2020—2025年新课标全国卷高考数学分类汇编——7.立体几何(含解析)

文档属性

名称 2020—2025年新课标全国卷高考数学分类汇编——7.立体几何(含解析)
格式 zip
文件大小 7.6MB
资源类型 试卷
版本资源 通用版
科目 数学
更新时间 2025-07-03 17:52:50

文档简介

中小学教育资源及组卷应用平台
2011年—2025年新课标全国卷数学试题分类汇编
编写说明:研究发现,新课标全国卷的试卷结构和题型具有一定的稳定性和连续性.每个题型考查的知识点、考查方法、考查角度、思维方法等有一定套路.掌握了全国卷的各种题型,就把握住了全国卷命题的灵魂.
本资料是根据全国卷的特点精心编写,共包含9个专题,分别是:
1.集合、逻辑、不等式 2.复数 3.平面向量 4.函数与导数 5.三角函数与解三角形
6.数列 7.立体几何 8.解析几何 9.概率与统计
7.立体几何(解析版)
一、选择题
(2025·全国一卷,9,多选)在正三棱柱中,D为BC中点,则( )
A. B.平面 C. D.平面
【答案】BD
【解析】法一:对于A,在正三棱柱中,平面,
又平面,则,则,
因为是正三角形,为中点,则,则
又,
所以,
则不成立,故A错误;
对于B,因为在正三棱柱中,平面,
又平面,则,
因为是正三角形,为中点,则,
又平面,
所以平面,故B正确;
对于D,因为在正三棱柱中,
又平面平面,所以平面,故D正确;
对于C,因为在正三棱柱中,,
假设,则,这与矛盾,
所以不成立,故C错误;
故选:BD.
法二:如图,建立空间直角坐标系,设该正三棱柱的底边为,高为,
则,
对于A,,
则,
则不成立,故A错误;
对于BD,,
设平面的法向量为,
则,得,令,则,
所以,,
则平面,平面,故BD正确;
对于C,,
则,显然不成立,故C错误;
故选:BD.
(2024·新高考Ⅰ,5)已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为,则圆锥的体积为( )
A. B. C. D.
【答案】B
【解析】设圆柱的底面半径为,则圆锥的母线长为,
而它们的侧面积相等,所以即,
故,故圆锥的体积为.
故选:B.
(2024·新高考Ⅱ,7)已知正三棱台的体积为,,,则与平面ABC所成角的正切值为( )
A. B. 1 C. 2 D. 3
【答案】B
【解析】解法一:分别取的中点,则,
可知,
设正三棱台的为,
则,解得,
如图,分别过作底面垂线,垂足为,设,
则,,
可得,
结合等腰梯形可得,
即,解得,
所以与平面ABC所成角的正切值为;
解法二:将正三棱台补成正三棱锥,
则与平面ABC所成角即为与平面ABC所成角,
因为,则,
可知,则,
设正三棱锥的高为,则,解得,
取底面ABC的中心为,则底面ABC,且,
所以与平面ABC所成角的正切值.
故选:B.
(2024·全国甲,理10文11)设是两个平面,是两条直线,且.下列四个命题:
①若,则或 ②若,则
③若,且,则 ④若与和所成的角相等,则
其中所有真命题的编号是( )
A. ①③ B. ②④ C. ①②③ D. ①③④
【答案】A
【解析】对①,当,因为,,则,
当,因为,,则,
当既不在也不在内,因为,,则且,故①正确;
对②,若,则与不一定垂直,故②错误;
对③,过直线分别作两平面与分别相交于直线和直线,
因为,过直线的平面与平面的交线为直线,则根据线面平行的性质定理知,
同理可得,则,因为平面,平面,则平面,
因为平面,,则,又因为,则,故③正确;
对④,若与和所成的角相等,如果,则,故④错误;
综上只有①③正确,
故选:A.
(2023·新高考Ⅰ,12)下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有( )
A. 直径为的球体 B. 所有棱长均为的四面体
C. 底面直径为,高为的圆柱体 D. 底面直径为,高为的圆柱体
【答案】ABD
【解析】对于选项A:因为,即球体的直径小于正方体的棱长,所以能够被整体放入正方体内,故A正确;
对于选项B:因为正方体的面对角线长为,且,所以能够被整体放入正方体内,故B正确;
对于选项C:因为正方体的体对角线长为,且,所以不能够被整体放入正方体内,故C不正确;
对于选项D:因为,可知底面正方形不能包含圆柱的底面圆,如图,过的中点作,设,可知,
则,即,解得,且,即,故以为轴可能对称放置底面直径为圆柱,若底面直径为的圆柱与正方体的上下底面均相切,设圆柱的底面圆心,与正方体的下底面的切点为,可知:,则,即,解得,根据对称性可知圆柱的高为,所以能够被整体放入正方体内,故D正确;
故选:ABD.
(2023·新高考Ⅱ,9多选) 已知圆锥的顶点为P,底面圆心为O,AB为底面直径,,,点C在底面圆周上,且二面角为45°,则( ).
A.该圆锥的体积为 B.该圆锥的侧面积为 C. D.的面积为
【答案】AC
【解析】依题意,,,所以,
A选项,圆锥的体积为,A选项正确;B选项,圆锥的侧面积为,B选项错误;C选项,设是的中点,连接,则,所以是二面角的平面角,则,所以,故,则,C选项正确;D选项,,所以,D选项错误.
故选:AC.
(2023·全国甲卷,理11)已知四棱锥的底面是边长为4的正方形,,则的面积为( )
A. B. C. D.
【答案】C
【解析】法一:连结交于,连结,则为的中点,如图,
因为底面为正方形,,所以,则,
又,,所以,则,
又,,所以,则,
在中,,
则由余弦定理可得,
故,则,故在中,,
所以,
又,所以,
所以的面积为.
法二:连结交于,连结,则为的中点,如图,
因为底面为正方形,,所以,在中,,
则由余弦定理可得,
故,所以,
则,
不妨记,因为,所以,
即,
则,整理得①,
又在中,,即,则②,两式相加得,故,
故在中,,所以,
又,所以,所以的面积为.故选:C.
(2023·全国甲卷,文10)在三棱锥中,是边长为2的等边三角形,,则该棱锥的体积为( )
A.1 B. C.2 D.3
【答案】A
【解析】取中点,连接,如图,
是边长为2的等边三角形,,
,又平面,,
平面,
又,,
故,即,
所以,
故选:A
(2023·全国乙卷,理8)已知圆锥PO的底面半径为,O为底面圆心,PA,PB为圆锥的母线,,若的面积等于,则该圆锥的体积为( )
A. B. C. D.
【答案】B
【解析】在中,,而,取中点,连接,有,如图,
,,由的面积为,得,
解得,于是,
所以圆锥的体积.
故选:B
(2023·全国乙卷,理9)已知为等腰直角三角形,AB为斜边,为等边三角形,若二面角为,则直线CD与平面ABC所成角的正切值为( )
A. B. C. D.
【答案】C
【解析】取的中点,连接,因为是等腰直角三角形,且为斜边,则有,
又是等边三角形,则,从而为二面角的平面角,即,
显然平面,于是平面,又平面,
因此平面平面,显然平面平面,
直线平面,则直线在平面内的射影为直线,
从而为直线与平面所成的角,令,则,在中,由余弦定理得:,
由正弦定理得,即,
显然是锐角,,
所以直线与平面所成的角的正切为.
故选:C
(2022·新高考Ⅰ,4)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔时,相应水面的面积为;水位为海拔时,相应水面的面积为,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔上升到时,增加的水量约为()( )
A. B. C. D.
【答案】C
【解析】依题意可知棱台的高为(m),所以增加的水量即为棱台的体积.
棱台上底面积,下底面积,

