中小学教育资源及组卷应用平台
2020年—2025年新课标全国卷高考数学试题分类汇编
编写说明:研究发现,新课标全国卷的试卷结构和题型具有一定的稳定性和连续性.每个题型考查的知识点、考查方法、考查角度、思维方法等有一定套路.掌握了全国卷的各种题型,就把握住了全国卷命题的灵魂.
本资料是根据全国卷的特点精心编写,共包含9个专题,分别是:
1.集合、逻辑、不等式 2.复数 3.平面向量 4.函数与导数 5.三角函数与解三角形
6.数列 7.立体几何 8.解析几何 9.概率与统计
8.解析几何(解析版)
一、选择题
(2025·全国一卷,3)若双曲线C的虚轴长为实轴长的倍,则C的离心率为( )
A. B.2 C. D.
【答案】D
【解析】设双曲线的实轴,虚轴,焦距分别为,由题知,,
于是,则,即.故选:D
(2025·全国一卷,7)若圆上到直线的距离为1的点有且仅有2个,则的取值范围是( )
A. B. C. D.
【答案】B
【解析】由题意,在圆中,圆心,半径为,
到直线的距离为的点有且仅有 个,
∵圆心到直线的距离为:,
故由图可知,当时,圆上有且仅有一个点(点)到直线的距离等于;当时,圆上有且仅有三个点(点)到直线的距离等于;当则的取值范围为时,圆上有且仅有两个点到直线的距离等于.故选:B.
(2025·全国一卷,10多选题)设抛物线的焦点为F,过F的直线交C于A、B,过F且垂直于的直线交于E,过点A作准线l的垂线,垂足为D,则( )
A. B. C. D.
【答案】ACD
【解析】法一:对于A,对于抛物线,则,其准线方程为,焦点,
则为抛物线上点到准线的距离,为抛物线上点到焦点的距离,
由抛物线的定义可知,,故A正确;
对于B,过点作准线的垂线,交于点,由题意可知,则,
又,,所以,所以,同理,
又,所以,即,
显然为的斜边,则,故B错误;
对于C,易知直线的斜率不为,设直线的方程为,,
联立,得,易知,则,
又,,所以,
当且仅当时取等号,故C正确;
对于D,在与中,,所以,则,即,同理,又
,,
所以,
则,故D正确.
故选:ACD.
法二:对于A,对于抛物线,则,其准线方程为,焦点,
则为抛物线上点到准线的距离,为抛物线上点到焦点的距离,
由抛物线的定义可知,,故A正确;
对于B,过点作准线的垂线,交于点,由题意可知,则,
又,,所以,所以,同理,
又,所以,即,
显然为的斜边,则,故B错误;
对于C,当直线的斜率不存在时,;当直线的斜率存在时,设直线方程为,联立,消去,得,易知,则,所以
,
综上,,故C正确;
对于D,在与中,,所以,则,即,同理,当直线的斜率不存在时,,;所以,即;
当直线的斜率存在时,,
,所以,
则;
综上,,故D正确.
故选:ACD.
(2025·全国二卷,6)设抛物线的焦点为点A在C上,过A作的准线的垂线,垂足为B,若直线BF的方程为,则( )
A.3 B.4 C.5 D.6
【答案】C
【解析】对,令,则,
所以,即抛物线,故抛物线的准线方程为,
故,则,代入抛物线得.
所以.
故选:C
(2025·全国二卷,11多选)双曲线的左、右焦点分别是,左、右顶点分别为,以为直径的圆与C的一条渐近线交于M、N两点,且,则( )
A. B.
C.C离心率为 D.当时,四边形的面积为
【答案】ACD
【解析】不妨设渐近线为,在第一象限,在第三象限,
对于A,由双曲线的对称性可得为平行四边形,故,故A正确;
对于B,方法一:因为在以为直径的圆上,故且,设,则,故,故,由A得,故即,故B错误;
方法二:因为,因为双曲线中,,则,又因为以为直径的圆与的一条渐近线交于、,则,则若过点往轴作垂线,垂足为,则,则点与重合,则轴,则,
方法三:在利用余弦定理知,,
即,则,
则为直角三角形,且,则,故B错误;
对于C,方法一:因为,故,
由B可知,
故即,故离心率,故C正确;
方法二:因为,则,则,故C正确;
对于D,当时,由C可知,故,故,故四边形为,故D正确,
故选:ACD.
(2024·新高考Ⅰ,11多选)造型可以做成美丽的丝带,将其看作图中曲线C的一部分.已知C过坐标原点O.且C上的点满足横坐标大于,到点的距离与到定直线的距离之积为4,则( )
A. B. 点在C上
C. C在第一象限的点的纵坐标的最大值为1 D. 当点在C上时,
【答案】ABD
【解析】对于A:设曲线上的动点,则且,
因为曲线过坐标原点,故,解得,故A正确.
对于B:又曲线方程为,而,
故.
当时,,
故在曲线上,故B正确.
对于C:由曲线的方程可得,取,
则,而,故此时,
故在第一象限内点的纵坐标的最大值大于1,故C错误.
对于D:当点在曲线上时,由C的分析可得,
故,故D正确.
故选:ABD.
(2024·新高考Ⅱ,5)已知曲线C:(),从C上任意一点P向x轴作垂线段,为垂足,则线段的中点M的轨迹方程为( )
A. () B. ()
C. () D. ()
【答案】A
【解析】设点,则,因为为的中点,所以,即,
又在圆上,所以,即,即点的轨迹方程为. 故选:A
(2024·新高考Ⅱ,10多选)抛物线C:的准线为l,P为C上的动点,过P作的一条切线,Q为切点,过P作l的垂线,垂足为B,则( )
A. l与相切 B. 当P,A,B三点共线时,
C. 当时, D. 满足的点有且仅有2个
【答案】ABD
【解析】A选项,抛物线的准线为,的圆心到直线的距离显然是,等于圆的半径,故准线和相切,A选项正确;
B选项,三点共线时,即,则的纵坐标,由,得到,故,
此时切线长,B选项正确;
C选项,当时,,此时,故或,当时,,,,不满足;
当时,,,,不满足;
于是不成立,C选项错误;
D选项,方法一:利用抛物线定义转化
根据抛物线的定义,,这里,
于是时点的存在性问题转化成时点的存在性问题,
,中点,中垂线的斜率为,
于是的中垂线方程为:,与抛物线联立可得,
,即的中垂线和抛物线有两个交点,
即存在两个点,使得,D选项正确.
方法二:(设点直接求解)
设,由可得,又,又,
根据两点间的距离公式,,整理得,
,则关于的方程有两个解,
即存在两个这样的点,D选项正确.
故选:ABD
(2024·全国甲,理5文6)已知双曲线的两个焦点分别为,点在该双曲线上,则该双曲线的离心率为( )
A. 4 B. 3 C. 2 D.
【答案】C
【解析】设、、,则,,,则,则.故选:C.
(2024·全国甲,理12)已知b是的等差中项,直线与圆交于两点,则的最小值为( )
A. 2 B. 3 C. 4 D.
【答案】C
【解析】因为成等差数列,所以,,代入直线方程得
,即,令得,故直线恒过,设,圆化为标准方程得:,设圆心为,画出直线与圆的图形,由图可知,当时,最小,,此时.
故选:C
(2024·全国甲,文10)已知直线与圆交于两点,则的最小值为( )
A. 2 B. 3 C. 4 D. 6
【答案】C
【解析】因为直线,即,令,则,所以直线过定点,设,将圆化为标准式为,
所以圆心,半径,,当时,的最小,此时. 故选:C
(2023·新高考Ⅰ,5)设椭圆的离心率分别为.若,则( )
A. B. C. D.
【答案】A
【解析】由,得,因此,而,所以.故选:A
(2023·新高考Ⅰ,6)过点与圆相切的两条直线的夹角为,则( )
A. 1 B. C. D.
【答案】B
【解析】方法一:因为,即,可得圆心,半径,
过点作圆C的切线,切点为,
因为,则,
可得,
则,
,
即为钝角,
所以;
法二:圆的圆心,半径,
过点作圆C的切线,切点为,连接,
可得,则,
因为
且,则,
即,解得,
即为钝角,则,
且为锐角,所以;
方法三:圆的圆心,半径,
若切线斜率不存在,则切线方程为,则圆心到切点的距离,不合题意;
若切线斜率存在,设切线方程为,即,
则,整理得,且
设两切线斜率分别为,则,
可得,
所以,即,可得,
则,
且,则,解得.
故选:B.
(2023·新高考Ⅱ,5)已知椭圆的左、右焦点分别为,,直线与C交于A,B两点,若面积是面积的2倍,则( ).
A. B. C. D.
【答案】C
【解析】将直线与椭圆联立,消去可得,
因为直线与椭圆相交于点,则,解得,
设到的距离到距离,易知,
则,,
,解得或(舍去),
故选:C.
(2023·新高考Ⅱ,10多选)设O为坐标原点,直线过抛物线的焦点,且与C交于M,N两点,l为C的准线,则( ).
A. B. C.以MN为直径的圆与l相切 D.为等腰三角形
【答案】AC
【解析】A选项:直线过点,所以抛物线的焦点,
所以,则A选项正确,且抛物线的方程为.
B选项:设,
由消去并化简得,
解得,所以,B选项错误.
C选项:设的中点为,到直线的距离分别为,
因为,
即到直线的距离等于的一半,所以以为直径的圆与直线相切,C选项正确.
