广西壮族自治区2025届中考数学试卷
一、单选题
1.5的相反数是( )
A. B.0 C.1 D.5
2.在第个全国“爱眼日”来临之际,某校组织各班围绕“关注普遍的眼健康”开展了手抄报评比,其中九年级6个班得分为:,,,,,,则这组数据的众数为( )
A.7 B.8 C.9 D.10
3.如图是一个正三棱柱,则它的俯视图是( )
A. B. C. D.
4.2025年5月4日,平陆运河青年枢纽电站顺利完成并网调试,具备发电条件.该电站设计年发电量1300万千瓦时,年减排二氧化碳1.17万吨.数据13000000用科学记数法表示为( )
A. B. C. D.
5.有两个容量足够大的玻璃杯,分别装有a克水、b克水,,都加入c克水后,下列式子能反映此时两个玻璃杯中水质量的大小关系的是( )
A. B. C. D.
6.在中,,则( )
A. B. C. D.
7.已知一次函数的图象经过点,则( )
A.3 B.4 C.6 D.7
8.在跳远比赛中,某同学从点C处起跳后,在沙池留下的脚印如图所示,测量线段的长度作为他此次跳远成绩(最近着地点到起跳线的最短距离),依据的数学原理是( )
A.垂线段最短 B.两点确定一条直线
C.两点之间,线段最短 D.两直线平行,内错角相等
9.生态学家G.F.Gause通过多次单独培养大草履虫实验,研究其种群数量随时间的变化情况,得到了如图所示的“S”形曲线.下列说法正确的是( )
A.第5天的种群数量为300个 B.前3天种群数量持续增长
C.第3天的种群数量达到最大 D.每天增加的种群数量相同
10.因式分解:( )
A. B. C. D.
11.已知是方程的两个实数根,则( )
A. B. C.20 D.25
12.如图,在平面直角坐标系中,“双曲线阶梯”的所有线段均与轴平行或垂直,且满足,点,,,均在双曲线的一支上.若点A的坐标为,则第三级阶梯的高( )
A. B. C. D.
二、填空题
13. .
14.写出一个使分式有意义的的值,可以是 .
15.从三个数字中任选两个,则选出的两个数字之和是偶数的概率为 .
16.如图,点在同侧,,则 .
三、解答题
17.()计算:
()化简:
18.绣球是广西民族文化的特色载体.如图,设计某种绣球叶瓣时,可以先在图纸上建立平面直角坐标系,再分别以原点,为圆心、以为半径作圆,两圆相交于两点,其公共部分构成叶瓣①(阴影部分),同理得到叶瓣②.
(1)写出两点的坐标;
(2)求叶瓣①的周长;(结果保留)
(3)请描述叶瓣②还可以由叶瓣①经过怎样的图形变化得到.
19.某班需从甲、乙两名同学中推荐一人参加校史馆讲解员的选拔,班委决定从口头表达能力、思维能力、表现力、仪容仪表四项内容进行考查.全班同学投票确定了各项所占的百分比,结果如图,再对甲、乙进行考查并逐项打分,成绩如图.
(1)在所考查的四项内容中,甲比乙更具优势的有哪些?
(2)按照图的各项占比计算甲、乙的综合成绩,并确定推荐人选.
20.如图,已知是的直径,点在上,.
(1)求证:;
(2)求的度数.
21.自2025年5月9日起至2025年12月31日,周末自驾游广西的外省籍小客车,可享受高速公路车辆通行费(以下简称高速费)优惠.小悦一家5月中旬从湖南自驾到广西探亲游玩,此次全程所产生的高速费享受的优惠如下:
湖南境内路段 广西境内特定路段 广西境内其他路段
周一至周四 9.5折
周五至周日 9.5折 全免 5折
(1)周六小悦一家从湖南Z市到广西A市,所经湖南境内路段、广西境内特定路段和其他路段的高速费原价分别为a元、b元和c元.求此行程的高速费实付多少元?
(2)周日他们从A市到K市(全程在广西境内),高速费实付27.55元;周一从K市原路返回到A市,高速费实付95.95元.求此行程中A市与K市间广西境内特定路段和其他路段的单程高速费原价分别是多少元.
22.综合与实践
树人中学组织一次“爱心义卖”活动.九(5)班分配到了一块矩形义卖区和一把遮阳伞,遮阳伞在地面上的投影是一个平行四边形(如图1)
初始时,矩形义卖区与遮阳伞投影的平面图如图2所示,在上,,,,,,由于场地限制,参加义卖的同学只能左右平移遮阳伞.在移动过程中,也随之移动(始终在边所在直线上),且形状大小保持不变,但落在义卖区内的部分(遮阳区)会呈现不同的形状.如图3为移动到落在上的情形.
【问题提出】
西西同学打算用数学方法,确定遮阳区面积最大时的位置.