.故选:C.
(2022·新高考Ⅰ,8)已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为,且,则该正四棱锥体积的取值范围是( )
A. B. C. D.
【答案】C
【解析】∵球的体积为,所以球的半径,
[方法一]:导数法:设正四棱锥的底面边长为,高为,则,,
所以,,
所以正四棱锥的体积,
所以,
当时,,当时,,
所以当时,正四棱锥的体积取最大值,最大值为,
又时,,时,,
所以正四棱锥的体积的最小值为,
所以该正四棱锥体积的取值范围是.
故选:C.
[方法二]:基本不等式法:
由方法一故所以当且仅当取到,
当时,得,则
当时,球心在正四棱锥高线上,此时,
,正四棱锥体积,故该正四棱锥体积取值范围是
(2022·新高考Ⅰ,9多选题)已知正方体,则( )
A.直线与所成的角为 B.直线与所成的角为
C.直线与平面所成的角为 D.直线与平面ABCD所成的角为
【答案】ABD
【解析】如图,连接、,因为,所以直线与所成的角即为直线与所成的角,因为四边形为正方形,则,故直线与所成角为,A正确;
连接,因为平面,平面,则,
因为,,所以平面,
又平面,所以,故B正确;
连接,设,连接,
因为平面,平面,则,
因为,,所以平面,
所以为直线与平面所成的角,
设正方体棱长为,则,,,
所以,直线与平面所成的角为,故C错误;
因为平面,所以为直线与平面所成的角,易得,故D正确.
故选:ABD
(2022·新高考Ⅱ,7)已知正三棱台的高为1,上、下底面边长分别为和,其顶点都在同一球面上,则该球的表面积为( )
A. B. C. D.
【答案】A
【解析】设正三棱台上下底面所在圆面的半径,所以,即,设球心到上下底面的距离分别为,球的半径为,所以,,故或,即或,解得符合题意,所以球的表面积为.
故选:A.
(2022·新高考Ⅱ,11多选题)如图,四边形为正方形,平面,,记三棱锥,,的体积分别为,则( )
A. B. C. D.
【答案】CD
【解析】
设,因为平面,,则,
,连接交于点,连接,易得,
又平面,平面,则,又,平面,则平面,
又,过作于,易得四边形为矩形,则,
则,,
,则,,,
则,则,,,故A、B错误;C、D正确.
故选:CD.
(2022·全国甲卷,理7文9)在长方体中,已知与平面和平面所成的角均为,则( )
A. B.AB与平面所成的角为
C. D.与平面所成的角为
【答案】D
【解析】如图所示:
不妨设,依题以及长方体的结构特征可知,与平面所成角为,与平面所成角为,所以,即,,解得.
对于A,,,,A错误;
对于B,过作于,易知平面,所以与平面所成角为,因为,所以,B错误;
对于C,,,,C错误;
对于D,与平面所成角为,,而,所以.D正确.
故选:D.
(2022·全国甲卷,理9文10)甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为,侧面积分别为和,体积分别为和.若,则( )
A. B. C. D.
【答案】C 【解析】设母线长为,甲圆锥底面半径为,乙圆锥底面圆半径为,
则,所以,又,则,
所以,所以甲圆锥的高,乙圆锥的高,
所以.故选:C.
(2022·全国乙卷,理7文9)在正方体中,E,F分别为的中点,则( )
A. 平面平面 B. 平面平面
C. 平面平面 D. 平面平面
【答案】A
【解析】在正方体中,且平面,又平面,所以,因为分别为的中点,所以,所以,又,
所以平面,又平面,所以平面平面,故A正确;
选项BCD解法一:如图,以点为原点,建立空间直角坐标系,设,则,,
则,,
设平面的法向量为, 则有,可取,
同理可得平面的法向量为,平面的法向量为,平面的法向量为,则,所以平面与平面不垂直,故B错误;
因为与不平行,所以平面与平面不平行,故C错误;
因为与不平行,所以平面与平面不平行,故D错误,故选:A.
选项BCD解法二:解:对于选项B,如图所示,设,,则为平面与平面的交线,在内,作于点,在内,作,交于点,连结,则或其补角为平面与平面所成二面角的平面角,
由勾股定理可知:,,底面正方形中,为中点,则,由勾股定理可得,
从而有:,
据此可得,即,据此可得平面平面不成立,选项B错误;
对于选项C,取的中点,则,由于与平面相交,故平面平面不成立,选项C错误;
对于选项D,取的中点,很明显四边形为平行四边形,则,
由于与平面相交,故平面平面不成立,选项D错误;
故选:A.
(2022·全国乙卷,理9文12) 已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱锥的体积最大时,其高为( )
A. B. C. D.
【答案】C
【解析】[方法一]:【最优解】基本不等式
设该四棱锥底面为四边形ABCD,四边形ABCD所在小圆半径为r,设四边形ABCD对角线夹角为,
则(当且仅当四边形ABCD为正方形时等号成立),即当四棱锥的顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为
又设四棱锥的高为,则,
当且仅当即时等号成立.故选:C
[方法二]:统一变量+基本不等式
由题意可知,当四棱锥为正四棱锥时,其体积最大,设底面边长为,底面所在圆的半径为,则,所以该四棱锥的高,
(当且仅当,即时,等号成立)
所以该四棱锥的体积最大时,其高.故选:C.
[方法三]:利用导数求最值:由题意可知,当四棱锥为正四棱锥时,其体积最大,设底面边长为,底面所在圆的半径为,则,所以该四棱锥的高,,令,,设,则,,,单调递增, ,,单调递减,
所以当时,最大,此时.
故选:C.
【整体点评】方法一:思维严谨,利用基本不等式求最值,模型熟悉,是该题的最优解;
方法二:消元,实现变量统一,再利用基本不等式求最值;
方法三:消元,实现变量统一,利用导数求最值,是最值问题的常用解法,操作简便,是通性通法.
(2021·新高考Ⅰ,3)已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为( )
A. B. C. D.
【答案】B
【解析】设圆锥的母线长为,由于圆锥底面圆的周长等于扇形的弧长,则,解得.
故选:B.
(2021·新高考Ⅰ,12)在正三棱柱中,,点满足,其中,,则( )
A. 当时,的周长为定值
B. 当时,三棱锥的体积为定值
C. 当时,有且仅有一个点,使得
D. 当时,有且仅有一个点,使得平面
【答案】BD
【解析】
易知,点在矩形内部(含边界).
对于A,当时,,即此时线段,周长不是定值,故A错误;
对于B,当时,,故此时点轨迹为线段,而,平面,则有到平面的距离为定值,所以其体积为定值,故B正确.
对于C,当时,,取,中点分别为,,则,所以点轨迹为线段,不妨建系解决,建立空间直角坐标系如图,,,,则,,,所以或.故均满足,故C错误;
对于D,当时,,取,中点为.,所以点轨迹为线段.设,因为,所以,,所以,此时与重合,故D正确.
故选:BD.
(2021·新高考Ⅱ,4)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为(轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O,半径r为的球,其上点A的纬度是指与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为,记卫星信号覆盖地球表面的表面积为(单位:),则S占地球表面积的百分比约为( )
A. 26% B. 34% C. 42% D. 50%
【答案】C
【解析】由题意可得,S占地球表面积的百分比约为:
.,故选:C.
(2021·新高考Ⅱ,5)正四棱台的上 下底面的边长分别为2,4,侧棱长为2,则其体积为( )
A. B. C. D.
【答案】D
【解析】作出图形,连接该正四棱台上下底面的中心,如图,
因为该四棱台上下底面边长分别为2,4,侧棱长为2,
所以该棱台的高,
下底面面积,上底面面积,
所以该棱台的体积, 故选:D.
(2021·新高考Ⅱ,10)如图,在正方体中,O为底面的中心,P为所在棱的中点,M,N为正方体的顶点.则满足的是( )
A. B.
C. D.
【答案】BC
【解析】设正方体的棱长为,
对于A,如图(1)所示,连接,则,
故(或其补角)为异面直线所成的角,
在直角三角形,,,故,
故不成立,故A错误.
对于B,如图(2)所示,取的中点为,连接,,则,,
由正方体可得平面,而平面,
故,而,故平面,
又平面,,而,
所以平面,而平面,故,故B正确.
对于C,如图(3),连接,则,由B的判断可得,
故,故C正确.
对于D,如图(4),取的中点,的中点,连接,
则,
因为,故,故,
所以或其补角为异面直线所成的角,
因为正方体的棱长为2,故,,
,,故不是直角,
故不垂直,故D错误.
故选:BC.
(2021·全国甲卷,理11)已如A,B,C是半径为1的球O的球面上的三个点,且,则三棱锥的体积为( )
A. B. C. D.
【答案】A
【解析】,为等腰直角三角形,,
则外接圆的半径为,又球的半径为1,设到平面的距离为,
则,所以.
故选:A.
(2021·全国乙卷,理5文10) 在正方体中,P为的中点,则直线与所成的角为( )
A. B. C. D.
【答案】D
【解析】
如图,连接,因为∥,
所以或其补角为直线与所成的角,
因为平面,所以,又,,
所以平面,所以,
设正方体棱长为2,则,
,所以.
故选:D
(2020·新高考Ⅰ,4)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为( )
A.20° B.40° C.50° D.90°
【答案】B 【解析】画出截面图如下图所示,其中是赤道所在平面的截线;是点处的水平面的截线,依题意可知;是晷针所在直线.是晷面的截线,依题意可知、.
由于,所以,
由于,
所以,也即晷针与点处的水平面所成角为.
(2020·全国卷Ⅰ,文理3)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )
A. B. C. D.
【答案】D【解析】如图,设,则,由题意,即,化简得,解得(负值舍去).故选:C.
(2020·全国卷Ⅰ,理10文12)已知为球球面上的三个点,⊙为的外接圆,若⊙的面积为,,则球的表面积为( )
A. B. C. D.
【答案】A 【解析】设圆半径为,球的半径为,依题意,得,
由正弦定理可得,,根据圆截面性质平面,