D选项:直线,即,
到直线的距离为,
所以三角形的面积为,
由上述分析可知,
所以,
所以三角形不是等腰三角形,D选项错误.
故选:AC.
(2023·全国甲卷,理8) 已知双曲线的离心率为,C的一条渐近线与圆交于A,B两点,则( )
A. B. C. D.
【答案】D
【解析】由,则,解得,所以双曲线的一条渐近线不妨取,
则圆心到渐近线的距离,所以弦长.
故选:D
(2023·全国甲卷,理12)设O为坐标原点,为椭圆两个焦点,点 P在C上,,则( )
A. B. C. D.
【答案】B
【解析】方法一:设,所以,
由,解得:,
由椭圆方程可知,,
所以,,解得:,
即,因此.
故选:B.
方法二:因为①,,
即②,联立①②,
解得:,
而,所以,
即.
故选:B.
方法三:因为①,,
即②,联立①②,解得:,
由中线定理可知,,易知,解得:.
故选:B.
(2023·全国甲卷,文7)设为椭圆的两个焦点,点在上,若,则( )
A.1 B.2 C.4 D.5
【答案】B
【解析】方法一:因为,所以,从而,所以.故选:B.
方法二:因为,所以,由椭圆方程可知,,
所以,又,平方得:
,所以.
故选:B.
(2023·全国甲卷,文9)已知双曲线的离心率为,C的一条渐近线与圆交于A,B两点,则( )
A. B. C. D.
【答案】D
【解析】由,则,解得,
所以双曲线的一条渐近线不妨取,则圆心到渐近线的距离,
所以弦长.
故选:D
(2023·全国乙卷,理11)设A,B为双曲线上两点,下列四个点中,可为线段AB中点的是( )
A. B. C. D.
【答案】D
【解析】设,则的中点,
可得,
因为在双曲线上,则,两式相减得,
所以.
对于选项A: 可得,则,
联立方程,消去y得,
此时,
所以直线AB与双曲线没有交点,故A错误;
对于选项B:可得,则,
联立方程,消去y得,
此时,
所以直线AB与双曲线没有交点,故B错误;
对于选项C:可得,则
由双曲线方程可得,则为双曲线的渐近线,
所以直线AB与双曲线没有交点,故C错误;
对于选项D:,则,
联立方程,消去y得,
此时,故直线AB与双曲线有交两个交点,故D正确;
故选:D.
(2023·全国乙卷,文11)已知实数满足,则的最大值是( )
A. B.4 C. D.7
【答案】C
【解析】法一:令,则,
代入原式化简得,
因为存在实数,则,即,
化简得,解得,
故 的最大值是,
法二:,整理得,
令,,其中,
则,
,所以,则,即时,取得最大值,
法三:由可得,
设,则圆心到直线的距离,
解得
故选:C
(2023·全国乙卷,文12)设A,B为双曲线上两点,下列四个点中,可为线段AB中点的是( )
A. B. C. D.
【答案】D
【解析】设,则的中点,
可得,
因为在双曲线上,则,两式相减得,
所以.
对于选项A: 可得,则,
联立方程,消去y得,
此时,
所以直线AB与双曲线没有交点,故A错误;
对于选项B:可得,则,
联立方程,消去y得,
此时,
所以直线AB与双曲线没有交点,故B错误;
对于选项C:可得,则
由双曲线方程可得,则为双曲线的渐近线,
所以直线AB与双曲线没有交点,故C错误;
对于选项D:,则,
联立方程,消去y得,
此时,故直线AB与双曲线有交两个交点,故D正确;
故选:D.
(2022·新高考Ⅰ,11多选题)已知O为坐标原点,点在抛物线上,过点的直线交C于P,Q两点,则( )
A.C的准线为 B.直线AB与C相切
C. D.
【答案】BCD
【解析】将点的代入抛物线方程得,所以抛物线方程为,故准线方程为,A错误;
,所以直线的方程为,
联立,可得,解得,故B正确;
设过的直线为,若直线与轴重合,则直线与抛物线只有一个交点,
所以,直线的斜率存在,设其方程为,,
联立,得,
所以,所以或,,
又,,
所以,故C正确;
因为,,
所以,而,故D正确.
故选:BCD
(2022·新高考Ⅱ,10多选题)已知O为坐标原点,过抛物线焦点F的直线与C交于A,B两点,其中A在第一象限,点,若,则( )
A. 直线的斜率为 B.
C. D.
【答案】ACD
【解析】对于A,易得,由可得点在的垂直平分线上,则点横坐标为,
代入抛物线可得,则,则直线的斜率为,A正确;
对于B,由斜率为可得直线的方程为,联立抛物线方程得,
设,则,则,代入抛物线得,解得,则,
则,B错误;
对于C,由抛物线定义知:,C正确;
对于D,,则为钝角,
又,则为钝角,
又,则,D正确.
故选:ACD.
(2022·全国甲卷,理10)椭圆的左顶点为A,点P,Q均在C上,且关于y轴对称.若直线的斜率之积为,则C的离心率为( )
A. B. C. D.
【答案】A
【解析】[方法一]:设而不求
设,则
则由得:,
由,得,
所以,即,
所以椭圆的离心率,故选A.
[方法二]:第三定义
设右端点为B,连接PB,由椭圆的对称性知:
故,
由椭圆第三定义得:,
故
所以椭圆的离心率,故选A.
(2022·全国甲卷,文11)已知椭圆的离心率为,分别为C的左、右顶点,B为C的上顶点.若,则C的方程为( )
A B. C. D.
【答案】B
【解析】因为离心率,解得,,
分别为C的左右顶点,则,
B为上顶点,所以.
所以,因为
所以,将代入,解得,
故椭圆的方程为.
故选:B.
(2022·全国乙卷,理5文6)设F为抛物线的焦点,点A在C上,点,若,则( )
A. 2 B. C. 3 D.
【答案】B
【解析】由题意得,,则,即点到准线的距离为2,所以点的横坐标为,不妨设点在轴上方,代入得,,所以.故选:B
(2022·全国乙卷,理11)双曲线C的两个焦点为,以C的实轴为直径的圆记为D,过作D的切线与C交于M,N两点,且,则C的离心率为( )
A. B. C. D.
【答案】AC
【解析】[方法一]:几何法,双曲线定义的应用
情况一
M、N在双曲线的同一支,依题意不妨设双曲线焦点在轴,设过作圆的切线切点为B,
所以,因为,所以在双曲线的左支,
,, ,设,由即,则,
选A
情况二
若M、N在双曲线的两支,因为,所以在双曲线的右支,
所以,, ,设,
由,即,则,
所以,即,
所以双曲线的离心率
选C
[方法二]:答案回代法
特值双曲线
,
过且与圆相切的一条直线为,
两交点都在左支,,
,
则,
特值双曲线,
过且与圆相切的一条直线为,
两交点在左右两支,在右支,,
,
则,
[方法三]:
依题意不妨设双曲线焦点在轴,设过作圆的切线切点为,
若分别在左右支,
因为,且,所以在双曲线的右支,
又,,,
设,,
在中,有,
故即,
所以,
而,,,故,
代入整理得到,即,
所以双曲线的离心率
若均在左支上,
同理有,其中为钝角,故,
故即,
代入,,,整理得到:,
故,故,
故选:AC.
(2021·新高考Ⅰ,5) 已知,是椭圆:的两个焦点,点在上,则的最大值为( )
A. 13 B. 12 C. 9 D. 6
【答案】C
【解析】由题,,则,所以(当且仅当时,等号成立).故选:C.
(2021·新高考Ⅰ,11)已知点在圆上,点、,则( )
A. 点到直线的距离小于 B. 点到直线的距离大于
C. 当最小时, D. 当最大时,
【答案】ACD
【解析】圆的圆心为,半径为,
直线的方程为,即,
圆心到直线的距离为,
所以,点到直线的距离的最小值为,最大值为,A选项正确,B选项错误;
如下图所示:
当最大或最小时,与圆相切,连接、,可知,
,,由勾股定理可得,CD选项正确.
故选:ACD.
(2021·新高考Ⅱ,3)抛物线的焦点到直线的距离为,则( )
A. 1 B. 2 C. D. 4
【答案】B
【解析】抛物线的焦点坐标为,其到直线的距离:,解得:(舍去),故选:B.
(2021·新高考Ⅱ,11)已知直线与圆,点,则下列说法正确的是( )
A. 若点A在圆C上,则直线l与圆C相切 B. 若点A在圆C内,则直线l与圆C相离
C. 若点A在圆C外,则直线l与圆C相离 D. 若点A在直线l上,则直线l与圆C相切
【答案】ABD
【解析】圆心到直线l的距离,
若点在圆C上,则,所以,
则直线l与圆C相切,故A正确;
若点在圆C内,则,所以,
则直线l与圆C相离,故B正确;
若点在圆C外,则,所以,
则直线l与圆C相交,故C错误;
若点在直线l上,则即,
所以,直线l与圆C相切,故D正确.
故选:ABD.
(2021·全国甲卷,理5)已知是双曲线C的两个焦点,P为C上一点,且,则C的离心率为( )
A. B. C. D.
【答案】A
【解析】因为,由双曲线的定义可得,所以,;
因为,由余弦定理可得,整理可得,所以,即. 故选:A
(2021·全国甲卷,文5)点到双曲线的一条渐近线的距离为( )
A. B. C. D.
【答案】A
【解析】由题意可知,双曲线的渐近线方程为:,即,结合对称性,不妨考虑点到直线的距离:.故选:A.
