作电位期间钠离子的内流量减少 ,C正确。
故答案为:C。
【分析】Na+-K+泵活动时逆浓度梯度运输Na+和K+,需要消耗生命活动产生的能量。Na+通过 Na+-Ca2+交换体进入细胞的同时逆浓度梯度排出Ca2+ 出细胞。
30.【答案】A
【解析】【解答】AB、据题意, 缬氨霉素 “将K+运输到细胞外,降低细胞内外的K+浓差”,具图中信息分析,缬氨霉素运输K+的过程不消耗能量,故推测K+的运输方式为协助扩散,顺浓度梯度运输,不需要消耗ATP,A正确,B错误;
C、因为缬氨霉素是一种脂溶性抗生素,能结合在微生物的结合在细胞膜上,可以在磷脂双子层间移动,该过程体现质膜具有一定的流动性,与细胞膜结构特点有关,C错误;
D、噬菌体是DNA病毒,病毒没有细胞结构,因此缬氨霉素不会影响噬菌体的侵染能力,D错误。
故答案为:A。
【分析】自由扩散、协助扩散、主动运输:
  自由扩散 协助扩散 主动运输
运输方向 顺相对含量梯度 顺相对含量梯度 能逆相对含量梯度
能量 不消耗 不消耗 消耗
载体 不需要 需要 需要
影响因素 浓度差 浓度差、载体 载体、能量
举例 O2等气体、甘油等脂溶性物质、小部分水 大部分水、血浆中葡萄糖进入红细胞 离子进入细胞
氨基酸、葡萄糖被上皮细胞吸收
31.【答案】D
32.【答案】D
【解析】【解答】A、由图1可知,水分子能够通过渗透作用自由进出细胞,A正确;
B、细胞壁具有保护和支持功能,能够防止过量水分进入细胞,从而维持细胞的正常形态,B正确;
C、图2显示细胞发生质壁分离,此时流失的水分属于自由水,C正确;
D、与图1相比,图2中细胞因失水而发生质壁分离,说明此时细胞液浓度更高,而非更低,D错误。
故选D。
【分析】物细胞的原生质层相当于一层半透膜,植物细胞也是通过渗透作用吸水和失水的。当细胞液的浓度小于外界溶液的浓度时,细胞液中的水就透过原生质层进入外界溶液中,使细胞壁和原生质层都出现一定程度的收缩。当细胞不断失水时,由于原生质层比细胞壁的伸缩性大,原生质层就会与细
胞壁逐渐分离开来,也就是逐渐发生了质壁分离。当细胞液的浓度大于外界溶液的浓度时,外界溶液中的水就透过原生质层进入细胞液中,整个原生质层就会慢慢地恢复成原来的状态,使植物细胞逐渐发生质壁分离的复原。
33.【答案】D
【解析】【解答】A、当线粒体丙酮酸载体(MPC)功能受损时,会阻碍丙酮酸向线粒体的转运,导致更多丙酮酸滞留在细胞质基质中进行无氧代谢,从而增加乳酸生成量,使细胞内乳酸堆积加剧,A正确;
B、如图所示,丙酮酸在转运过程中解离为丙酮酸根和H+,这两种组分协同作用于MPC,诱导其构象发生变化,进而实现丙酮酸根和H+的共转运,B正确;
C、图示过程表明,H+不仅作为共转运底物,丙酮酸进入线粒体基质的能量来源于氢离子的浓度差,因此还通过改变线粒体内外膜间隙的pH值来调控丙酮酸的跨膜转运效率,C正确;
D、丙酮酸根的跨膜转运是一个依赖MPC载体蛋白和H+电化学梯度的主动运输过程,其转运效率同时受三个因素制约:①底物浓度梯度;②MPC蛋白数量;③H+浓度差;因此单纯增加线粒体内膜两侧的丙酮酸根浓度差并不能保证转运速率持续提高,D错误。
故选D。