球的表面积.
故选:A
(2020·全国卷Ⅱ,理10文11))已知△ABC是面积为的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为( )
A. B. C.1 D.
【答案】C 【解析】设球的半径为,则,解得:.
设外接圆半径为,边长为, 是面积为的等边三角形,
,解得:,,
球心到平面的距离.
故选:C.
二、填空题
(2025·全国一卷,9,多选)在正三棱柱中,D为BC中点,则( )
A. B.平面 C. D.平面
【答案】BD
【解析】法一:对于A,在正三棱柱中,平面,
又平面,则,则,
因为是正三角形,为中点,则,则
又,
所以,
则不成立,故A错误;
对于B,因为在正三棱柱中,平面,
又平面,则,
因为是正三角形,为中点,则,
又平面,
所以平面,故B正确;
对于D,因为在正三棱柱中,
又平面平面,所以平面,故D正确;
对于C,因为在正三棱柱中,,
假设,则,这与矛盾,
所以不成立,故C错误;
故选:BD.
法二:如图,建立空间直角坐标系,设该正三棱柱的底边为,高为,
则,
对于A,,
则,
则不成立,故A错误;
对于BD,,
设平面的法向量为,
则,得,令,则,
所以,,
则平面,平面,故BD正确;
对于C,,
则,显然不成立,故C错误;
故选:BD.
(2024·新高考Ⅰ,5)已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为,则圆锥的体积为( )
A. B. C. D.
【答案】B
【解析】
【分析】设圆柱的底面半径为,根据圆锥和圆柱的侧面积相等可得半径的方程,求出解后可求圆锥的体积.
【详解】设圆柱的底面半径为,则圆锥的母线长为,
而它们的侧面积相等,所以即,
故,故圆锥的体积为.
故选:B.
(2024·新高考Ⅱ,7)已知正三棱台的体积为,,,则与平面ABC所成角的正切值为( )
A. B. 1 C. 2 D. 3
【答案】B
【解析】
【分析】解法一:根据台体的体积公式可得三棱台的高,做辅助线,结合正三棱台的结构特征求得,进而根据线面夹角的定义分析求解;解法二:将正三棱台补成正三棱锥,与平面ABC所成角即为与平面ABC所成角,根据比例关系可得,进而可求正三棱锥的高,即可得结果.
【详解】解法一:分别取的中点,则,
可知,
设正三棱台的为,
则,解得,
如图,分别过作底面垂线,垂足为,设,
则,,
可得,
结合等腰梯形可得,
即,解得,
所以与平面ABC所成角的正切值为;
解法二:将正三棱台补成正三棱锥,
则与平面ABC所成角即为与平面ABC所成角,
因为,则,
可知,则,
设正三棱锥的高为,则,解得,
取底面ABC的中心为,则底面ABC,且,
所以与平面ABC所成角的正切值.
故选:B.
(2024·全国甲,理10文11)设是两个平面,是两条直线,且.下列四个命题:
①若,则或 ②若,则
③若,且,则 ④若与和所成的角相等,则
其中所有真命题的编号是( )
A. ①③ B. ②④ C. ①②③ D. ①③④
【答案】A
【解析】对①,当,因为,,则,
当,因为,,则,
当既不在也不在内,因为,,则且,故①正确;
对②,若,则与不一定垂直,故②错误;
对③,过直线分别作两平面与分别相交于直线和直线,
因为,过直线的平面与平面的交线为直线,则根据线面平行的性质定理知,
同理可得,则,因为平面,平面,则平面,
因为平面,,则,又因为,则,故③正确;
对④,若与和所成的角相等,如果,则,故④错误;
综上只有①③正确,
故选:A.
(2025·全国二卷,14)一个底面半径为,高为的封闭圆柱形容器(容器壁厚度忽略不计)内有两个半径相等的铁球,则铁球半径的最大值为____________.
【答案】
【解析】
【分析】根据圆柱与球的性质以及球的体积公式可求出球的半径;
【详解】
圆柱的底面半径为,设铁球的半径为r,且,
由圆柱与球的性质知,
即,,
故答案为:.
(2024·全国甲,理14)已知甲、乙两个圆台上、下底面的半径均为和,母线长分别为和,则两个圆台的体积之比______.
【答案】
【解析】由题可得两个圆台高分别为,

所以.
(2024·全国甲,文14)已知圆台甲、乙的上底面半径均为,下底面半径均为,圆台的母线长分别为,,则圆台甲与乙的体积之比为______.
【答案】
【解析】由题可得两个圆台的高分别为,