(2021·全国乙卷,文11)设B是椭圆的上顶点,点P在C上,则的最大值为( )
A. B. C. D. 2
【答案】A
【解析】
【分析】设点,由依题意可知,,,再根据两点间的距离公式得到,然后消元,即可利用二次函数的性质求出最大值.
【详解】设点,因为,,所以
,
而,所以当时,的最大值为.
故选:A.
(2021·全国乙卷,理11)设是椭圆的上顶点,若上的任意一点都满足,则的离心率的取值范围是( )
A. B. C. D.
【答案】C
【解析】设,由,因为,,所以
,
因,当,即时,,即,符合题意,由可得,即;
当,即时,,即,化简得,,显然该不等式不成立.
故选:C.
(2020·新高考Ⅰ,9)(多选题)已知曲线( )
A.若m>n>0,则C是椭圆,其焦点在y轴上
B.若m=n>0,则C是圆,其半径为
C.若mn<0,则C是双曲线,其渐近线方程为
D.若m=0,n>0,则C是两条直线
【答案】ACD 【解析】对于A,若,则可化为,
因为,所以,即曲线表示焦点在轴上的椭圆,故A正确;
对于B,若,则可化为,此时曲线表示圆心在原点,半径为的圆,故B不正确;
对于C,若,则可化为,此时曲线表示双曲线,由可得,故C正确;
对于D,若,则可化为,,此时曲线表示平行于轴的两条直线,故D正确; 故选:ACD.
(2020·全国卷Ⅰ,理4)已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=( )
A.2 B.3 C.6 D.9
【答案】C【解析】设抛物线的焦点为F,由抛物线的定义知,即,解得.
(2020·全国卷Ⅰ,理11)已知⊙M:,直线:,为上的动点,过点作⊙M的切线,切点为,当最小时,直线的方程为( )
A. B. C. D.
【答案】D【解析】圆的方程可化为,点到直线的距离为,所以直线与圆相离.
依圆的知识可知,四点四点共圆,且,所以,而,
当直线时,,,此时最小.
∴即,由解得,.
所以以为直径的圆的方程为,即,
两圆的方程相减可得:,即为直线的方程.
(2020·全国卷Ⅰ,文6)已知圆,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( )
A.1 B.2 C.3 D.4
【答案】B
【解析】圆化为,所以圆心坐标为,半径为,
设,当过点的直线和直线垂直时,圆心到过点的直线的距离最大,所求的弦长最短,
根据弦长公式最小值为.
(2020·全国卷Ⅰ,文11)设是双曲线的两个焦点,为坐标原点,点在上且,则的面积为( )
A. B.3 C. D.2
【答案】B
【解析】由已知,不妨设,则,因为,
所以点在以为直径的圆上,即是以P为直角顶点的直角三角形,
故,即,又,
所以,
解得,所以
(2020·全国卷Ⅱ,理5文8)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线的距离为( )
A. B. C. D.
【答案】B
【解析】由于圆上的点在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必第一象限,设圆心的坐标为,则圆的半径为,圆的标准方程为.
由题意可得,可得,解得或,所以圆心的坐标为或,圆心到直线距离均为;所以,圆心到直线的距离为.故选:B.
(2020·全国卷Ⅱ,理8文9)设为坐标原点,直线与双曲线的两条渐近线分别交于两点,若的面积为8,则的焦距的最小值为( )
A.4 B.8 C.16 D.32
【答案】B 【解析】,双曲线的渐近线方程是,
直线与双曲线的两条渐近线分别交于,两点,
不妨设为在第一象限,在第四象限,
联立,解得,故;联立,解得,故
,
面积为:,
双曲线,其焦距为
当且仅当取等号,的焦距的最小值:
(2020·全国卷Ⅲ,理5文7)设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于D,E两点,若OD⊥OE,则C的焦点坐标为( )
A.(,0) B.(,0) C.(1,0) D.(2,0)
【答案】B
【解析】因为直线与抛物线交于两点,且,
根据抛物线的对称性可以确定,所以,
代入抛物线方程,求得,所以其焦点坐标为,
(2020·全国卷Ⅲ,理11)设双曲线C:(a>0,b>0)的左、右焦点分别为F1,F2,离心率为.P是C上一点,且F1P⊥F2P.若△PF1F2的面积为4,则a=( )
A.1 B.2 C.4 D.8
【答案】A
【解析】,,根据双曲线的定义可得,
,即,
,,
,即,解得,
故选:A.
(2020·全国卷Ⅲ,文6)在平面内,A,B是两个定点,C是动点,若,则点C的轨迹为( )
A.圆 B.椭圆 C.抛物线 D.直线
【答案】A
【解析】设,以AB中点为坐标原点建立如图所示的平面直角坐标系,
则:,设,可得:,
从而:,结合题意可得:,
整理可得:,即点C的轨迹是以AB中点为圆心,为半径的圆.
(2020·全国卷Ⅲ,文8)点(0,﹣1)到直线距离的最大值为( )
A.1 B. C. D.2
【答案】B 【解析】由可知直线过定点,设,当直线与垂直时,点到直线距离最大,即为.
二、填空题
(2024·新高考Ⅰ,12)设双曲线的左右焦点分别为,过作平行于轴的直线交C于A,B两点,若,则C的离心率为___________.
【答案】
【解析】由题可知三点横坐标相等,设在第一象限,将代入
得,即,故,,
又,得,解得,代入得,
故,即,所以.
故答案为:
(2023·新高考Ⅰ,16)已知双曲线的左、右焦点分别为.点在上,点在轴上,,则的离心率为________.
【答案】
【解析】方法一:依题意,设,则,
在中,,则,故或(舍去),
所以,,则,
故,
所以在中,,整理得,
故.
方法二:依题意,得,令,
因为,所以,则,
又,所以,则,
又点在上,则,整理得,则,
所以,即,
整理得,则,解得或,
又,所以或(舍去),故.
故答案为:.
(2023·新高考Ⅱ,15)已知直线与交于A,B两点,写出满足“面积为”的m的一个值______.
【答案】(中任意一个皆可以)
【解析】设点到直线的距离为,由弦长公式得,
所以,解得:或,
由,所以或,解得:或.
故答案为:(中任意一个皆可以).
(2023·全国乙卷,理13)已知点在抛物线C:上,则A到C的准线的距离为______.
【答案】
【解析】由题意可得:,则,抛物线的方程为,
准线方程为,点到的准线的距离为.
(2023·全国乙卷,文13)已知点在抛物线C:上,则A到C的准线的距离为______.
【答案】
【解析】由题意可得:,则,抛物线的方程为,
准线方程为,点到的准线的距离为.
故答案为:.
(2022·新高考Ⅰ,14)写出与圆和都相切的一条直线的方程___________.
【答案】或或
【解析】[方法一]:显然直线的斜率不为0,不妨设直线方程为,
于是,
故①,于是或,
再结合①解得或或,
所以直线方程有三条,分别为,,
填一条即可
[方法二]:设圆的圆心,半径为,圆的圆心,半径,则,因此两圆外切,
由图像可知,共有三条直线符合条件,显然符合题意;
又由方程和相减可得方程,
即为过两圆公共切点的切线方程,
又易知两圆圆心所在直线OC的方程为,
直线OC与直线的交点为,
设过该点的直线为,则,解得,
从而该切线的方程为填一条即可
[方法三]:圆的圆心为,半径为,圆的圆心为,半径为,两圆圆心距为,等于两圆半径之和,故两圆外切,如图,
当切线为l时,因为,所以,设方程为
O到l的距离,解得,所以l的方程为,
当切线为m时,设直线方程为,其中,,
由题意,解得,
当切线为n时,易知切线方程为,
故答案为:或或.
(2022·新高考Ⅰ,16)已知椭圆,C的上顶点为A,两个焦点为,,离心率为.过且垂直于的直线与C交于D,E两点,,则的周长是________________.
【答案】13
【解析】∵椭圆的离心率为,∴,∴,∴椭圆的方程为,不妨设左焦点为,右焦点为,如图所示,∵,∴,∴为正三角形,∵过且垂直于的直线与C交于D,E两点,为线段的垂直平分线,∴直线的斜率为,斜率倒数为, 直线的方程:,代入椭圆方程,整理化简得到:,
判别式,
∴,
∴ , 得,
∵为线段的垂直平分线,根据对称性,,∴的周长等于的周长,利用椭圆的定义得到周长为.
故答案为:13.
(2022·新高考Ⅱ,15)设点,若直线关于对称的直线与圆有公共点,则a的取值范围是________.
【答案】
【解析】
【分析】首先求出点关于对称点的坐标,即可得到直线的方程,根据圆心到直线的距离小于等于半径得到不等式,解得即可;
【详解】解:关于对称的点的坐标为,在直线上,
所以所在直线即为直线,所以直线为,即;
圆,圆心,半径,
依题意圆心到直线的距离,
即,解得,即;
故答案为:
(2022·新高考Ⅱ,16)已知直线l与椭圆在第一象限交于A,B两点,l与x轴,y轴分别交于M,N两点,且,则l的方程为___________.
【答案】
【解析】[方法一]:弦中点问题:点差法:令的中点为,因为,所以,
设,,则,,
所以,即
所以,即,设直线,,,
令得,令得,即,,所以,
即,解得或(舍去),
又,即,解得或(舍去),
所以直线,即;
故答案为:
[方法二]:直线与圆锥曲线相交的常规方法:由题意知,点既为线段的中点又是线段MN的中点,
设,,设直线,,,
则,,,因为,所以
联立直线AB与椭圆方程得消掉y得
其中,
∴AB中点E的横坐标,又,∴
∵,,∴,又,解得m=2
所以直线,即.