【分析】题目描述丙酮酸转运蛋白(MPC)的作用机制:MPC 运输丙酮酸(以丙酮酸根 + H+ 的形式)通过线粒体内膜,该过程依赖于线粒体内外膜间隙的 pH 梯度(H+ 浓度差)。
34.【答案】B
【解析】【解答】A、①探究淀粉酶对淀粉和蔗糖的水解作用:通过斐林试剂检测还原糖,观察砖红色沉淀(颜色变化)。⑥DNA的粗提取与鉴定:通过二苯胺试剂在沸水浴中检测DNA,观察蓝色反应(颜色变化),因此①⑥都通过观察颜色判断实验结果,A正确;
B、③探究培养液中酵母菌种群数量的变化:通常用血细胞计数板直接计数,无需离心;⑥DNA的粗提取与鉴定:需要离心分离DNA。③不需要离心,B错误;
C、②观察植物细胞的质壁分离:可用洋葱鳞片叶外表皮细胞(含紫色液泡),④观察植物细胞的有丝分裂:可用洋葱根尖分生区细胞,因此②④均可使用洋葱作为实验材料,C正确;
D、②观察植物细胞的质壁分离:必须用活细胞(死细胞膜失去选择透过性,无法质壁分离),⑤观察叶绿体和细胞质的流动:必须用活细胞(死细胞细胞质不流动),因此②⑤实验过程均须保持细胞活性,D正确。
【分析】1. 实验现象与颜色反应
淀粉酶对淀粉和蔗糖的水解作用:淀粉酶能水解淀粉(生成麦芽糖和葡萄糖),但不能水解蔗糖。用斐林试剂检测还原糖(如葡萄糖、麦芽糖),观察砖红色沉淀。
DNA的粗提取与鉴定:用二苯胺试剂在沸水浴中检测DNA,观察蓝色反应。
35.【答案】C
【解析】【解答】A、液泡积累Na+会提高液泡渗透压,促使水从细胞质进入液泡,从而降低细胞质水势,有利于细胞从外界吸水,A正确;
B、蛋白N作为主动运输的载体蛋白,转运Na+时自身构象会发生变化,这一过程需要消耗能量,B正确;
C、由于外界Na+浓度(100 mmol/L)高于细胞内(需<30 mmol/L),蛋白W外排Na+属于逆浓度梯度的主动运输,需要细胞提供能量,C错误;
D、Na+通过离子通道时是顺浓度梯度的被动运输,离子通道仅提供通路,Na+无需与蛋白结合即可快速通过,D正确。
故选C。
【分析】1、物质以扩散方式进出细胞,不需要消耗细胞内化学反应所释放的能量,这种物质跨膜运输方式称为被动运输。被动运输又分为自由扩散和协助扩散两类。物质通过简单的扩散作用进出细胞的方式,叫作自由扩散,也叫简单扩散。需要借助膜上的转运蛋白进出细胞的物质扩散方式,叫作协助扩散,也叫易化扩散。
2、物质逆浓度梯度进行跨膜运输,需要载体蛋白的协助,同时还需要消耗细胞内化学反应所释放的能量,这种方式叫作主动运输。
36.【答案】C
37.【答案】C
38.【答案】C
39.【答案】A
40.【答案】B,C,D
【解析】【解答】A、在光学显微镜下可看见脂肪能被苏丹Ⅲ染液染成橘黄色,A不符合题意;
B、核糖体只能借助于电子显微镜才能清晰可见,光学显微镜下观察不到,B符合题意;
C、观察细胞质流动时,黑藻叶肉细胞呈长条形,叶绿体围绕着中央大液泡运动,C符合题意;
D、质壁分离和复原在低倍镜下都可以观察到,D符合题意。
故答案为:BCD。
【分析】一、各类物质的检测方法
1、含有两个肽键及以上的多肽或蛋白质可与双缩脲产生紫色反应;
2、还原糖可与斐林试剂在50~65℃温水条件下反应产生砖红色沉淀。常见的还原糖有葡萄糖、果糖、麦芽糖、乳糖和半乳糖等;