所以.
(2023·新高考Ⅰ,14)在正四棱台中,,则该棱台的体积为________.
【答案】
【解析】如图,过作,垂足为,易知为四棱台的高,
因,
则,
故,则,
所以所求体积为.
(2023·新高考Ⅱ,14)底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为______.
【答案】 【解析】方法一:由于,而截去的正四棱锥的高为,所以原正四棱锥的高为,
所以正四棱锥的体积为,截去的正四棱锥的体积为,所以棱台的体积为.
方法二:棱台的体积为.
故答案:.
(2023·全国甲卷,理15)在正方体中,E,F分别为AB,的中点,以EF为直径的球的球面与该正方体的棱共有____________个公共点.
【答案】12 【解析】不妨设正方体棱长为2,中点为,取,中点,侧面的中心为,连接,如图,
由题意可知,为球心,在正方体中,,即,
则球心到的距离为,所以球与棱相切,球面与棱只有1个交点,同理,根据正方体的对称性知,其余各棱和球面也只有1个交点,所以以EF为直径的球面与正方体每条棱的交点总数为12.
(2023·全国甲卷,文16)在正方体中,为的中点,若该正方体的棱与球的球面有公共点,则球的半径的取值范围是________.
【答案】
【解析】设球的半径为.当球是正方体的外接球时,恰好经过正方体的每个顶点,所求的球的半径最大,若半径变得更大,球会包含正方体,导致球面和棱没有交点,正方体的外接球直径为体对角线长,即,故;
分别取侧棱的中点,显然四边形是边长为的正方形,且为正方形的对角线交点,连接,则,当球的一个大圆恰好是四边形的外接圆,球的半径达到最小,即的最小值为.
综上,.
(2023·全国乙卷,文16)已知点均在半径为2的球面上,是边长为3的等边三角形,平面,则________.
【答案】2
【解析】如图,将三棱锥转化为直三棱柱,
设的外接圆圆心为,半径为,
则,可得,
设三棱锥的外接球球心为,连接,则,
因为,即,解得.
故答案为:2.
(2021·全国甲卷,文14)已知一个圆锥的底面半径为6,其体积为则该圆锥的侧面积为________.
【答案】
【解析】∵,∴,∴,
∴.
(2020·新高考Ⅰ,16)已知直四棱柱ABCD–A1B1C1D1的棱长均为2,∠BAD=60°.以为球心,为半径的球面与侧面BCC1B1的交线长为________.
【答案】.【解析】如图:取的中点为,的中点为,的中点为,
因为60°,直四棱柱的棱长均为2,所以△为等边三角形,所以,,
又四棱柱为直四棱柱,所以平面,所以,
因为,所以侧面,
设为侧面与球面的交线上的点,则,
因为球的半径为,,所以,
所以侧面与球面的交线上的点到的距离为,
因为,所以侧面与球面的交线是扇形的弧,
因为,所以,
所以根据弧长公式可得.
(2020·全国卷Ⅱ,文16)设有下列四个命题:p1:两两相交且不过同一点的三条直线必在同一平面内.
p2:过空间中任意三点有且仅有一个平面.p3:若空间两条直线不相交,则这两条直线平行.p4:若直线l平面α,直线m⊥平面α,则m⊥l.则下述命题中所有真命题的序号是__________.
①②③④
【答案】①③④ 【解析】对于命题,可设与相交,这两条直线确定的平面为;
若与相交,则交点在平面内,同理,与的交点也在平面内,
所以,,即,命题真命题;
对于命题,若三点共线,则过这三个点的平面有无数个,命题为假命题;
对于命题,空间中两条直线相交、平行或异面,命题为假命题;
对于命题,若直线平面,则垂直于平面内所有直线,直线平面,直线直线,命题为真命题.
综上可知,为真命题,为假命题,为真命题,为真命题.
故答案为:①③④.
(2020·全国卷Ⅲ,文理15)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为______.
【答案】 【解析】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,
其中,且点M为BC边上的中点,
设内切圆的圆心为,
由于,故,
设内切圆半径为,则:

解得:,其体积:.
故答案为:.
三、解答题
(2025·全国一卷,17)如图所示的四棱锥中,平面,.
(1)证明:平面平面;
(2),,,,在同一个球面上,设该球面的球心为.
(i)证明:在平面上;
(ⅱ)求直线与直线所成角的余弦值.
【解析】(1)由题意证明如下,
在四棱锥中,⊥平面,,
平面,平面,
∴,,
∵平面,平面,,
∴平面,
∵平面,
∴平面平面.
(2)(i)由题意及(1)证明如下,
法一: 在四棱锥中,,,,∥,
,,建立空间直角坐标系如下图所示,
∴,
若,,,在同一个球面上,则,
在平面中,
∴,∴线段中点坐标,
直线的斜率:,
直线的垂直平分线斜率:,
∴直线的方程:,
即,
当时,,解得:,∴
在立体几何中,,
∵ 解得:,∴点在平面上.
法二: ∵,,,在同一个球面上,∴球心到四个点的距离相等
在中,到三角形三点距离相等的点是该三角形的外心,
作出和的垂直平分线,如下图所示,
由几何知识得,
,,

∴,∴点是的外心,
Rt中,,,由勾股定理得,
∴,
∴点即为点,,,所在球的球心,
此时点在线段上,平面,
∴点在平面上.
(ii)由题意,(1)(2)(ii)及图得,

设直线与直线所成角为,
∴.
法2:由几何知识得,,,∥,∴,
在Rt中,,,由勾股定理得,

过点作平行线,交的延长线为,连接,,
则,直线与直线所成角即为中或其补角.
∵平面,平面,,∴,
在Rt中,,,由勾股定理得,

在Rt中,,由勾股定理得,

在中,由余弦定理得,,
即:
解得:
∴直线与直线所成角的余弦值为:.
(2025·全国二卷,17)如图,在四边形中,,F为CD的中点,点E在AB上,,,将四边形沿翻折至四边形,使得面与面EFCB所成的二面角为.
(1)证明:平面;
(2)求面与面所成的二面角的正弦值.
【解析】(1)设,所以,因为为中点,所以,因为,,所以是平行四边形, 所以,所以,
因为平面平面,所以平面,
因为平面平面,所以平面,
又,平面,所以平面平面,
又平面,所以平面.
(2)
因为,所以,又因为,所以,
以为原点,以及垂直于平面的直线分别为轴,建立空间直角坐标系.
因为,平面与平面所成二面角为60° ,
所以.
则,,,,,.
所以.
设平面的法向量为,则
,所以,令,则,则.
设平面的法向量为,
则,所以,
令,则,所以.
所以.
所以平面与平面夹角正弦值为.
(2024·新高考Ⅰ,17)如图,四棱锥中,底面ABCD,,.
(1)若,证明:平面;
(2)若,且二面角的正弦值为,求.
【答案】(1)因为平面,而平面,所以,
又,,平面,所以平面,
而平面,所以.
因为,所以, 根据平面知识可知,
又平面,平面,所以平面.
(2)如图所示,过点D作于,再过点作于,连接,
因为平面,所以平面平面,而平面平面,
所以平面,又,所以平面,
根据二面角的定义可知,即为二面角的平面角,
即,即.
因为,设,则,由等面积法可得,,
又,而为等腰直角三角形,所以,
故,解得,即.
(2024·新高考Ⅱ,17)如图,平面四边形ABCD中,,,,,,点E,F满足,,将沿EF对折至,使得.
(1)证明:;(2)求面PCD与面PBF所成的二面角的正弦值.
【解析】(1)由,
得,又,在中,
由余弦定理得,
所以,则,即,
所以,又平面,
所以平面,又平面,
故;
(2)连接,由,则,
在中,,得,
所以,由(1)知,又平面,
所以平面,又平面,
所以,则两两垂直,建立如图空间直角坐标系,
则,
由是的中点,得,
所以,
设平面和平面的一个法向量分别为,
则,,
令,得,
所以,
所以,
设平面和平面所成角为,则,
即平面和平面所成角的正弦值为.
(2024·全国甲,理19)如图,在以A,B,C,D,E,F为顶点的五面体中,四边形ABCD与四边形ADEF均为等腰梯形,,,,为的中点.
(1)证明:平面;(2)求二面角的正弦值.
【解析】(1)因为为的中点,所以,
四边形为平行四边形,所以,又因为平面,
平面,所以平面;
(2)如图所示,作交于,连接,
因为四边形为等腰梯形,,所以,
结合(1)为平行四边形,可得,又,
所以为等边三角形,为中点,所以,
又因为四边形为等腰梯形,为中点,所以,
四边形为平行四边形,,
所以为等腰三角形,与底边上中点重合,,,
因为,所以,所以互相垂直,
以方向为轴,方向为轴,方向为轴,建立空间直角坐标系,
,,,
,设平面的法向量为,
平面的法向量为,
则,即,令,得,即,
则,即,令,得,
即,,则,
故二面角的正弦值为.
(2024·全国甲,文19)如图,,,,,为的中点.
(1)证明:平面;(2)求点到的距离.
【解析】(1)由题意得,,且,
所以四边形是平行四边形,所以,
又平面平面,
所以平面;
(2)取的中点,连接,,因为,且,
所以四边形是平行四边形,所以,
又,故是等腰三角形,同理是等腰三角形,
可得,
又,所以,故.
又平面,所以平面,
易知.
在中,,
所以.
设点到平面的距离为,由,
得,得,
故点到平面的距离为.
(2023·新高考Ⅰ,18)如图,在正四棱柱中,.点分别在棱,上,.
(1)证明:;
(2)点在棱上,当二面角为时,求.
【解析】(1)以为坐标原点,所在直线为轴建立空间直角坐标系,如图,
则,