(2022·全国甲卷,理14)若双曲线的渐近线与圆相切,则_________.
【答案】
【解析】双曲线的渐近线为,即,
不妨取,圆,即,所以圆心为,半径,
依题意圆心到渐近线的距离,
解得或(舍去).
故答案为:.
(2022·全国甲卷,文14)设点M在直线上,点和均在上,则的方程为______________.
【答案】
【解析】[方法一]:三点共圆
∵点M在直线上,
∴设点M为,又因为点和均在上,
∴点M到两点的距离相等且为半径R,
∴,
,解得,
∴,,
的方程为.
故答案为:
[方法二]:圆的几何性质
由题可知,M是以(3,0)和(0,1)为端点的线段垂直平分线 y=3x-4与直线的交点(1,-1)., 的方程为.
故答案为:
(2022·全国甲卷,文15)记双曲线的离心率为e,写出满足条件“直线与C无公共点”的e的一个值______________.
【答案】2(满足皆可)
【解析】,所以C的渐近线方程为,
结合渐近线的特点,只需,即,
可满足条件“直线与C无公共点”
所以,
又因为,所以,
故答案为:2(满足皆可)
(2022·全国乙卷,理14文15)过四点中的三点的一个圆的方程为____________.
【答案】或或或.
【解析】[方法一]:圆的一般方程:依题意设圆的方程为,
(1)若过,,,则,解得,
所以圆的方程为,即;
(2)若过,,,则,解得,
所以圆的方程为,即;
(3)若过,,,则,解得,
所以圆的方程为,即;
(4)若过,,,则,解得,所以圆的方程为,即;
故答案为:或 或 或.
[方法二]:【最优解】圆的标准方程(三点中的两条中垂线的交点为圆心)
设
(1)若圆过三点,圆心在直线,设圆心坐标为,
则,所以圆的方程为;
(2)若圆过三点, 设圆心坐标为,则,所以圆的方程为;
(3)若圆过 三点,则线段的中垂线方程为,线段 的中垂线方程 为,联立得 ,所以圆的方程为;
(4)若圆过三点,则线段的中垂线方程为, 线段中垂线方程为 ,联立得,所以圆的方程为.
故答案为:或 或 或.
【整体点评】方法一;利用圆过三个点,设圆的一般方程,解三元一次方程组,思想简单,运算稍繁;
方法二;利用圆的几何性质,先求出圆心再求半径,运算稍简洁,是该题的最优解.
(2021·新高考Ⅰ,14)已知为坐标原点,抛物线:()的焦点为,为上一点,与轴垂直,为轴上一点,且,若,则的准线方程为______.
【解析】不妨设,因为,所以的准线方程为.
(2021·新高考Ⅱ,13)已知双曲线的离心率为2,则该双曲线的渐近线方程为________
【答案】
【解析】因为双曲线的离心率为2,所以,所以,
所以该双曲线的渐近线方程为.
(2021·全国甲卷,理15文16)已知为椭圆C:两个焦点,P,Q为C上关于坐标原点对称的两点,且,则四边形的面积为________.
【答案】
【解析】因为为上关于坐标原点对称的两点,且,所以四边形为矩形,
设,则,所以,
,即四边形面积等于.
(2021·全国乙卷,理13) 已知双曲线的一条渐近线为,则C的焦距为_________.
【答案】4
【解析】
【分析】将渐近线方程化成斜截式,得出的关系,再结合双曲线中对应关系,联立求解,再由关系式求得,即可求解
【详解】由渐近线方程化简得,即,同时平方得,又双曲线中,故,解得(舍去),,故焦距
故答案为:4
【点睛】本题为基础题,考查由渐近线求解双曲线中参数,焦距,正确计算并联立关系式求解是关键
(2021·全国乙卷,文14)双曲线的右焦点到直线的距离为________.
【答案】
【解析】
【分析】先求出右焦点坐标,再利用点到直线的距离公式求解.
【详解】由已知,,所以双曲线的右焦点为,
所以右焦点到直线的距离为.
故答案为:
(2020·新高考Ⅰ,13)斜率为的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则=________.
【答案】 【解析】
代入抛物线方程得.
【点睛】本题考查抛物线焦点弦长,考查基本分析求解能力,属基础题.
(2020·全国卷Ⅰ,理15)已知F为双曲线的右焦点,A为C的右顶点,B为C上的点,且BF垂直于x轴.若AB的斜率为3,则C的离心率为______________.
【答案】2 【解析】依题可得,,而,,即,变形得,化简可得,,解得或(舍去).
(2020·全国卷Ⅲ,文14)设双曲线C: (a>0,b>0)的一条渐近线为y=x,则C的离心率为_____.
【答案】 【解析】由双曲线方程可得其焦点在轴上,因为其一条渐近线为,
所以,.
三、解答题
(2025·全国一卷,18)设椭圆的离心率为,下顶点为A,右顶点为B,.
(1)求椭圆C的标准方程;
(2)已知动点P不在y轴上,点R在射线AP上,且满足.
(i)设,求点的坐标(用m,n表示);
(ⅱ)设O为坐标原点,是椭圆上的动点,直线OR的斜率为直线的斜率的3倍,求的最大值.
【答案】(1)
(2)(ⅰ) (ⅱ)
【解析】(1)由题可知,,所以,解得,
故椭圆C的标准方程为;
(2)(ⅰ)设,易知,
法一:所以,故,且.
因为,,所以,
即,解得,所以,
所以点的坐标为.
法二:设,则,所以
,,故
点的坐标为.
(ⅱ)因为,,由,可得
,化简得,即,
所以点在以为圆心,为半径的圆上(除去两个点),为到圆心的距离加上半径,
法一:设,所以
,当且仅当时取等号,
所以.
法二:设,则,
,当且仅当时取等号, 故.
(2025·全国二卷,16)已知椭圆的离心率为,长轴长为4.
(1)求C的方程;
(2)过点的直线l与C交于两点,为坐标原点,若的面积为,求.
【答案】(1)
(2)
【解析】(1)因为长轴长为4,故,而离心率为,故,
故,故椭圆方程为:.
(2)
由题设直线的斜率不为0,故设直线,,
由可得,
故即,且,
故, 解得,
故.
(2024·新高考Ⅰ,16)已知和为椭圆上两点.
(1)求C的离心率;
(2)若过P的直线交C于另一点B,且的面积为9,求的方程.
【解析】(1)由题意得,解得,所以.
(2)法一:,则直线的方程为,即,
,由(1)知,
设点到直线的距离为,则,
则将直线沿着与垂直的方向平移单位即可,
此时该平行线与椭圆的交点即为点,
设该平行线的方程为:,
则,解得或,
当时,联立,解得或,
即或,
当时,此时,直线的方程为,即,
当时,此时,直线的方程为,即,
当时,联立得,
,此时该直线与椭圆无交点.
综上直线的方程为或.
法二:同法一得到直线的方程为,
点到直线的距离,
设,则,解得或,
即或,以下同法一.
法三:同法一得到直线的方程为,
点到直线的距离,
设,其中,则有,
联立,解得或,
即或,以下同法一;
法四:当直线的斜率不存在时,此时,
,符合题意,此时,直线的方程为,即,
当线的斜率存在时,设直线的方程为,
联立椭圆方程有,则,其中,即,
解得或,,,
令,则,则
同法一得到直线的方程为,
点到直线的距离,
则,解得,
此时,则得到此时,直线的方程为,即,
综上直线的方程为或.
法五:当的斜率不存在时,到距离,
此时不满足条件.
当的斜率存在时,设,令,
,消可得,
,且,即,
,
到直线距离,
或,均满足题意,或,即或.
法六:当的斜率不存在时,到距离,
此时不满足条件.
当直线斜率存在时,设,
设与轴的交点为,令,则,
联立,则有,
,
其中,且,
则,
则,解的或,经代入判别式验证均满足题意.
则直线为或,即或.
(2024·新高考Ⅱ,19)已知双曲线,点在上,为常数,.按照如下方式依次构造点,过作斜率为的直线与的左支交于点,令为关于轴的对称点,记的坐标为.
(1)若,求;
(2)证明:数列是公比为的等比数列;
(3)设为的面积,证明:对任意的正整数,.
【解析】(1)
由已知有,故的方程为.
当时,过且斜率为的直线为,与联立得到.
解得或,所以该直线与的不同于的交点为,该点显然在的左支上.
故,从而,.
(2)由于过且斜率为的直线为,与联立,得到方程.
展开即得,由于已经是直线和的公共点,故方程必有一根.
从而根据韦达定理,另一根,相应的.
所以该直线与的不同于的交点为,而注意到的横坐标亦可通过韦达定理表示为,故一定在的左支上.
所以.
这就得到,.
所以
.
再由,就知道,所以数列是公比为的等比数列.
(3)方法一:先证明一个结论:对平面上三个点,若,,则.(若在同一条直线上,约定)
证明:
.
证毕,回到原题.
由于上一小问已经得到,,
故.
再由,就知道,所以数列是公比为的等比数列.
所以对任意的正整数,都有
.
而又有,,
故利用前面已经证明的结论即得
.
这就表明的取值是与无关的定值,所以.
方法二:由于上一小问已经得到,,
故.
再由,就知道,所以数列是公比为的等比数列.
所以对任意的正整数,都有
.
这就得到,
以及.