3、脂肪会被苏丹III染液染成橘黄色;
4、淀粉可与碘液发生蓝色反应;
5、RNA会被吡罗红染成红色; 6、DNA和二苯胺试剂在水浴条件下会出现蓝色反应,DNA与甲基绿结合发生绿色反应。
二、光学显微镜下观察到的细胞结构被称为显微结构,如大液泡、细胞核、叶绿体形态等,电子显微镜下观察到的细胞结构被称为亚显微结构,如细胞膜、核糖体、内质网、高尔基体、中心体和溶酶体等。
41.【答案】B,D
【解析】【解答】A、如果溶质的跨膜转运是通过液泡膜则不会引起细胞膜两侧的渗透压变化,A错误;
B、由图1可知,在NaCl胁迫时,NaCl+GB组与NaCl组相比,Na+外排显著增加;图2中原生质体用钒酸钠处理,质膜H+泵被抑制条件下,NaCl胁迫时,NaCl+GB组与NaCl组相比,Na+外排量无明显差别。由上述结果对比可知,GB可能通过调控质膜H+泵活性来增强Na+外排,从而减少细胞内Na+的积累,B正确;
C、由图4可知可知,NaCl胁迫时,加GB组液泡膜H+泵活性几乎无变化,所以GB引起盐胁迫时液泡中Na+浓度的显著变化,与液泡膜H+泵活性无关,C错误;
D、植物通过质膜H+泵将Na+排出细胞,也可通过液泡膜NHX载体和液泡膜H+泵把Na+转入液泡内,以维持细胞质基质Na+稳态,增强植物的耐盐性,D正确。
故答案为:BD。
【分析】由图1可知,在NaCl胁迫时,NaCl+GB组与NaCl组相比,Na+外排显著增加;图2中原生质体用钒酸钠处理,质膜H+泵被抑制条件下,NaCl胁迫时,NaCl+GB组与NaCl组相比,Na+外排量无明显差别。由上述结果对比可知,GB可能通过调控质膜H+泵活性来增强Na+外排,从而减少细胞内Na+的积累。由图3和图4可知,NaCl胁迫时,加GB组液泡膜H+泵活性几乎无变化,但液泡膜NHX载体活性明显增强,所以GB引起盐胁迫时液泡中Na+浓度的显著变化,与液泡膜H+泵活性无关而与液泡膜NHX载体活性有关。
42.【答案】B,C,D
【解析】【解答】A、水的吸收以自由扩散为辅、水通道蛋白的协助扩散为主,A错误;
B、由图可知,与对照组相比,模型组空肠AQP3的相对表达量明显减少,而回肠AQP3的相对表达量基本不变,由此可知,模型组腹泻的原因是空肠黏膜细胞对肠腔内水的吸收减少,B正确;
C、由图可知,与模型组相比较,治疗后空肠、回肠AQP3相对表达量提高,空肠、回肠对肠腔内的水吸收增多,从而使腹泻得以缓解,致病菌排放减少,C正确;
D、治疗后回肠AQP3相对表达量高于对照组,可使回肠对水的转运增加,从而缓解腹泻,D正确。
故答案为:BCD。
【分析】腹泻时,机体会大量流失水分,由图可知:与对照组相比,模型组空肠AQP3的相对表达量明显减少,而回肠AQP3的相对表达量基本不变,说明模型组腹泻的原因是空肠黏膜细胞对肠腔内水的吸收减少;与模型组相比较,治疗后空肠、回肠AQP3相对表达量提高,说明治疗组治疗后空肠、回肠对肠腔内的水吸收增多。
43.【答案】A,B,C
【解析】【解答】A、Cl-是带电荷的离子,不能通过自由扩散进入细胞,通常需要转运蛋白协助,属于协助扩散,A错误;
B、转运蛋白甲(Cl-外排)和乙(Cl-吸收)的功能相反,结构通常也不相同,B错误;
