2020—2025年新课标全国卷高考数学分类汇编——9.概率统计(含解析)

文档属性

名称 2020—2025年新课标全国卷高考数学分类汇编——9.概率统计(含解析)
格式 zip
文件大小 2.6MB
资源类型 试卷
版本资源 通用版
科目 数学
更新时间 2025-07-03 17:54:01

文档简介

中小学教育资源及组卷应用平台
2020年—2025年新课标全国卷数学分类汇编
(含全国Ⅰ卷、Ⅱ卷、Ⅲ卷、新高考Ⅰ卷、新高考Ⅱ卷)
编写说明:研究发现,新课标全国卷的试卷结构和题型具有一定的稳定性和连续性.每个题型考查的知识点、考查方法、考查角度、思维方法等有一定规律.掌握了全国卷的各种题型,就把握住了全国卷命题的灵魂.
本资料是根据全国卷的特点精心编写,共包含9个专题,分别是:
1.集合、逻辑、不等式 2.复数 3.平面向量 4.函数与导数 5.三角函数与解三角形
6.数列 7.立体几何 8.解析几何 9.概率与统计
2020年—2025年新课标全国卷数学试题分类汇编
9.概率与统计
一、选择题
(2025·全国二卷,1)样本数据2,8,14,16,20的平均数为( )
A.8 B.9 C.12 D.18
(2024·新高考Ⅰ,9,多选)为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值,样本方差,已知该种植区以往的亩收入服从正态分布,假设推动出口后的亩收入服从正态分布,则( )(若随机变量Z服从正态分布,)
A. B. C. D.
(2024·新高考Ⅱ,4)某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(单位:kg)并部分整理下表
亩产量 [900,950) [950,1000) [1000,1050) [1100,1150) [1150,1200)
频数 6 12 18 24 10
据表中数据,结论中正确的是( )
A. 100块稻田亩产量的中位数小于1050kg
B. 100块稻田中亩产量低于1100kg的稻田所占比例超过80%
C. 100块稻田亩产量的极差介于200kg至300kg之间
D. 100块稻田亩产量的平均值介于900kg至1000kg之间
(2024·全国甲,文4)某独唱比赛的决赛阶段共有甲、乙、丙、丁四人参加,每人出场一次,出场次序由随机抽签确定,则丙不是第一个出场,且甲或乙最后出场的概率是( )
A. B. C. D.
(2023·新高考Ⅰ,9多选题)有一组样本数据,其中是最小值,是最大值,则( )
A. 的平均数等于的平均数
B. 的中位数等于的中位数
C. 的标准差不小于的标准差
D. 的极差不大于的极差
(2023·新高考Ⅱ,3)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( ).
A.种 B.种 C.种 D.种
(2023·新高考Ⅱ,12多选)在信道内传输0,1信号,信号传输相互独立.发送0时,收到1的概率为,收到0的概率为;发送1时,收到0的概率为,收到1的概率为. 考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输 是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).
A.采用单次传输方案,若依次发送1,0,1,则依次收到l,0,1的概率为
B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为
C.采用三次传输方案,若发送1,则译码为1的概率为
D.当时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率
(2023·全国甲卷,理6)某地的中学生中有的同学爱好滑冰,的同学爱好滑雪,的同学爱好滑冰或爱好滑雪.在该地的中学生中随机调查一位同学,若该同学爱好滑雪,则该同学也爱好滑冰的概率为( )
A.0.8 B.0.6 C.0.5 D.0.4
(2023·全国甲卷,理9)现有5名志愿者报名参加公益活动,在某一星期的星期六、星期日两天,每天从这5人中安排2人参加公益活动,则恰有1人在这两天都参加的不同安排方式共有( )
A.120 B.60 C.30 D.20
(2023·全国甲卷,文4)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )
A. B. C. D.
(2023·全国乙卷,理5文7)设O为平面坐标系的坐标原点,在区域内随机取一点,记该点为A,则直线OA的倾斜角不大于的概率为( )
A. B. C. D.
(2023·全国乙卷,理7)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( )
A.30种 B.60种 C.120种 D.240种
(2023·全国乙卷,文9)某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为( )
A. B. C. D.
(2022·新高考Ⅰ,5)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( )