两式相减,即得.
移项得到.
故.
而,.
所以和平行,这就得到,即.
(2024·全国甲,理20文21)设椭圆的右焦点为,点在上,且轴.
(1)求的方程;
(2)过点的直线与交于两点,为线段的中点,直线交直线于点,证明:轴.
【解析】(1)设,由题设有且,故,故,故,
故椭圆方程为.
(2)直线的斜率必定存在,设,,,
由可得,
故,故,
又,
而,故直线,故,
所以
,
故,即轴.
(2023·新高考Ⅰ,22)在直角坐标系中,点到轴的距离等于点到点的距离,记动点的轨迹为.
(1)求的方程;
(2)已知矩形有三个顶点在上,证明:矩形的周长大于.
【解析】(1)设,则,两边同平方化简得,
故.
(2)法一:设矩形的三个顶点在上,且,易知矩形四条边所在直线的斜率均存在,且不为0,
则,令,
同理令,且,则,
设矩形周长为,由对称性不妨设,,
则.,易知
则令,
令,解得,
当时,,此时单调递减,
当,,此时单调递增,
则,
故,即.
当时,,且,即时等号成立,矛盾,故,
得证.
法二:不妨设在上,且,
依题意可设,易知直线,的斜率均存在且不为0,
则设,的斜率分别为和,由对称性,不妨设,
直线的方程为,
则联立得,
,则
则,
同理,
令,则,设,
则,令,解得,
当时,,此时单调递减,
当,,此时单调递增,
则,
,
但,此处取等条件为,与最终取等时不一致,故.
法三:为了计算方便,我们将抛物线向下移动个单位得抛物线,
矩形变换为矩形,则问题等价于矩形的周长大于.
设 , 根据对称性不妨设 .
则 , 由于 , 则 .
由于 , 且 介于 之间,
则 . 令 ,
,则,从而
故
①当时,
②当 时,由于,从而,
从而又,
故,由此
,
当且仅当时等号成立,故,故矩形周长大于.
.
(2023·新高考Ⅱ,21)已知双曲线C的中心为坐标原点,左焦点为,离心率为.
(1)求C的方程;
(2)记C的左、右顶点分别为,,过点的直线与C的左支交于M,N两点,M在第二象限,直线与交于点P.证明:点在定直线上.
【解析】(1)设双曲线方程为,由焦点坐标可知,
则由可得,,
双曲线方程为.
(2)由(1)可得,设,
显然直线的斜率不为0,所以设直线的方程为,且,
与联立可得,且,
则,
直线的方程为,直线的方程为,
联立直线与直线的方程可得:
,
由可得,即,
(2023·全国甲卷,理20文21)已知直线与抛物线交于两点,且.
(1)求;
(2)设F为C的焦点,M,N为C上两点,,求面积的最小值.
【答案】(1) (2)
【解析】(1)设,由可得,,所以,
所以,
即,因为,解得:.
(2)因为,显然直线的斜率不可能为零,
设直线:,,
由可得,,所以,,
,
因为,所以,
即,
亦即,
将代入得,
,,
所以,且,解得或.
设点到直线的距离为,所以,
,
所以的面积,
而或,所以,
当时,的面积.
(2023·全国乙卷,理20文21)已知椭圆的离心率是,点在上.
(1)求的方程;
(2)过点的直线交于两点,直线与轴的交点分别为,证明:线段的中点为定点.
【解析】(1)由题意可得,解得,所以椭圆方程为.
(2)由题意可知:直线的斜率存在,设,
联立方程,消去y得:,
则,解得,
可得,
因为,则直线,
令,解得,即,同理可得,
则
,
所以线段的中点是定点.
(2022·新高考Ⅰ,21)已知点在双曲线上,直线l交C于P,Q两点,直线的斜率之和为0.
(1)求l的斜率;(2)若,求的面积.
【解析】(1)因为点在双曲线上,所以,解得,即双曲线.
易知直线l的斜率存在,设,,
联立可得,,
所以,,且.
所以由可得,,
即,
即,
所以,
化简得,,即,
所以或,
当时,直线过点,与题意不符,舍去,
故.
(2)[方法一]:【最优解】常规转化:不妨设直线的倾斜角为,因为,所以,由(1)知,,
当均在双曲线左支时,,所以,
即,解得(负值舍去)
此时PA与双曲线的渐近线平行,与双曲线左支无交点,舍去;
当均在双曲线右支时,
因为,所以,即,
即,解得(负值舍去),
于是,直线,直线,
联立可得,,
因为方程有一个根为,所以,,
同理可得,,.
所以,,点到直线的距离,
故的面积为.
[方法二]: 设直线AP的倾斜角为,,由,得,
由,得,即,
联立,及得,,
同理,,,故,
而,,
由,得,
故
【整体点评】(2)法一:由第一问结论利用倾斜角的关系可求出直线的斜率,从而联立求出点坐标,进而求出三角形面积,思路清晰直接,是该题的通性通法,也是最优解;
法二:前面解答与法一求解点坐标过程形式有所区别,最终目的一样,主要区别在于三角形面积公式的选择不一样.
(2022·新高考Ⅱ,21)已知双曲线的右焦点为,渐近线方程为.
(1)求C的方程;
(2)过F的直线与C的两条渐近线分别交于A,B两点,点在C上,且.过P且斜率为的直线与过Q且斜率为的直线交于点M.从下面①②③中选取两个作为条件,证明另外一个成立:
①M在上;②;③.
注:若选择不同的组合分别解答,则按第一个解答计分.
【解析】(1)右焦点为,∴,∵渐近线方程为,∴,∴,∴,∴,∴.
∴C的方程为:;
(2)由已知得直线的斜率存在且不为零,直线的斜率不为零,
若选由①②推③或选由②③推①:由②成立可知直线的斜率存在且不为零;
若选①③推②,则为线段的中点,假若直线的斜率不存在,则由双曲线的对称性可知在轴上,即为焦点,此时由对称性可知、关于轴对称,与从而,已知不符;
总之,直线的斜率存在且不为零.
设直线的斜率为,直线方程为,
则条件①在上,等价于;
两渐近线的方程合并为,
联立消去y并化简整理得:
设,线段中点为,则,
设,
则条件③等价于,
移项并利用平方差公式整理得:
,
,即,
即;
由题意知直线的斜率为, 直线的斜率为,
∴由,
∴,
所以直线的斜率,
直线,即,
代入双曲线的方程,即中,
得:,
解得的横坐标:,
同理:,
∴
∴,
∴条件②等价于,
综上所述:
条件①在上,等价于;
条件②等价于;
条件③等价于;
选①②推③:
由①②解得:,∴③成立;
选①③推②:
由①③解得:,,
∴,∴②成立;
选②③推①:
由②③解得:,,∴,
∴,∴①成立.
(2022·全国甲卷,理20文21)设抛物线的焦点为F,点,过F的直线交C于M,N两点.当直线MD垂直于x轴时,.
(1)求C的方程;
(2)设直线与C的另一个交点分别为A,B,记直线的倾斜角分别为.当取得最大值时,求直线AB的方程.
【解析】(1)抛物线的准线为,当与x轴垂直时,点M的横坐标为p,
此时,所以,
所以抛物线C的方程为;
(2)[方法一]:【最优解】直线方程横截式
设,直线,
由可得,,
由斜率公式可得,,
直线,代入抛物线方程可得,
,所以,同理可得,
所以
又因为直线MN、AB的倾斜角分别为,所以,
若要使最大,则,设,则,
当且仅当即时,等号成立,
所以当最大时,,设直线,
代入抛物线方程可得,
,所以,
所以直线.
[方法二]:直线方程点斜式
由题可知,直线MN的斜率存在.
设直线
由 得:,,同理,.
直线MD:,代入抛物线方程可得:,同理,.
代入抛物线方程可得:,所以,同理可得,
由斜率公式可得:
(下同方法一)若要使最大,则,
设,则,
当且仅当即时,等号成立,
所以当最大时,,设直线,
代入抛物线方程可得,,所以,所以直线.
[方法三]:三点共线
设,
设,若 P、M、N三点共线,由
所以,化简得,
反之,若,可得MN过定点
因此,由M、N、F三点共线,得,
由M、D、A三点共线,得,
由N、D、B三点共线,得,
则,AB过定点(4,0)
(下同方法一)若要使最大,则,
设,则,
当且仅当即时,等号成立,
所以当最大时,,所以直线.
【整体点评】(2)法一:利用直线方程横截式,简化了联立方程的运算,通过寻找直线的斜率关系,由基本不等式即可求出直线AB的斜率,再根据韦达定理求出直线方程,是该题的最优解,也是通性通法;
法二:常规设直线方程点斜式,解题过程同解法一;
法三:通过设点由三点共线寻找纵坐标关系,快速找到直线过定点,省去联立过程,也不失为一种简化运算的好方法.
(2022·全国乙卷,理20文21)已知椭圆E的中心为坐标原点,对称轴为x轴、y轴,且过两点.
(1)求E的方程;
(2)设过点的直线交E于M,N两点,过M且平行于x轴的直线与线段AB交于点T,点H满足.证明:直线HN过定点.
【解析】(1)设椭圆E的方程为,过,
则,解得,,
所以椭圆E的方程为:.
(2),所以,
①若过点的直线斜率不存在,直线.代入,
可得,,代入AB方程,可得
,由得到.求得HN方程:
,过点.
②若过点直线斜率存在,设.