又不在同一条直线上,
.
(2)设,则,
设平面的法向量,则,
令 ,得,,
设平面的法向量,则,
令 ,得,,

化简可得,,解得或,
或,.
(2023·新高考Ⅱ,20)如图,三棱锥中,,,,E为BC的中点.
(1)证明:;
(2)点F满足,求二面角的正弦值.
【解析】(1)连接,因为E为BC中点,,所以①,
因为,,所以与均为等边三角形,
,从而②,由①②,,平面,
所以,平面,而平面,所以.
(2)不妨设,,.
,,又,平面平面.
以点为原点,所在直线分别为轴,建立空间直角坐标系,如图所示:
设,
设平面与平面的一个法向量分别为,
二面角平面角为,而,
因为,所以,即有,
,取,所以;
,取,所以,
所以,,从而.
所以二面角的正弦值为.
(2023·全国甲卷,理18)如图,在三棱柱中,底面ABC,,到平面的距离为1.
(1)证明:;
(2)已知与的距离为2,求与平面所成角的正弦值.
【答案】(1)证明见解析
(2)
【解析】(1)如图,
底面,面,
,又,平面,,
平面ACC1A1,又平面,
平面平面,
过作交于,又平面平面,平面,
平面
到平面的距离为1,,
在中,,
设,则,
为直角三角形,且,
,,,
,解得,

(2),

过B作,交于D,则为中点,
由直线与距离为2,所以
,,,
在,,
延长,使,连接,
由知四边形为平行四边形,
,平面,又平面,
则在中,,,
在中,,,
,
又到平面距离也为1,
所以与平面所成角的正弦值为.
(2023·全国甲卷,文18)如图,在三棱柱中,平面.
(1)证明:平面平面;
(2)设,求四棱锥的高.
【解析】(1)证明:因为平面,平面,
所以,
又因为,即,
平面,,
所以平面,
又因为平面,
所以平面平面
(2)如图,
过点作,垂足为.
因为平面平面,平面平面,平面,
所以平面,
所以四棱锥的高为.
因为平面,平面,
所以,,
又因为,为公共边,
所以与全等,所以.
设,则,
所以为中点,,
又因为,所以,
即,解得,
所以,
所以四棱锥的高为.
(2023·全国乙卷,理19)如图,在三棱锥中,,,,,BP,AP,BC的中点分别为D,E,O,,点F在AC上,.
(1)证明:平面;
(2)证明:平面平面BEF;
(3)求二面角的正弦值.
【解析】(1)连接,设,则,,,
则,
解得,则为的中点,由分别为的中点,
于是,即,则四边形为平行四边形,
,又平面平面,
所以平面.
(2)由(1)可知,则,得,
因此,则,有,
又,平面,
则有平面,又平面,所以平面平面.
【小问3详解】
过点作交于点,设,
由,得,且,
又由(2)知,,则为二面角的平面角,
因为分别为的中点,因此为的重心,
即有,又,即有,
,解得,同理得,
于是,即有,则,
从而,,
在中,,
于是,,
所以二面角的正弦值为.
(2023·全国乙卷,文19)如图,在三棱锥中,,,,,的中点分别为,点在上,.
(1)求证://平面;
(2)若,求三棱锥的体积.
【解析】(1)连接,设,则,,,
则,
解得,则为的中点,由分别为的中点,
于,即,
则四边形为平行四边形,
,又平面平面,
所以平面.
(2)过作垂直的延长线交于点,
因为是中点,所以,
在中,,
所以,
因为,
所以,又,平面,
所以平面,又平面,
所以,又,平面,
所以平面,
即三棱锥的高为,
因为,所以,
所以,
又,
所以.
(2022·新高考Ⅰ,19)如图,直三棱柱的体积为4,的面积为.
(1)求A到平面的距离;
(2)设D为的中点,,平面平面,求二面角的正弦值.
【解析】(1)在直三棱柱中,设点A到平面的距离为h,
则,
解得,
所以点A到平面距离为;
(2)取的中点E,连接AE,如图,因为,所以,
又平面平面,平面平面,
且平面,所以平面,
在直三棱柱中,平面,
由平面,平面可得,,
又平面且相交,所以平面,
所以两两垂直,以B为原点,建立空间直角坐标系,如图,
由(1)得,所以,,所以,
则,所以的中点,
则,,
设平面的一个法向量,则,
可取,
设平面的一个法向量,则,
可取,
则,
所以二面角的正弦值为.
(2022·新高考Ⅱ,20)如图,是三棱锥的高,,,E是的中点.
(1)证明:平面;
(2)若,,,求二面角的正弦值.
【答案】(1)证明见解析
(2)
【解析】
【分析】(1)连接并延长交于点,连接、,根据三角形全等得到,再根据直角三角形的性质得到,即可得到为的中点从而得到,即可得证;
(2)建立适当的空间直角坐标系,利用空间向量法求出二面角的余弦的绝对值,再根据同角三角函数的基本关系计算可得.
【小问1详解】
证明:连接并延长交于点,连接、,
因为是三棱锥的高,所以平面,平面,
所以、,
又,所以,即,所以,
又,即,所以,,
所以
所以,即,所以为的中点,又为的中点,所以,
又平面,平面,
所以平面
【小问2详解】
解:过点作,如图建立空间直角坐标系,
因为,,所以,
又,所以,则,,
所以,所以,,,,
所以,
则,,,
设平面的法向量为,则,令,则,,所以;
设平面的法向量为,则,
令,则,,所以;
所以.
设二面角的大小为,则,
所以,即二面角正弦值为.
(2022·全国甲卷,理18)在四棱锥中,底面.
(1)证明:;
(2)求PD与平面所成的角的正弦值.
【解析】(1)证明:在四边形中,作于,于,
因为,
所以四边形为等腰梯形,所以,
故,,
所以,
所以,
因为平面,平面,
所以,
又,
所以平面,
又因为平面,
所以;
(2)如图,以点为原点建立空间直角坐标系,,
则,
则,
设平面的法向量,
则有,可取,
则,
所以与平面所成角的正弦值为.
(2022·全国甲卷,文19)小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面是边长为8(单位:)的正方形,均为正三角形,且它们所在的平面都与平面垂直.
(1)证明:平面;
(2)求该包装盒的容积(不计包装盒材料的厚度).
【答案】(1)证明见解析;
(2).
【解析】(1)如图所示:
分别取的中点,连接,因为为全等的正三角形,所以,,又平面平面,平面平面,平面,所以平面,同理可得平面,根据线面垂直的性质定理可知,而,所以四边形为平行四边形,所以,又平面,平面,所以平面.
(2)[方法一]:分割法一
如图所示:
分别取中点,由(1)知,且,同理有,,,,由平面知识可知,,,,所以该几何体的体积等于长方体的体积加上四棱锥体积的倍.
因为,,点到平面的距离即为点到直线的距离,,所以该几何体的体积