C、ABA(脱落酸)作为激素,一般不直接进入细胞核,而是通过细胞膜受体传递信号,间接调控基因表达,C错误;
D、细胞质膜不仅控制物质运输(如Cl-转运),还能进行信息交流(如ABA信号传递),D正确。
故选ABC。
【分析】小分子、离子物质跨膜运输的方式比较
  自由扩散 协助扩散 主动运输
方向 顺浓度梯度 顺浓度梯度 逆浓度梯度
是否需要转运蛋白参与 否 是 是
是否消耗能量 否 否 是
举例 水、CO2、O2、甘油、苯、酒精 红细胞吸收葡萄糖 小肠绒毛上皮细胞吸收氨基酸、葡萄糖、K+
44.【答案】(1)碱基对替换;不能
(2)核糖核苷酸;磷酸二酯
(3)核糖体;细胞骨架;空间结构
(4)磷脂双分子层;主动运输;TMEM175蛋白结构变化使其不能把溶酶体中多余的氢离子转运到细胞质基质中,进而使溶酶体中的pH下降,而pH会影响酶的活性,影响溶酶体的消化功能
(5)TMEM175蛋白结构的改变导致无法行使正常的功能,即使得溶酶体中的氢离子无法转运到细胞质基质,导致溶酶体中的pH下降,影响了溶酶体中相关酶的活性,导致细胞中α-Synuclein蛋白无法被分解,进而聚积致病。
【解析】【解答】(1)DNA分子中发生碱基的替换、增添或缺失,而引起的基因碱基序列的改变,叫作基因突变。碱基的替换只会改变某个位点的氨基酸种类,而帕金森综合征患者TMEM175蛋白的第41位氨基酸由天冬氨酸突变为丙氨酸,说明TMEM175基因发生碱基的增添和缺失会影响多个位点的氨基酸种类,所以
碱基对替换而突变,神经元是体细胞,所以神经元中发生的基因突变不能遗传给后代。
(2)真核细胞的细胞核内,以DNA的一条链为模板,核糖核苷酸为原料,由RNA聚合酶催化形成磷酸二酯键,不断延伸合成mRNA,该过程即转录过程。
(3)在翻译过程中,mRNA转移到细胞质中,与核糖体结合,合成一段肽链后转移到粗面内质网上继续合成,合成的多肽链再由囊泡包裹沿着细胞质中的细胞骨架移动,由内质网到达高尔基体。蛋白质的结构与功能相适应,所以突变的TMEM175基因合成的肽链由于氨基酸之间作用的变化使肽链的空间结构改变,从而影响TMEM175蛋白的功能。
(4)溶酶体膜是生物膜,它是以磷脂双分子层为基本骨架的,所以磷脂双分子层对H+具有屏障作用,氢离子需要依靠膜上的转运蛋白从溶酶体外运输至细胞内,由图可知,细胞质基质的H+浓度小于溶酶体内侧,所以H+是逆浓度梯度进入溶酶体,属于主动运输。图中显示,TMEM175蛋白的功能是将H+从溶酶体内运输至细胞质基质,若TMEM175蛋白变异,即TMEM175蛋白结构变化使其不能把溶酶体中多余的氢离子转运到细胞质基质中,进而使溶酶体中的pH下降,而pH会影响酶的活性,影响溶酶体的消化功能。
(5)溶酶体内有多种水解酶,能够分解α-Synuclein蛋白,结合(4)分析可知,TMEM175蛋白结构的改变导致无法行使正常的功能,即使得溶酶体中的氢离子无法转运到细胞质基质,导致溶酶体中的pH下降,影响了溶酶体中相关酶的活性,导致细胞中α-Synuclein蛋白无法被分解,进而聚积致病。
【分析】1、转录是指以DNA为模板,四种核糖核苷酸为原料,在RNA聚合酶的作用下合成RNA的过程。该过程需要DNA、4种核糖核苷酸、 RNA聚合酶、线粒体等。