设遮阳区的面积为,从初始时向右移动的距离为.
【直观感知】(1)从初始起右移至图3情形的过程中,随的增大如何变化?
【初步探究】(2)求图3情形的与的值;
【深入研究】(3)从图3情形起右移至与重合,求该过程中关于的解析式;
【问题解决】(4)当遮阳区面积最大时,向右移动了多少?(直接写出结果)
23.【平行六边形】如图1,在凸六边形中,满足,我们称这样的凸六边形叫做“平行六边形”,其中与,与,与叫做“主对边”;和,和,和叫做“主对角”;叫做“主对角线”.
(1)类比平行四边形性质,有如下猜想,请判断正误并在横线上填写“正确”或“错误”.
猜想 判断正误
①平行六边形的三组主对边分别相等 _________
②平行六边形的三组主对角分别相等 _________
③平行六边形的三条主对角线互相平分 _________
【菱六边形】六条边都相等的平行六边形叫做“菱六边形”.
(2)如图2,已知平行六边形满足. 求证:平行六边形是菱六边形:
(3)如图3是一张边长为的三角形纸片.剪裁掉三个小三角形,使剪裁后的纸片为菱六边形.请在剪裁掉的小三角形中,任选一个,求它的各边长.
参考答案
题号 1 2 3 4 5 6 7 8 9 10
答案 A C D C A B D A B A
题号 11 12
答案 C B
13.
14.(答案不唯一)
15.
16./
17.();()
解:()原式
;
()原式
.
18.(1)
(2)
(3)叶瓣②还可以由叶瓣①逆时针旋转得到
(1)以原点,为圆心、以为半径作圆,两圆相交于两点
是正方形
(2)原点,为圆心、以为半径作圆
两个圆是等圆
叶瓣①的周长为:
(3)叶瓣②还可以由叶瓣①逆时针旋转得到.
19.(1)口头表达能力和仪容仪表
(2)推荐乙同学参加
(1)解:由条形统计图可知,甲在口头表达能力和仪容仪表方面得分高于乙,
∴甲比乙更具优势的有口头表达能力和仪容仪表;
(2)解:甲的平均成绩为分,
乙的平均成绩为分,
∵,
∴推荐乙同学参加.
20.(1)详见解析
(2)
(1)证明:的半径为,
,
,,
;
(2)解:,
,
,
,
,
,
,
是等腰三角形,
.
21.(1)
(2)特定路段和其他路段的单程高速费原价分别是元和元
(1)此次行程高速费原价总共为:元
实际支付高速费用:元
(2)解:设特定路段和其他路段的单程高速费原价分别元和元
解得:
故此行程中市与市间广西境内特定路段和其他路段的单程高速费原价分别是元和元.
22.(1)随的增大而增大;(2),;(3);(4)
解:(1)∵四边形是矩形,四边形是平行四边形,,,,在边所在直线上,
∴,,,
又∵如图2,在上,,,
∴,
,
当时,如图,设交于点,交于点,则,
此时遮阳区的面积为的面积,
∵,
∴,,
∴,
∴,
∴,
∴当时,随的增大而增大,的值从增大到;
当时,如图,设交于点,则,,,
此时遮阳区的面积为四边形的面积,
∵,
∴四边形为梯形,
∴,
∴当时,随的增大而增大,的值从增大到;
综上所述,从初始起右移至图3情形的过程中,随的增大而增大;
(2)如图3,此时点落在上,则,
由(1)知:当时,;
∴图3情形时,,;
(3)当时,如图,设向右移动后得到,设交于点,交于点,交于点,则,,
此时遮阳区的面积为六边形的面积,
∴,,,
∴,,
∴,,
∴,,
∴
,
∴从图3情形起右移至与重合,该过程中关于的解析式为;
(4)当时,,
当时,的最大值为:;
当时,,
当时,的最大值为:;
当时,,
∵
∴当时,的最大值为:,
综上所述,当时,取得最大值,最大值为,
∴当遮阳区面积最大时,向右移动了.
23.(1)错误;正确;错误
(2)详见解析
(3)
(1)解:连接,交于点,由图可知:
①平行于,只能知道,其他对边同理,故平行六边形的三组主对边分别相等是错误的;
②平行于,,同理可得,其他对角同理,故平行六边形的三组主对角分别相等是正确的;
③由①可知,平行六边形的三条主对角线互相平分是错误的.
(2)证明:过点作平行且相等于,连接,
则平行四边形是平行四边形,
平行于,,
在平行六边形中,平行于,,
平行且相等于,
为平行四边形,
平行于,,
在平行六边形中,平行于,平行于,
平行于,平行于,
为平行四边形,
,
,
,
,
平行六边形是菱六边形.
(3)解:设三角形纸片为,
裁剪后的纸片为菱六边形,
平行于,平行于,平行于,,
,
,
设,
则,
,
,
,
解得:,
.