[方法二]:分割法二,如图所示:
连接AC,BD,交于O,连接OE,OF,OG,OH.则该几何体的体积等于四棱锥O-EFGH的体积加上三棱锥A-OEH的倍,再加上三棱锥E-OAB的四倍.容易求得,OE=OF=OG=OH=8,取EH的中点P,连接AP,OP.则EH垂直平面APO.由图可知,三角形APO,四棱锥O-EFGH与三棱锥E-OAB的高均为EM的长.所以该几何体的体积
(2022·全国乙卷,理18)如图,四面体中,,E为的中点.
(1)证明:平面平面;
(2)设,点F在上,当的面积最小时,求与平面所成的角的正弦值.
【答案】(1)证明过程见解析
(2)与平面所成的角的正弦值为
【解析】(1)因为,E为的中点,所以;
在和中,因为,
所以,所以,又因为E为的中点,所以;
又因为平面,,所以平面,
因为平面,所以平面平面.
(2)连接,由(1)知,平面,因为平面,
所以,所以,
当时,最小,即的面积最小.
因为,所以,
又因为,所以是等边三角形,
因为E为的中点,所以,,
因为,所以,
在中,,所以.
以为坐标原点建立如图所示的空间直角坐标系,
则,所以,
设平面的一个法向量为,
则,取,则,
又因为,所以,
所以,
设与平面所成的角的正弦值为,
所以,
所以与平面所成的角的正弦值为.
(2022·全国乙卷,文18) 如图,四面体中,,E为AC的中点.
(1)证明:平面平面ACD;
(2)设,点F在BD上,当的面积最小时,求三棱锥的体积.
【答案】(1)由于,是的中点,所以.
由于,所以,
所以,故,
由于,平面,
所以平面,
由于平面,所以平面平面.
(2)[方法一]:判别几何关系
依题意,,三角形是等边三角形,
所以,
由于,所以三角形是等腰直角三角形,所以.
,所以,
由于,平面,所以平面.
由于,所以,
由于,所以,
所以,所以,
由于,所以当最短时,三角形的面积最小
过作,垂足为,
在中,,解得,
所以,
所以
过作,垂足为,则,所以平面,且,
所以,
所以.
[方法二]:等体积转换
,,
是边长为2等边三角形,
连接
(2021·新高考Ⅰ,20)如图,在三棱锥中,平面平面,,为的中点.
(1)证明:;
(2)若是边长为1的等边三角形,点在棱上,,且二面角的大小为,求三棱锥的体积.
【答案】(1)详见解析(2)
【解析】
【分析】(1)根据面面垂直性质定理得AO⊥平面BCD,即可证得结果;
(2)先作出二面角平面角,再求得高,最后根据体积公式得结果.
【详解】(1)因为AB=AD,O为BD中点,所以AO⊥BD
因为平面ABD平面BCD,平面ABD⊥平面BCD,平面ABD,
因此AO⊥平面BCD,
因为平面BCD,所以AO⊥CD
(2)作EF⊥BD于F, 作FM⊥BC于M,连FM
因为AO⊥平面BCD,所以AO⊥BD, AO⊥CD
所以EF⊥BD, EF⊥CD, ,因此EF⊥平面BCD,即EF⊥BC
因为FM⊥BC,,所以BC⊥平面EFM,即BC⊥MF
则为二面角E-BC-D的平面角,
因为,为正三角形,所以为直角三角形
因为,
从而EF=FM=
平面BCD,
所以
【点睛】二面角的求法:一是定义法,二是三垂线定理法,三是垂面法,四是投影法.
(2021·新高考Ⅱ,19)在四棱锥中,底面是正方形,若.
(1)证明:平面平面;
(2)求二面角的平面角的余弦值.
【答案】(1)证明见解析;(2).
【解析】
【分析】(1)取的中点为,连接,可证平面,从而得到面面.
(2)在平面内,过作,交于,则,建如图所示的空间坐标系,求出平面、平面的法向量后可求二面角的余弦值.
【详解】
(1)取的中点为,连接.
因为,,则,
而,故.
在正方形中,因为,故,故,
因为,故,故为直角三角形且,
因,故平面,
因为平面,故平面平面.
(2)在平面内,过作,交于,则,
结合(1)中的平面,故可建如图所示的空间坐标系.
则,故.
设平面的法向量,
则即,取,则,
故.
而平面的法向量为,故.
二面角的平面角为锐角,故其余弦值为.
(2021·全国甲卷,理19) 已知直三棱柱中,侧面为正方形,,E,F分别为和的中点,D为棱上的点.
(1)证明:;
(2)当为何值时,面与面所成的二面角的正弦值最小
【解析】因为三棱柱是直三棱柱,所以底面,所以
因为,,所以,
又,所以平面.
所以两两垂直.
以为坐标原点,分别以所在直线为轴建立空间直角坐标系,如图.
所以,

由题设().
(1)因为,
所以,所以.
(2)设平面的法向量为,
因为,
所以,即.
令,则
因为平面的法向量为,
设平面与平面的二面角的平面角为,
则.
当时,取最小值为,
此时取最大值为.
所以,
此时.
(2021·全国甲卷,文19)已知直三棱柱中,侧面为正方形,,E,F分别为和的中点,.
(1)求三棱锥的体积;
(2)已知D为棱上的点,证明:.
【解析】(1)如图所示,连结AF,
由题意可得:,
由于AB⊥BB1,BC⊥AB,,故平面,
而平面,故,
从而有,
从而,
则,为等腰直角三角形,
,.
(2)由(1)的结论可将几何体补形为一个棱长为2的正方体,如图所示,取棱的中点,连结,
正方形中,为中点,则,
又,
故平面,而平面,
从而.
(2021·全国乙卷,理18)如图,四棱锥的底面是矩形,底面,,为的中点,且.
(1)求;
(2)求二面角的正弦值.
【解析】(1)平面,四边形为矩形,不妨以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,
设,则、、、、,
则,,
,则,解得,故;
(2)设平面的法向量为,则,,
由,取,可得,
设平面的法向量为,,,
由,取,可得,

所以,,
因此,二面角的正弦值为.
【点睛】思路点睛:利用空间向量法求解二面角的步骤如下:
(1)建立合适的空间直角坐标系,写出二面角对应的两个半平面中对应的点的坐标;
(2)设出法向量,根据法向量垂直于平面内两条直线的方向向量,求解出平面的法向量(注:若半平面为坐标平面,直接取法向量即可);
(3)计算(2)中两个法向量的余弦值,结合立体图形中二面角的实际情况,判断二面角是锐角还是钝角,从而得到二面角的余弦值.
(2021·全国乙卷,文18)如图,四棱锥的底面是矩形,底面,M为的中点,且.
(1)证明:平面平面;
(2)若,求四棱锥的体积.
【解析】(1)因为底面,平面,
所以,
又,,
所以平面,
而平面,
所以平面平面.
(2)由(1)可知,平面,所以,
从而,设,,
则,即,解得,所以.
因为底面,
故四棱锥的体积为.
(2020·新高考Ⅰ,20)如图,四棱锥P-ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.
(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.
【解析】(1)证明: 在正方形中,,
因为平面,平面,所以平面,
又因为平面,平面平面,所以,
因为在四棱锥中,底面是正方形,所以
且平面,所以
因为,
所以平面;
(2)如图建立空间直角坐标系,
因为,则有,
设,则有,
设平面的法向量为,则,即,
令,则,所以平面的一个法向量为,则
根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线与平面所成角的正弦值等于,当且仅当时取等号,
所以直线与平面所成角的正弦值的最大值为.
(2020·全国卷Ⅰ,理18)如图,为圆锥的顶点,是圆锥底面的圆心,为底面直径,.是底面的内接正三角形,为上一点,.
(1)证明:平面;
(2)求二面角的余弦值.
解析:(1)由题设,知为等边三角形,设,
则,,所以,
又为等边三角形,则,所以,
,则,所以,
同理,又,所以平面;
(2)过O作∥BC交AB于点N,因为平面,以O为坐标原点,OA为x轴,ON为y轴建立如图所示的空间直角坐标系,
则,
,,,
设平面的一个法向量为,由,得,令,得,所以,
设平面的一个法向量为,由,得,令,得,所以,
故,
由图可知,二面角为锐二面角,所以二面角的余弦值为.
(2020·全国卷Ⅰ,文19)如图,为圆锥的顶点,是圆锥底面的圆心,是底面的内接正三角形,为上一点,∠APC=90°.
(1)证明:平面PAB⊥平面PAC;(2)设DO=,圆锥的侧面积为,求三棱锥P ABC的体积.
【解析】(1)为圆锥顶点,为底面圆心,平面,
在上,,
是圆内接正三角形,,,
,即,
平面平面,平面平面;
(2)设圆锥的母线为,底面半径为,圆锥的侧面积为,
,解得,,
在等腰直角三角形中,,
在中,,
三棱锥的体积为.
(2020·全国卷Ⅱ,理20)如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.
(1)证明:AA1∥MN,且平面A1AMN⊥EB1C1F;
(2)设O为△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.
【解析】(1)分别为,的中点,,
又,
在中,为中点,则,
又侧面为矩形,
,,
由,平面,平面.
又,且平面,平面,平面
又平面,且平面平面,