2、分泌蛋白的合成过程
首先,在游离的核糖体中以氨基酸为原料开始多钛链的合成。当合成了一段肽链后这段肽链会与核糖体一起转移到粗面内质网上继续其合成过程,并且边合成边转移到内质网腔内,再经过加工、折叠,形成具有一定空间结构的蛋白质。内质网膜鼓出形成囊泡,包裹着蛋白质离开内质网,到达高尔基体,与高尔基体膜融合,囊泡膜成为高尔基体膜的一部分。高尔基体还能对蛋白质做进一步的修饰加工,然后由高尔基体膜形成包裹着蛋白质的囊泡。囊泡转运到细胞膜,与细胞膜融合,将蛋白质分泌到细胞外。在分泌蛋白的合成、加工、运输的过程中,需要消耗能量。这些能量主要来自线粒体。
3、物质跨膜运输的方式主要有三种:
自由扩散:物质从高浓度向低浓度转运,不需要消耗能量,也不需要转运蛋白;
协助扩散:物质从高浓度向低浓度转运,不需要消耗能量,但需要转运蛋白;
主动运输:物质从低浓度向高浓度转运,需要消耗能量和转运蛋白。
45.【答案】(1)④;②④;钾离子和Mal
(2)①②④;丙酮酸;NADH
(3)氢离子电化学势能
(4)吸水
(5)A;B;D
【解析】【解答】(1)NADPH是光反应产生的,光反应发生在叶绿体的类囊体薄膜上,图中④是叶绿体;CO2固定产物的还原属于暗反应,暗反应的发生场所是叶绿体基质,同样对应图中的④。保卫细胞细胞液渗透压升高,该细胞吸水后会导致气孔打开,即气孔开闭与液泡内的渗透压大小有关,由图可知,钾离子和Mal会进入液泡,从而影响细胞液渗透压,最终引起气孔的开闭状况,所以液泡中与气孔开闭相关的主要成分有H2O、钾离子和Mal。
(2)ATP是由细胞有氧呼吸三个阶段或无氧呼吸第一阶段或光反应产生的,有氧呼吸和无氧呼吸的第一阶段发生在细胞质基质,对应图中的①,有氧呼吸的第二、三阶段发生在线粒体,对应图中的②,光反应的发生场所是叶绿体的类囊体薄膜,对应图中的④;由图可知,PEP是磷酸烯醇式丙酮酸,该物质会转化为丙酮酸后进入线粒体后经过TCA循环产生NADH,NADH通过电子传递链氧化产生ATP。
(3)蓝光激活质膜上的AHA,消耗ATP将H+泵出膜外,使ATP中的能量转化为保卫细胞的细胞膜内外的氢离子电化学势能,后者被释放出来后可以驱动细胞吸收K+等离子。
(4)细胞中的PEP可以在酶作用下合成四碳酸OAA,并进一步转化成Mal,Mal进入液泡后,使细胞液中的渗透压升高,导致保卫细胞吸水,促进气孔张开。
(5)由图可知,黑暗结束后,突变体ntt1内的淀粉粒面积远小于野生型WT,说明淀粉大量合成需要依赖呼吸作用提供ATP,A符合题意;光照2h后,气孔张开,此时淀粉粒面积小于黑暗结束时的淀粉粒面积,说明光照诱导WT气孔张开与叶绿体淀粉的水解有关,B符合题意;由图可知,无论光照多久时间,突变体ntt1内的淀粉粒面积几乎没有改变,说明光照条件下突变体ntt1几乎不能合成淀粉粒,但不能说明几乎不能进行光合作用,因为光合作用产物还可能是除淀粉以外的糖类,C不符合题意;由图可知,光照8h后,野生型WT内淀粉粒面积较大,所以长时间光照可使WT叶绿体积累较多的淀粉,D符合题意。
故答案为:ABD。
【分析】1、分析图解:①是细胞质基质,②是线粒体,③是细胞液,④是叶绿体。