联立得,
可得,,
且
联立可得
可求得此时,
将,代入整理得,
将代入,得
显然成立,
综上,可得直线HN过定点
【点睛】求定点、定值问题常见的方法有两种:
①从特殊入手,求出定值,再证明这个值与变量无关;
②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.
(2021·新高考Ⅰ,21)在平面直角坐标系中,已知点、,点的轨迹为.
(1)求的方程;
(2)设点在直线上,过的两条直线分别交于、两点和,两点,且,求直线的斜率与直线的斜率之和.
【解析】因为,
所以,轨迹是以点、为左、右焦点的双曲线的右支,
设轨迹的方程为,则,可得,,
所以,轨迹的方程为;
(2)设点,若过点的直线的斜率不存在,此时该直线与曲线无公共点,
不妨直线的方程为,即,
联立,消去并整理可得,
设点、,则且.
由韦达定理可得,,
所以,,
设直线的斜率为,同理可得,
因为,即,整理可得,
即,显然,故.
因此,直线与直线的斜率之和为.
(2021·新高考Ⅱ,20)已知椭圆C的方程为,右焦点为,且离心率为.
(1)求椭圆C的方程;
(2)设M,N是椭圆C上的两点,直线与曲线相切.证明:M,N,F三点共线的充要条件是.
【解析】(1)由题意,椭圆半焦距且,所以,
又,所以椭圆方程为;
(2)由(1)得,曲线为,
当直线的斜率不存在时,直线,不合题意;
当直线的斜率存在时,设,
必要性:
若M,N,F三点共线,可设直线即,
由直线与曲线相切可得,解得,
联立可得,所以,
所以,
所以必要性成立;
充分性:设直线即,
由直线与曲线相切可得,所以,
联立可得,
所以,
所以
,
化简得,所以,
所以或,所以直线或,
所以直线过点,M,N,F三点共线,充分性成立;
所以M,N,F三点共线的充要条件是.
(2021·全国甲卷,理20文21) 抛物线C的顶点为坐标原点O.焦点在x轴上,直线l:交C于P,Q两点,且.已知点,且与l相切.
(1)求C,的方程;
(2)设是C上的三个点,直线,均与相切.判断直线与的位置关系,并说明理由.
【解析】(1)依题意设抛物线,
,
所以抛物线的方程为,
与相切,所以半径为,
所以的方程为;
(2)设
若斜率不存在,则方程为或,
若方程为,根据对称性不妨设,
则过与圆相切的另一条直线方程为,
此时该直线与抛物线只有一个交点,即不存在,不合题意;
若方程为,根据对称性不妨设
则过与圆相切的直线为,
又,
,此时直线关于轴对称,
所以直线与圆相切;
若直线斜率均存在,
则,
所以直线方程为,
整理得,
同理直线的方程为,
直线的方程为,
与圆相切,
整理得,
与圆相切,同理
所以为方程的两根,
,
到直线的距离为:,
所以直线与圆相切;
综上若直线与圆相切,则直线与圆相切.
(2021·全国乙卷,理21) 已知抛物线的焦点为,且与圆上点的距离的最小值为.
(1)求;
(2)若点在上,是的两条切线,是切点,求面积的最大值.
【答案】(1);(2).
【解析】
【分析】(1)根据圆几何性质可得出关于的等式,即可解出的值;
(2)设点、、,利用导数求出直线、,进一步可求得直线的方程,将直线的方程与抛物线的方程联立,求出以及点到直线的距离,利用三角形的面积公式结合二次函数的基本性质可求得面积的最大值.
【详解】(1)抛物线的焦点为,,
所以,与圆上点的距离的最小值为,解得;
(2)抛物线的方程为,即,对该函数求导得,
设点、、,
直线的方程为,即,即,
同理可知,直线的方程为,
由于点为这两条直线的公共点,则,
所以,点、的坐标满足方程,
所以,直线的方程为,
联立,可得,
由韦达定理可得,,
所以,,
点到直线的距离为,
所以,,
,
由已知可得,所以,当时,的面积取最大值.
(2021·全国乙卷,文20)已知抛物线的焦点F到准线的距离为2.
(1)求C的方程;
(2)已知O为坐标原点,点P在C上,点Q满足,求直线斜率的最大值.
【答案】(1);(2)最大值为.
【解析】
【分析】(1)由抛物线焦点与准线的距离即可得解;
(2)设,由平面向量的知识可得,进而可得,再由斜率公式及基本不等式即可得解.
【详解】(1)抛物线的焦点,准线方程为,
由题意,该抛物线焦点到准线的距离为,
所以该抛物线的方程为;
(2)设,则,
所以,
由在抛物线上可得,即,
所以直线的斜率,
当时,;
当时,,
当时,因为,
此时,当且仅当,即时,等号成立;
当时,;
综上,直线的斜率的最大值为.
【点睛】关键点点睛:解决本题的关键是利用平面向量的知识求得点坐标的关系,在求斜率的最值时要注意对取值范围的讨论.
(2020·新高考Ⅰ,22)已知椭圆C:的离心率为,且过点A(2,1).
(1)求C的方程:(2)点M,N在C上,且AM⊥AN,AD⊥MN,D为垂足.证明:存在定点Q,使得|DQ|为定值.
【解析】(1)设椭圆方程为:,由题意可得:,
解得:,故椭圆方程为:.
(2)设点.因为AM⊥AN,所以.
整理可得: ①
设MN的方程为y=kx+m,联立直线与椭圆方程可得:,
韦达定理可得:,
,,
代入①式有:,
化简可得:,即,据此可得:或,所以直线MN的方程为或,
即或,
所以直线过定点或.
又因为和A点重合,所以舍去,则直线过定点.
由于AE为定值,且△AED为直角三角形,AE为斜边,
所以AE中点Q满足为定值(AE长度的一半).
由于,故由中点坐标公式可得.
(2020·新高考Ⅱ,21)已知椭圆C:+=1(a>b>0)过点M(2,3),点A为其左顶点,且AM的斜率为.
(1)求C的方程;(2)点N为椭圆上任意一点,求△AMN的面积的最大值.
【解答】解:(1)由题意可知直线AM的方程为:y﹣3=(x﹣2),即x﹣2y=﹣4,
当y=0时,解得x=﹣4,所以a=4,椭圆C:+=l(a>b>0)过点M(2,3),
可得,解得b2=12,所以C的方程:+=l.
(2)设与直线AM平行的直线方程为:x﹣2y=m,当直线与椭圆相切时,与AM距离比较远的直线与椭圆的切点为N,此时△AMN的面积取得最大值.
x﹣2y=m代入椭圆方程:+=l.
化简可得:16y2+12my+3m2﹣48=0,所以△=144m2﹣4×16(3m2﹣48)=0,
即m2=64,解得m=±8,
与AM距离比较远的直线方程:x﹣2y=8,
利用平行线之间的距离为:d==,
|AM|==3.
所以△AMN的面积的最大值:.
(2020·全国卷Ⅰ,理20)已知A、B分别为椭圆E:(a>1)的左、右顶点,G为E的上顶点,,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D.
(1)求E的方程;(2)证明:直线CD过定点.
【解析】(1)依据题意作出如下图象:
由椭圆方程可得:, ,
,,,
椭圆方程为:.
(2)证明:设,则直线的方程为:,即:
联立直线的方程与椭圆方程可得:,整理得:
,解得:或
将代入直线可得:
所以点的坐标为.
同理可得:点的坐标为
直线的方程为:,
整理可得:
整理得:
故直线过定点.
(2020·全国卷Ⅰ,文21)已知A、B分别为椭圆E:(a>1)的左、右顶点,G为E的上顶点,,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D.
(1)求E的方程;
(2)证明:直线CD过定点.
【解析】(1)依据题意作出如下图象:
由椭圆方程可得:, ,
,
,
椭圆方程为:
(2)证明:设,
则直线的方程为:,即:
联立直线的方程与椭圆方程可得:,整理得:
,解得:或
将代入直线可得:
所以点的坐标为.
同理可得:点的坐标为
直线的方程为:,
整理可得:
整理得:
故直线过定点.
(2020·全国卷Ⅱ,理19)已知椭圆C1:(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=|AB|.
(1)求C1的离心率;
(2)设M是C1与C2的公共点,若|MF|=5,求C1与C2的标准方程.
【解析】(1),轴且与椭圆相交于、两点,则直线的方程为,
联立,解得,则,
抛物线的方程为,联立,解得,,
,即,,即,即,
,解得,因此,椭圆的离心率为;
(2)由(1)知,,椭圆的方程为,
联立,消去并整理得,解得或(舍去),
由抛物线的定义可得,解得.
因此,曲线的标准方程为,
曲线的标准方程为.
(2020·全国卷Ⅱ,文19)已知椭圆C1:(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴重直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=|AB|.
(1)求C1的离心率;
(2)若C1的四个顶点到C2的准线距离之和为12,求C1与C2的标准方程.
【解析】(1)因为椭圆的右焦点坐标为:,所以抛物线的方程为,其中.
不妨设在第一象限,因为椭圆的方程为:,
所以当时,有,因此的纵坐标分别为,;
又因为抛物线的方程为,所以当时,有,
所以的纵坐标分别为,,故,.
由得,即,解得(舍去),.
所以的离心率为.
(2)由(1)知,,故,所以的四个顶点坐标分别为,,,,的准线为.
由已知得,即.
所以的标准方程为,的标准方程为.
(2020·全国卷Ⅲ,理20)已知椭圆的离心率为,,分别为的左、右顶点.
(1)求的方程;
(2)若点在上,点在直线上,且,,求的面积.