又平面,平面
平面,平面平面
(2)连接
平面,平面平面,
根据三棱柱上下底面平行,其面平面,面平面,
.
故四边形是平行四边形
设边长是(),可得:,,
为的中心,且边长为,
,故
,,,解得:
在截取,故,
且,
四边形是平行四边形,,
由(1)平面,
故为与平面所成角,
在,根据勾股定理可得:
,直线与平面所成角的正弦值:.
(2020·全国卷Ⅱ,文20)如图,已知三棱柱ABC–A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点.过B1C1和P的平面交AB于E,交AC于F.
(1)证明:AA1//MN,且平面A1AMN⊥平面EB1C1F;
(2)设O为△A1B1C1的中心,若AO=AB=6,AO//平面EB1C1F,且∠MPN=,求四棱锥B–EB1C1F的体积.
【解析】(1)分别为,的中点,
又,,在等边中,为中点,则,
又侧面为矩形,,,,
由,平面,平面
又,且平面,平面,平面
又平面,且平面平面,

又平面,平面
平面,平面平面,
(2)过作垂线,交点为,画出图形,如图
平面
平面,平面平面

为的中心.
故:,则,
平面平面,平面平面,
平面
平面
又在等边中

由(1)知,四边形为梯形
四边形的面积为:

为到的距离,

(2020·全国卷Ⅲ,理19)如图,在长方体中,点分别在棱上,且,.
(1)证明:点在平面内;(2)若,,,求二面角的正弦值.
【解析】(1)在棱上取点,使得,连接、、、,
在长方体中,且,且,
,,且,
所以,四边形为平行四边形,则且,
同理可证四边形为平行四边形,且,
且,则四边形为平行四边形,
因此,点在平面内;
(2)以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,
则、、、,
,,,,
设平面的法向量为,
由,得取,得,则,
设平面的法向量为,
由,得,取,得,,则,