A. B. C. D.
(2022·新高考Ⅱ,5)有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有( )
A. 12种 B. 24种 C. 36种 D. 48种
(2022·全国甲卷,文理2)某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:
则( )
A.讲座前问卷答题的正确率的中位数小于
B.讲座后问卷答题的正确率的平均数大于
C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差
D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差
(2022·全国乙卷,理10)某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为,且.记该棋手连胜两盘的概率为p,则( )
A.p与该棋手和甲、乙、丙的比赛次序无关 B.该棋手在第二盘与甲比赛,p最大
C.该棋手在第二盘与乙比赛,p最大 D.该棋手在第二盘与丙比赛,p最大
(2022·全国乙卷,文4)分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h),得如下茎叶图:
则下列结论中错误的是( )
A.甲同学周课外体育运动时长的样本中位数为7.4
B.乙同学周课外体育运动时长的样本平均数大于8
C.甲同学周课外体育运动时长大于8的概率的估计值大于0.4
D.乙同学周课外体育运动时长大于8的概率的估计值大于0.6
(2021·新高考Ⅰ,8)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( )
A. 甲与丙相互独立 B. 甲与丁相互独立 C. 乙与丙相互独立 D. 丙与丁相互独立
(2021·新高考Ⅰ,9)有一组样本数据,,…,,由这组数据得到新样本数据,,…,,其中(为非零常数,则( )
A. 两组样本数据的样本平均数相同 B. 两组样本数据的样本中位数相同
C. 两组样本数据的样本标准差相同 D. 两组样数据的样本极差相同
(2021·新高考Ⅱ,6)某物理量的测量结果服从正态分布,下列结论中不正确的是( )
A. 越小,该物理量在一次测量中在的概率越大
B. 越小,该物理量在一次测量中大于10的概率为0.5
C. 越小,该物理量在一次测量中小于9.99与大于10.01的概率相等
D. 越小,该物理量在一次测量中落在与落在的概率相等
(2021·新高考Ⅱ,9)下列统计量中,能度量样本的离散程度的是( )
A. 样本的标准差 B. 样本的中位数
C. 样本的极差 D. 样本的平均数
(2021·新高考Ⅱ,12)设正整数,其中,记.则( )
A. B. C. D.
(2021·全国甲卷,文理2)为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:
根据此频率分布直方图,下面结论中不正确的是( )
A. 该地农户家庭年收入低于4.5万元的农户比率估计为6%
B. 该地农户家庭年收入不低于10.5万元的农户比率估计为10%
C. 估计该地农户家庭年收入的平均值不超过6.5万元
D. 估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间
(2021·全国甲卷,理10) 将4个1和2个0随机排成一行,则2个0不相邻的概率为( )
A. B. C. D.
(2021·全国甲卷,文10)将3个1和2个0随机排成一行,则2个0不相邻的概率为( )
A. 0.3 B. 0.5 C. 0.6 D. 0.8
(2021·全国乙卷,理6) 将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( )
A. 60种 B. 120种 C. 240种 D. 480种
(2020·新高考Ⅰ,3)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )
A.120种 B.90种 C.60种 D.30种
(2020·新高考Ⅰ,5)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( )
A.62% B.56% C.46% D.42%
(2020·新高考Ⅰ,12)(多选题)信息熵是信息论中的一个重要概念.设随机变量X所有可能的取值为,且,定义X的信息熵.( )
A.若n=1,则H(X)=0
B.若n=2,则H(X)随着的增大而增大
C.若,则H(X)随着n的增大而增大
D.若n=2m,随机变量Y所有可能的取值为,且,则H(X)≤H(Y)
(2020·全国卷Ⅰ,文理5)某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:°C)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据得到下面的散点图:
由此散点图,在10°C至40°C之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是( )
A. B. C. D.
(2020·全国卷Ⅰ,理8)的展开式中x3y3的系数为( )
A.5 B.10 C.15 D.20
(2020·全国卷Ⅰ,文4)设O为正方形ABCD的中心,在O,A,B,C,D中任取3点,则取到的3点共线的概率为( )