【解析】(1),,,
根据离心率,解得或(舍),
的方程为:,即;
(2)点在上,点在直线上,且,,
过点作轴垂线,交点为,设与轴交点为,
根据题意画出图形,如图
,,,
又,,
,根据三角形全等条件“”,可得:,
,,,
设点为,可得点纵坐标为,将其代入,
可得:,解得:或,点为或,
①当点为时,故,
,,可得:点为,
画出图象,如图
,,
可求得直线的直线方程为:,
根据点到直线距离公式可得到直线的距离为:,
根据两点间距离公式可得:,
面积为:;
②当点时,
故,
,,
可得:点为,画出图象,如图
,,
可求得直线的直线方程为:,
根据点到直线距离公式可得到直线的距离为:,
根据两点间距离公式可得:,
面积为:,
综上所述,面积为:.
(2020·全国卷Ⅲ,文21)已知椭圆的离心率为,,分别为的左、右顶点.
(1)求的方程;
(2)若点在上,点在直线上,且,,求的面积.
【答案】(1);(2).
【解析】(1)
,,
根据离心率,
解得或(舍),
的方程为:,
即;
(2)点在上,点在直线上,且,,
过点作轴垂线,交点为,设与轴交点为
根据题意画出图形,如图
,,,
又,,
,
根据三角形全等条件“”,
可得:,
,,,
设点为,可得点纵坐标为,将其代入,
可得:,解得:或,点为或,
①当点为时,故,
,,可得:点为,画出图象,如图
,,可求得直线的直线方程为:,
根据点到直线距离公式可得到直线的距离为:,
根据两点间距离公式可得:,
面积为:;
②当点为时,故,
,,可得:点为,画出图象,如图
,可求得直线的直线方程为:,
根据点到直线距离公式可得到直线的距离为:,
根据两点间距离公式可得:,
面积为:,
综上所述,面积为:.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
2020年—2025年新课标全国卷数学分类汇编
编写说明:研究发现,新课标全国卷的试卷结构和题型具有一定的稳定性和连续性.每个题型考查的知识点、考查方法、考查角度、思维方法等有一定规律.掌握了全国卷的各种题型,就把握住了全国卷命题的灵魂.
本资料是根据全国卷的特点精心编写,共包含9个专题,分别是:
1.集合、逻辑、不等式 2.复数 3.平面向量 4.函数与导数 5.三角函数与解三角形
6.数列 7.立体几何 8.解析几何 9.概率与统计
2020年—2025年新课标全国卷数学试题分类汇编
8.解析几何
一、选择题
(2025·全国一卷,3)若双曲线C的虚轴长为实轴长的倍,则C的离心率为( )
A. B.2 C. D.
(2025·全国一卷,7)若圆上到直线的距离为1的点有且仅有2个,则的取值范围是( )
A. B. C. D.
(2025·全国一卷,10多选题)设抛物线的焦点为F,过F的直线交C于A、B,过F且垂直于的直线交于E,过点A作准线l的垂线,垂足为D,则( )
A. B. C. D.
(2025·全国二卷,6)设抛物线的焦点为点A在C上,过A作的准线的垂线,垂足为B,若直线BF的方程为,则( )
A.3 B.4 C.5 D.6
(2025·全国二卷,11多选)双曲线的左、右焦点分别是,左、右顶点分别为,以为直径的圆与C的一条渐近线交于M、N两点,且,则( )
A. B.
C.C离心率为 D.当时,四边形的面积为
(2024·新高考Ⅰ,11多选)造型可以做成美丽的丝带,将其看作图中曲线C的一部分.已知C过坐标原点O.且C上的点满足横坐标大于,到点的距离与到定直线的距离之积为4,则( )
A.
B. 点在C上
C. C在第一象限的点的纵坐标的最大值为1
D. 当点在C上时,
(2024·新高考Ⅱ,5)已知曲线C:(),从C上任意一点P向x轴作垂线段,为垂足,则线段的中点M的轨迹方程为( )
A. () B. ()
C. () D. ()
(2024·新高考Ⅱ,10多选)抛物线C:的准线为l,P为C上的动点,过P作的一条切线,Q为切点,过P作l的垂线,垂足为B,则( )
A. l与相切 B. 当P,A,B三点共线时,
C. 当时, D. 满足的点有且仅有2个
(2024·全国甲,理5文6)已知双曲线的两个焦点分别为,点在该双曲线上,则该双曲线的离心率为( )
A. 4 B. 3 C. 2 D.
(2024·全国甲,理12)已知b是的等差中项,直线与圆交于两点,则的最小值为( )
A. 2 B. 3 C. 4 D.
(2024·全国甲,文10)已知直线与圆交于两点,则的最小值为( )
A. 2 B. 3 C. 4 D. 6
(2023·新高考Ⅰ,5)设椭圆的离心率分别为.若,则( )
A. B. C. D.
(2023·新高考Ⅰ,6)过点与圆相切的两条直线的夹角为,则( )
A. 1 B. C. D.
(2023·新高考Ⅱ,5)已知椭圆的左、右焦点分别为,,直线与C交于A,B两点,若面积是面积的2倍,则( ).
A. B. C. D.
(2023·新高考Ⅱ,10多选)设O为坐标原点,直线过抛物线的焦点,且与C交于M,N两点,l为C的准线,则( ).
A. B. C.以MN为直径的圆与l相切 D.为等腰三角形
(2023·全国甲卷,理8) 已知双曲线的离心率为,C的一条渐近线与圆交于A,B两点,则( )
A. B. C. D.
(2023·全国甲卷,理12)设O为坐标原点,为椭圆两个焦点,点 P在C上,,则( )
A. B. C. D.
(2023·全国甲卷,文7)设为椭圆的两个焦点,点在上,若,则( )
A.1 B.2 C.4 D.5
(2023·全国甲卷,文9)已知双曲线的离心率为,C的一条渐近线与圆交于A,B两点,则( )
A. B. C. D.
(2023·全国乙卷,理11)设A,B为双曲线上两点,下列四个点中,可为线段AB中点的是( )
A. B. C. D.
(2023·全国乙卷,文11)已知实数满足,则的最大值是( )
A. B.4 C. D.7
(2023·全国乙卷,文12)设A,B为双曲线上两点,下列四个点中,可为线段AB中点的是( )
A. B. C. D.
(2022·新高考Ⅰ,11多选题)已知O为坐标原点,点在抛物线上,过点的直线交C于P,Q两点,则( )
A.C的准线为 B.直线AB与C相切
C. D.
(2022·新高考Ⅱ,10多选题)已知O为坐标原点,过抛物线焦点F的直线与C交于A,B两点,其中A在第一象限,点,若,则( )
A. 直线的斜率为 B.
C. D.
(2022·全国甲卷,理10)椭圆的左顶点为A,点P,Q均在C上,且关于y轴对称.若直线的斜率之积为,则C的离心率为( )
A. B. C. D.
(2022·全国甲卷,文11)已知椭圆的离心率为,分别为C的左、右顶点,B为C的上顶点.若,则C的方程为( )
A. B. C. D.
(2022·全国乙卷,理5文6)设F为抛物线的焦点,点A在C上,点,若,则( )
A.2 B. C.3 D.
(2022·全国乙卷,理11,单选题中的多选题)双曲线C的两个焦点为,以C的实轴为直径的圆记为D,过作D的切线与C交于M,N两点,且,则C的离心率为( )
A. B. C. D.
(2021·新高考Ⅰ,5) 已知,是椭圆:的两个焦点,点在上,则的最大值为( )
A. 13 B. 12 C. 9 D. 6
(2021·新高考Ⅰ,11)已知点在圆上,点、,则( )
A. 点到直线的距离小于 B. 点到直线的距离大于
C. 当最小时, D. 当最大时,
(2021·新高考Ⅱ,3)抛物线的焦点到直线的距离为,则( )
A. 1 B. 2 C. D. 4
(2021·新高考Ⅱ,11)已知直线与圆,点,则下列说法正确的是( )
A. 若点A在圆C上,则直线l与圆C相切 B. 若点A在圆C内,则直线l与圆C相离
C. 若点A在圆C外,则直线l与圆C相离 D. 若点A在直线l上,则直线l与圆C相切
(2021·全国甲卷,理5)已知是双曲线C的两个焦点,P为C上一点,且,则C的离心率为( )
A. B. C. D.
(2021·全国甲卷,文5)点到双曲线的一条渐近线的距离为( )
A. B. C. D.
(2021·全国乙卷,文11)设B是椭圆的上顶点,点P在C上,则的最大值为( )
A. B. C. D. 2
(2021·全国乙卷,理11)设是椭圆的上顶点,若上的任意一点都满足,则的离心率的取值范围是( )
A. B. C. D.
(2020·新高考Ⅰ,9)(多选题)已知曲线( )
A.若m>n>0,则C是椭圆,其焦点在y轴上
B.若m=n>0,则C是圆,其半径为
C.若mn<0,则C是双曲线,其渐近线方程为
D.若m=0,n>0,则C是两条直线
(2020·全国卷Ⅰ,理4)已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=( )
A.2 B.3 C.6 D.9
(2020·全国卷Ⅰ,理11)已知⊙M:,直线:,为上的动点,过点作⊙M的切线,切点为,当最小时,直线的方程为( )
A. B. C. D.
(2020·全国卷Ⅰ,文6)已知圆,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( )
A.1 B.2 C.3 D.4
(2020·全国卷Ⅰ,文11)设是双曲线的两个焦点,为坐标原点,点在上且,则的面积为( )
A. B.3 C. D.2
(2020·全国卷Ⅱ,理5文8)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线的距离为( )
A. B. C. D.
(2020·全国卷Ⅱ,理8文9)设为坐标原点,直线与双曲线的两条渐近线分别交于两点,若的面积为8,则的焦距的最小值为( )
A.4 B.8 C.16 D.32
(2020·全国卷Ⅲ,理5文7)设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于D,E两点,若OD⊥OE,则C的焦点坐标为( )
A.(,0) B.(,0) C.(1,0) D.(2,0)
(2020·全国卷Ⅲ,理11)设双曲线C:(a>0,b>0)的左、右焦点分别为F1,F2,离心率为.P是C上一点,且F1P⊥F2P.若△PF1F2的面积为4,则a=( )
A.1 B.2 C.4 D.8
(2020·全国卷Ⅲ,文6)在平面内,A,B是两个定点,C是动点,若,则点C的轨迹为( )
A.圆 B.椭圆 C.抛物线 D.直线
(2020·全国卷Ⅲ,文8)点(0,﹣1)到直线距离的最大值为( )
A.1 B. C. D.2
二、填空题
(2024·新高考Ⅰ,12)设双曲线的左右焦点分别为,过作平行于轴的直线交C于A,B两点,若,则C的离心率为___________.