设二面角的平面角为,则,.
因此,二面角的正弦值为.
(2020·全国卷Ⅲ,文19)如图,在长方体中,点,分别在棱,上,且,.证明:
(1)当时,;
(2)点在平面内.
【解析】
(1)因为长方体,所以平面,
因为长方体,所以四边形为正方形
因为平面,因此平面,
因为平面,所以;
(2)在上取点使得,连,
因为,所以
所以四边形为平行四边形,
因为所以四边形为平行四边形,
因此在平面内
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
2020年—2025年新课标全国卷数学分类汇编
编写说明:研究发现,新课标全国卷的试卷结构和题型具有一定的稳定性和连续性.每个题型考查的知识点、考查方法、考查角度、思维方法等有一定套路.掌握了全国卷的各种题型,就把握住了全国卷命题的灵魂.
本资料是根据全国卷的特点精心编写,共包含9个专题,分别是:
1.集合、逻辑、不等式 2.复数 3.平面向量 4.函数与导数 5.三角函数与解三角形
6.数列 7.立体几何 8.解析几何 9.概率与统计
2020年—2025年新课标全国卷数学试题分类汇编
7.立体几何
一、选择题
(2025·全国一卷,9,多选)在正三棱柱中,D为BC中点,则( )
A. B.平面 C. D.平面
(2024·新高考Ⅰ,5)已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为,则圆锥的体积为( )
A. B. C. D.
(2024·新高考Ⅱ,7)已知正三棱台的体积为,,,则与平面ABC所成角的正切值为( )
A. B. 1 C. 2 D. 3
(2024·全国甲,理10文11)设是两个平面,是两条直线,且.下列四个命题:
①若,则或 ②若,则
③若,且,则 ④若与和所成的角相等,则
其中所有真命题的编号是( )
A. ①③ B. ②④ C. ①②③ D. ①③④
(2023·新高考Ⅰ,12)下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有( )
A. 直径为的球体 B. 所有棱长均为的四面体
C. 底面直径为,高为的圆柱体 D. 底面直径为,高为的圆柱体
(2023·新高考Ⅱ,9多选) 已知圆锥的顶点为P,底面圆心为O,AB为底面直径,,,点C在底面圆周上,且二面角为45°,则( ).
A.该圆锥的体积为 B.该圆锥的侧面积为 C. D.的面积为
(2023·全国甲卷,理11)已知四棱锥的底面是边长为4的正方形,,则的面积为( )
A. B. C. D.
(2023·全国甲卷,文10)在三棱锥中,是边长为2的等边三角形,,则该棱锥的体积为( )
A.1 B. C.2 D.3
(2023·全国乙卷,理8)已知圆锥PO的底面半径为,O为底面圆心,PA,PB为圆锥的母线,,若的面积等于,则该圆锥的体积为( )
A. B. C. D.
(2023·全国乙卷,理9)已知为等腰直角三角形,AB为斜边,为等边三角形,若二面角为,则直线CD与平面ABC所成角的正切值为( )
A. B. C. D.
(2022·新高考Ⅰ,4)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔时,相应水面的面积为;水位为海拔时,相应水面的面积为,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔上升到时,增加的水量约为()( )
A. B. C. D.
(2022·新高考Ⅰ,8)已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为,且,则该正四棱锥体积的取值范围是( )
A. B. C. D.
(2022·新高考Ⅰ,9多选题)已知正方体,则( )
A.直线与所成的角为 B.直线与所成的角为
C.直线与平面所成的角为 D.直线与平面ABCD所成的角为
(2022·新高考Ⅱ,7)已知正三棱台的高为1,上、下底面边长分别为和,其顶点都在同一球面上,则该球的表面积为( )
A. B. C. D.
(2022·新高考Ⅱ,11多选题)如图,四边形为正方形,平面,,记三棱锥,,的体积分别为,则( )
A. B. C. D.
(2022·全国甲卷,理7文9)在长方体中,已知与平面和平面所成的角均为,则( )
A. B.AB与平面所成的角为
C. D.与平面所成的角为
(2022·全国甲卷,理9文10)甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为,侧面积分别为和,体积分别为和.若,则( )
A. B. C. D.
(2022·全国乙卷,理7文9)在正方体中,E,F分别为的中点,则( )
A.平面平面 B.平面平面
C.平面平面 D.平面平面
(2022·全国乙卷,理9文12) 已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱锥的体积最大时,其高为( )
A. B. C. D.
(2022·全国乙卷,文12)已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱锥的体积最大时,其高为( )
A B. C. D.
(2021·新高考Ⅰ,3)已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为( )
A. B. C. D.
(2021·新高考Ⅰ,12)在正三棱柱中,,点满足,其中,,则( )
A. 当时,的周长为定值
B. 当时,三棱锥的体积为定值
C. 当时,有且仅有一个点,使得
D. 当时,有且仅有一个点,使得平面
(2021·新高考Ⅱ,4)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为(轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O,半径r为的球,其上点A的纬度是指与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为,记卫星信号覆盖地球表面的表面积为(单位:),则S占地球表面积的百分比约为( )
A. 26% B. 34% C. 42% D. 50%
(2021·新高考Ⅱ,5)正四棱台的上 下底面的边长分别为2,4,侧棱长为2,则其体积为( )
A. B. C. D.
(2021·新高考Ⅱ,10)如图,在正方体中,O为底面的中心,P为所在棱的中点,M,N为正方体的顶点.则满足的是( )
A B C D
(2021·全国甲卷,理11)已如A,B,C是半径为1的球O的球面上的三个点,且,则三棱锥的体积为( )
A. B. C. D.
(2021·全国乙卷,理5文10) 在正方体中,P为的中点,则直线与所成的角为( )
A. B. C. D.
(2020·新高考Ⅰ,4)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为( )
A.20° B.40° C.50° D.90°
(2020·全国卷Ⅰ,文理3)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )
A. B. C. D.
(2020·全国卷Ⅰ,理10文12)已知为球球面上的三个点,⊙为的外接圆,若⊙的面积为,,则球的表面积为( )
A. B. C. D.
(2020·全国卷Ⅱ,理10文11)已知△ABC是面积为的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为( )
A. B. C.1 D.
二、填空题
(2025·全国二卷,14)一个底面半径为,高为的封闭圆柱形容器(容器壁厚度忽略不计)内有两个半径相等的铁球,则铁球半径的最大值为____________.
(2024·全国甲,理13文14)已知甲、乙两个圆台上、下底面的半径均为和,母线长分别为和,则两个圆台的体积之比______.
(2023·新高考Ⅰ,14)在正四棱台中,,则该棱台的体积为________.
(2023·新高考Ⅱ,14)底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为______.
(2023·全国甲卷,理15)在正方体中,E,F分别为AB,的中点,以EF为直径的球的球面与该正方体的棱共有____________个公共点.
(2023·全国甲卷,文16)在正方体中,为的中点,若该正方体的棱与球的球面有公共点,则球的半径的取值范围是________.
(2023·全国乙卷,文16)已知点均在半径为2的球面上,是边长为3的等边三角形,平面,则________.
(2021·全国甲卷,文14)已知一个圆锥的底面半径为6,其体积为则该圆锥的侧面积为________.
(2020·新高考Ⅰ,16)已知直四棱柱ABCD–A1B1C1D1的棱长均为2,∠BAD=60°.以为球心,为半径的球面与侧面BCC1B1的交线长为________.
(2020·全国卷Ⅱ,文16)设有下列四个命题:p1:两两相交且不过同一点的三条直线必在同一平面内.
p2:过空间中任意三点有且仅有一个平面.p3:若空间两条直线不相交,则这两条直线平行.p4:若直线l平面α,直线m⊥平面α,则m⊥l.则下述命题中所有真命题的序号是__________.
①②③④
(2020·全国卷Ⅲ,文16)已知圆锥底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.
三、解答题
(2025·全国一卷,17)如图所示的四棱锥中,平面,.
(1)证明:平面平面;(2),,,,在同一个球面上,设该球面的球心为.
(i)证明:在平面上;(ⅱ)求直线与直线所成角的余弦值.
(2025·全国二卷,17)如图,在四边形中,,F为CD的中点,点E在AB上,,,将四边形沿翻折至四边形,使得面与面EFCB所成的二面角为.
(1)证明:平面;(2)求面与面所成的二面角的正弦值.
(2024·新高考Ⅰ,17)如图,四棱锥中,底面ABCD,,.
(1)若,证明:平面;(2)若,且二面角的正弦值为,求.
(2024·新高考Ⅱ,17)如图,平面四边形ABCD中,,,,,,点E,F满足,,将沿EF对折至,使得.
(1)证明:;(2)求面PCD与面PBF所成的二面角的正弦值.
(2024·全国甲,理19)如图,在以A,B,C,D,E,F为顶点的五面体中,四边形ABCD与四边形ADEF均为等腰梯形,,,,为的中点.
(1)证明:平面;(2)求二面角的正弦值.
(2024·全国甲,文19)如图,,,,,为的中点.
(1)证明:平面;(2)求点到的距离.
(2023·新高考Ⅰ,18)如图,在正四棱柱中,.点分别在棱,上,.
(1)证明:;(2)点在棱上,当二面角为时,求.
(2023·新高考Ⅱ,20)如图,三棱锥中,,,,E为BC的中点.
(1)证明:;(2)点F满足,求二面角的正弦值.
(2023·全国甲卷,理18)如图,在三棱柱中,底面ABC,,到平面的距离为1.
(1)证明:;(2)已知与的距离为2,求与平面所成角的正弦值.
(2023·全国甲卷,文18)如图,在三棱柱中,平面.
(1)证明:平面平面;(2)设,求四棱锥的高.
(2023·全国乙卷,理19)如图,在三棱锥中,,,,,BP,AP,BC的中点分别为D,E,O,,点F在AC上,.
(1)证明:平面;(2)证明:平面平面BEF;(3)求二面角的正弦值.
(2023·全国乙卷,文19)如图,在三棱锥中,,,,,的中点分别为,点在上,.
(1)求证://平面;
(2)若,求三棱锥的体积.
(2022·新高考Ⅰ,19)如图,直三棱柱的体积为4,的面积为.
(1)求A到平面的距离;
(2)设D为的中点,,平面平面,求二面角的正弦值.
(2022·新高考Ⅱ,20)如图,是三棱锥的高,,,E是的中点.
(1)证明:平面;
(2)若,,,求二面角的正弦值.
(2022·全国甲卷,理18)在四棱锥中,底面.
(1)证明:;(2)求PD与平面所成的角的正弦值.
(2022·全国甲卷,文19)小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面是边长为8(单位:)的正方形,均为正三角形,且它们所在的平面都与平面垂直.
(1)证明:平面;(2)求该包装盒的容积(不计包装盒材料的厚度).
(2022·全国乙卷,理18)如图,四面体中,,E为的中点.
(1)证明:平面平面;(2)设,点F在上,当的面积最小时,求与平面所成的角的正弦值.
(2022·全国乙卷,文18) 如图,四面体中,,E为AC的中点.
(1)证明:平面平面ACD;(2)设,点F在BD上,当的面积最小时,求三棱锥的体积.
(2021·新高考Ⅰ,20)如图,在三棱锥中,平面平面,,为的中点.
(1)证明:;(2)若是边长为1的等边三角形,点在棱上,,且二面角的大小为,求三棱锥的体积.
(2021·新高考Ⅱ,19)在四棱锥中,底面是正方形,若.
(1)证明:平面平面;(2)求二面角的平面角的余弦值.
(2021·全国甲卷,理19) 已知直三棱柱中,侧面为正方形,,E,F分别为和的中点,D为棱上的点.
(1)证明:;(2)当为何值时,面与面所成的二面角的正弦值最小
(2021·全国甲卷,文19)已知直三棱柱中,侧面为正方形,,E,F分别为和的中点,.
(1)求三棱锥的体积;(2)已知D为棱上的点,证明:.
(2021·全国乙卷,理18)如图,四棱锥的底面是矩形,底面,,为的中点,且.
(1)求;(2)求二面角的正弦值.
(2021·全国乙卷,文18)如图,四棱锥的底面是矩形,底面,M为的中点,且.
(1)证明:平面平面;
(2)若,求四棱锥的体积.
(2020·新高考Ⅰ,20)如图,四棱锥P-ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.
(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.
(2020·全国卷Ⅰ,理18)如图,为圆锥的顶点,是圆锥底面的圆心,为底面直径,.是底面的内接正三角形,为上一点,.
(1)证明:平面;(2)求二面角的余弦值.
(2020·全国卷Ⅰ,文19)如图,为圆锥的顶点,是圆锥底面的圆心,是底面的内接正三角形,为上一点,∠APC=90°.
(1)证明:平面PAB⊥平面PAC;
(2)设DO=,圆锥的侧面积为,求三棱锥P ABC的体积.
(2020·全国卷Ⅱ,理20)如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.
(1)证明:AA1∥MN,且平面A1AMN⊥EB1C1F;(2)设O为△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.
(2020·全国卷Ⅱ,文20)如图,已知三棱柱ABC–A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点.过B1C1和P的平面交AB于E,交AC于F.
(1)证明:AA1//MN,且平面A1AMN⊥平面EB1C1F;(2)设O为△A1B1C1的中心,若AO=AB=6,AO//平面EB1C1F,且∠MPN=,求四棱锥B–EB1C1F的体积.
(2020·全国卷Ⅲ,理19)如图,在长方体中,点分别在棱上,且,.
(1)证明:点在平面内;(2)若,,,求二面角的正弦值.
(2020·全国卷Ⅲ,文19)如图,在长方体中,点,分别在棱,上,且,.证明:
(1)当时,;
(2)点在平面内.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)
同课章节目录