2、植物光合作用分为光反应和暗反应,光反应在类囊体薄膜上进行,主要进行水的光解产生氧气、电子和H+,以及NADPH和ATP的合成;暗反应在叶绿体基质中进行,主要是发生二氧化碳的固定和三碳化合物的还原,最终产生有机物供植物利用。
46.【答案】(1)脑干;分级
(2)Na+;外负内正;协助扩散
(3)副交感;突触
(4)小于;交感神经和副交感神经都起作用,副交感神经作用更强
47.【答案】(1)主动运输;自由基会攻击和破坏细胞内各种执行正常功能的生物分子,当自由基攻击生物膜的组成成分磷脂分子时,产物同样是自由基,这些新产生的自由基又会去攻击别的分子,由此引发雪崩式的反应,对生物膜损伤比较大,此外,自由基还会攻击DNA,可能引起基因突变,攻击蛋白质,使蛋白质活性下降。
(2)减弱;减少;一定的流动性
(3)减少;砷激活蛋白C,使细胞膜上转运蛋白F数量减少,而磷也是通过转运蛋白F进入细胞,所以磷的吸收量减少;砷和磷可竞争性通过转运蛋白F进入细胞,砷胁迫下,更多的转运蛋白F用于转运砷,导致磷的吸收量减少
48.【答案】(1)内分泌
(2)主动运输
(3)滤泡腔内储存的T4释放进入血液
(4)当血液中T4水平恢复正常后,会通过负反馈调节抑制下丘脑和垂体分泌相关激素,使甲状腺的摄碘率下降,不会居高不下
(5)滤泡上皮细胞
【解析】【解答】(1) 甲状腺属于内分泌系统,因为它分泌甲状腺激素直接进入血液发挥调节作用。
(2) 碘离子从低浓度的组织液进入高浓度的滤泡上皮细胞,需要载体蛋白协助并消耗能量,这种跨膜运输方式属于主动运输。
(3) 发病初期,由于滤泡上皮细胞受损,原本储存在滤泡腔中的大量T4释放进入血液,从而导致发病后的2个月内,血液中T4水平升高。
(4) T4激素的分泌调控属于典型的负反馈机制。当血液中T4浓度回升至正常水平时,会通过负反馈作用同时抑制下丘脑TRH和垂体TSH的分泌。由于TSH具有促进甲状腺摄取碘等重要功能,当TSH分泌减少时,甲状腺的摄碘能力也会随之逐渐下降,不会持续维持在高水平。因此,家长无需担忧孩子会出现长期摄碘率过高的情况。
(5) T4激素的合成和储存主要发生在甲状腺滤泡腔内。临床观察发现,患者发病8个月后,其血液T4水平呈现规律性波动,始终维持在正常参考范围内。这一现象提示甲状腺组织已恢复正常的T4合成与储存功能。基于此,可以合理推断患者的滤泡上皮细胞结构已经完成修复,恢复到完整状态。
【分析】1、甲状腺激素分泌的调节,是通过下丘脑—垂体—甲状腺轴来进行的。当机体感受到寒冷等
刺激时,相应的神经冲动传到下丘脑,下丘脑分泌TRH ;TRH运输到并作用于垂体,促使垂体分泌TSH ;TSH随血液循环到达甲状腺,促使甲状腺增加甲状腺激素的合成和分泌。当血液中的甲状腺激素含量增加到一定程度时,又会抑制下丘脑和垂体分泌相关激素,进而使甲状腺激素的分泌减少而不至于浓度过高。也就是说,在甲状腺激素分泌的过程中,既存在分级调节,也存在反馈调节。
2、甲状腺分泌的甲状腺激素随血液运到全身,几乎作用于体内所有的细胞,提高细胞代谢的速率,使机体产生更多的热量。
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)
同课章节目录