(2022·新高考Ⅰ,14)写出与圆和都相切的一条直线的方程__________.
(2022·新高考Ⅰ,16)已知椭圆,C的上顶点为A,两个焦点为,,离心率为.过且垂直于的直线与C交于D,E两点,,则的周长是________________.
(2022·新高考Ⅱ,15)设点,若直线关于对称的直线与圆有公共点,则a的取值范围是________.
(2022·新高考Ⅱ,16)已知直线l与椭圆在第一象限交于A,B两点,l与x轴,y轴分别交于M,N两点,且,则l的方程为___________.
(2022·全国甲卷,理14)若双曲线的渐近线与圆相切,则_________.
(2022·全国甲卷,文14)设点M在直线上,点和均在上,则的方程为______________.
(2022·全国甲卷,文15)记双曲线的离心率为e,写出满足条件“直线与C无公共点”的e的一个值______________.
(2022·全国乙卷,理14文15)过四点中的三点的一个圆的方程为____________.
(2021·新高考Ⅰ,14)已知为坐标原点,抛物线:()的焦点为,为上一点,与轴垂直,为轴上一点,且,若,则的准线方程为______.
(2021·新高考Ⅱ,13)已知双曲线的离心率为2,则该双曲线的渐近线方程为________
(2021·全国甲卷,理15文16)已知为椭圆C:两个焦点,P,Q为C上关于坐标原点对称的两点,且,则四边形的面积为________.
(2021·全国乙卷,理13) 已知双曲线的一条渐近线为,则C的焦距为_________.
(2021·全国乙卷,文14)双曲线的右焦点到直线的距离为________.
(2020·新高考Ⅰ,13)斜率为的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则=________.
(2020·全国卷Ⅰ,理15)已知F为双曲线的右焦点,A为C的右顶点,B为C上的点,且BF垂直于x轴.若AB的斜率为3,则C的离心率为______________.
(2020·全国卷Ⅲ,文14)设双曲线C: (a>0,b>0)的一条渐近线为y=x,则C的离心率为________.
三、解答题
(2025·全国一卷,18)设椭圆的离心率为,下顶点为A,右顶点为B,.
(1)求椭圆C的标准方程;(2)已知动点P不在y轴上,点R在射线AP上,且满足.
(i)设,求点的坐标(用m,n表示);
(ⅱ)设O为坐标原点,是椭圆上的动点,直线OR的斜率为直线的斜率的3倍,求的最大值.
(2025·全国二卷,16)已知椭圆的离心率为,长轴长为4.
(1)求C的方程;(2)过点的直线l与C交于两点,为坐标原点,若的面积为,求.
(2024·新高考Ⅰ,16)已知和为椭圆上两点.
(1)求C的离心率;
(2)若过P的直线交C于另一点B,且的面积为9,求的方程.
(2024·新高考Ⅱ,19)已知双曲线,点在上,为常数,.按照如下方式依次构造点,过作斜率为的直线与的左支交于点,令为关于轴的对称点,记的坐标为.
(1)若,求;(2)证明:数列是公比为的等比数列;(3)设为的面积,证明:对任意的正整数,.
(2024·全国甲,理20文21)设椭圆的右焦点为,点在上,且轴.
(1)求的方程;(2)过点的直线与交于两点,为线段的中点,直线交直线于点,证明:轴.
(2023·新高考Ⅰ,22)在直角坐标系中,点到轴的距离等于点到点的距离,记动点的轨迹为.
(1)求的方程;(2)已知矩形有三个顶点在上,证明:矩形的周长大于.
(2023·新高考Ⅱ,21)已知双曲线C的中心为坐标原点,左焦点为,离心率为.
(1)求C的方程;
(2)记C的左、右顶点分别为,,过点的直线与C的左支交于M,N两点,M在第二象限,直线与交于点P.证明:点在定直线上.
(2023·全国甲卷,理20文21)已知直线与抛物线交于两点,且.
(1)求;(2)设F为C的焦点,M,N为C上两点,,求面积的最小值.
(2023·全国乙卷,理20文21)已知椭圆的离心率是,点在上.
(1)求的方程;(2)过点的直线交于两点,直线与轴的交点分别为,证明:线段的中点为定点.
(2022·新高考Ⅰ,21)已知点在双曲线上,直线l交C于P,Q两点,直线的斜率之和为0.
(1)求l的斜率;(2)若,求的面积.
(2022·新高考Ⅱ,21)已知双曲线的右焦点为,渐近线方程为.
(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点在C上,且.过P且斜率为的直线与过Q且斜率为的直线交于点M.从下面①②③中选取两个作为条件,证明另外一个成立:①M在上;②;③.注:若选择不同的组合分别解答,则按第一个解答计分.
(2022·全国甲卷,理20文21)设抛物线的焦点为F,点,过F的直线交C于M,N两点.当直线MD垂直于x轴时,.
(1)求C的方程;(2)设直线与C的另一个交点分别为A,B,记直线的倾斜角分别为.当取得最大值时,求直线AB的方程.
(2022·全国乙卷,理20文21)已知椭圆E的中心为坐标原点,对称轴为x轴、y轴,且过两点.
(1)求E的方程;(2)设过点的直线交E于M,N两点,过M且平行于x轴的直线与线段AB交于点T,点H满足.证明:直线HN过定点.
(2021·新高考Ⅰ,21)在平面直角坐标系中,已知点、,点的轨迹为.
(1)求的方程;(2)设点在直线上,过的两条直线分别交于、两点和,两点,且,求直线的斜率与直线的斜率之和.
(2021·新高考Ⅱ,20)已知椭圆C的方程为,右焦点为,且离心率为.
(1)求椭圆C的方程;
(2)设M,N是椭圆C上的两点,直线与曲线相切.证明:M,N,F三点共线的充要条件是.
(2021·全国甲卷,理20文21) 抛物线C的顶点为坐标原点O.焦点在x轴上,直线l:交C于P,Q两点,且.已知点,且与l相切.
(1)求C,的方程;
(2)设是C上的三个点,直线,均与相切.判断直线与的位置关系,并说明理由.
(2021·全国乙卷,理21) 已知抛物线的焦点为,且与圆上点的距离的最小值为.
(1)求;
(2)若点在上,是的两条切线,是切点,求面积的最大值.
(2021·全国乙卷,文20)已知抛物线的焦点F到准线的距离为2.
(1)求C的方程;
(2)已知O为坐标原点,点P在C上,点Q满足,求直线斜率的最大值.
(2020·新高考Ⅰ,22)已知椭圆C:的离心率为,且过点A(2,1).
(1)求C的方程:(2)点M,N在C上,且AM⊥AN,AD⊥MN,D为垂足.证明:存在定点Q,使得|DQ|为定值.
(2020·新高考Ⅱ,21)已知椭圆C:+=1(a>b>0)过点M(2,3),点A为其左顶点,且AM的斜率为.
(1)求C的方程;(2)点N为椭圆上任意一点,求△AMN的面积的最大值.
(2020·全国卷Ⅰ,理20)已知A、B分别为椭圆E:(a>1)的左、右顶点,G为E的上顶点,,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D.
(1)求E的方程;(2)证明:直线CD过定点.
(2020·全国卷Ⅰ,文21)已知A、B分别为椭圆E:(a>1)的左、右顶点,G为E的上顶点,,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D.
(1)求E的方程;(2)证明:直线CD过定点.
(2020·全国卷Ⅱ,理19)已知椭圆C1:(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=|AB|.
(1)求C1的离心率;(2)设M是C1与C2的公共点,若|MF|=5,求C1与C2的标准方程.
(2020·全国卷Ⅱ,文19)已知椭圆C1:(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴重直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=|AB|.
(1)求C1的离心率;(2)若C1的四个顶点到C2的准线距离之和为12,求C1与C2的标准方程.
(2020·全国卷Ⅲ,理20)已知椭圆的离心率为,,分别为的左、右顶点.
(1)求的方程;(2)若点在上,点在直线上,且,,求的面积.
(2020·全国卷Ⅲ,文21)已知椭圆的离心率为,,分别为的左、右顶点.
(1)求的方程;(2)若点在上,点在直线上,且,,求的面积.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)