A. B. C. D.
(2020·全国卷Ⅱ,理3,文4)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( )
A.10名 B.18名 C.24名 D.32名
(2020·全国卷Ⅱ,文3)如图,将钢琴上的12个键依次记为a1,a2,…,a12.设1≤iA.5 B.8 C.10 D.15
(2020·全国卷Ⅲ,理3)在一组样本数据中,1,2,3,4出现的频率分别为,且,则下面四种情形中,对应样本的标准差最大的一组是( )
A. B.
C. D.
(2020·全国卷Ⅲ,文3)设一组样本数据x1,x2,…,xn的方差为0.01,则数据10x1,10x2,…,10xn的方差为( )
A.0.01 B.0.1 C.1 D.10
二、填空题
(2025·全国一卷,14)一个箱子里有5个相同的球,分别以1~5标号,若每次取一颗,有放回地取三次,记至少取出一次的球的个数X,则数学期望_________.
(2024·新高考Ⅰ,14)甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为_________.
(2024·新高考Ⅱ,14)在如图的4×4方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有________种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是________.
(2024·全国甲,理13)的展开式中,各项系数的最大值是______.
(2024·全国甲,理16)有6个相同的球,分别标有数字1、2、3、4、5、6,从中不放回地随机抽取3次,每次取1个球.记为前两次取出的球上数字的平均值,为取出的三个球上数字的平均值,则与差的绝对值不超过的概率是______.
(2023·新高考Ⅰ,13)某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有________种(用数字作答).
(2022·新高考Ⅰ,13)的展开式中的系数为________________(用数字作答).
(2022·新高考Ⅱ,13)已知随机变量X服从正态分布,且,则____________.
(2022·全国甲卷,理15)从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________.
(2022·全国乙卷,理13)从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.
(2022·全国乙卷,文14)从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为________.
(2020·全国卷Ⅱ,理14)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.
(2020·全国卷Ⅲ,理14)的展开式中常数项是__________(用数字作答).
三、解答题
(2025·全国一卷,15)为研究某疾病与超声波检查结果的关系,从做过超声波检查的人群中随机调查了1000人,得到如下列联表:
超声波检查结果 组别 正常 不正常 合计
患该疾病 20 180 200
未患该疾病 780 20 800
合计 800 200 1000
(1)记超声波检查结果不正常者患该疾病的概率为P,求P的估计值;
(2)根据小概率值的独立性检验,分析超声波检查结果是否与患该疾病有关.
附,
0.050 0.010 0.001
3.841 6.635 10.828
(2025·全国二卷,19)甲、乙两人进行乒乓球练习,每个球胜者得1分,负者得0分.设每个球甲胜的概率为,乙胜的概率为q,,且各球的胜负相互独立,对正整数,记为打完k个球后甲比乙至少多得2分的概率,为打完k个球后乙比甲至少多得2分的概率.
(1)求(用p表示);(2)若,求p;(3)证明:对任意正整数m,.
(2024·新高考Ⅱ,18)某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮3次,若3次都未投中,则该队被淘汰,比赛成员为0分;若至少投中一次,则该队进入第二阶段,由该队的另一名队员投篮3次,每次投中得5分,未投中得0分.该队的比赛成绩为第二阶段的得分总和.某参赛队由甲、乙两名队员组成,设甲每次投中的概率为p,乙每次投中的概率为q,各次投中与否相互独立.
(1)若,,甲参加第一阶段比赛,求甲、乙所在队的比赛成绩不少于5分的概率;
(2)假设,
(i)为使得甲、乙所在队的比赛成绩为15分的概率最大,应该由谁参加第一阶段比赛?
(ii)为使得甲、乙,所在队的比赛成绩的数学期望最大,应该由谁参加第一阶段比赛?
(2024·全国甲,理17文18)某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:
优级品 合格品 不合格品 总计
甲车间 26 24 0 50
乙车间 70 28 2 100
总计 96 52 2 150
(1)填写如下列联表:
优级品 非优级品
甲车间
乙车间
能否有的把握认为甲、乙两车间产品的优级品率存在差异?能否有的把握认为甲,乙两车间产品的优级品率存在差异?
(2)已知升级改造前该工厂产品的优级品率,设为升级改造后抽取的n件产品的优级品率.如果,则认为该工厂产品的优级品率提高了,根据抽取的150件产品的数据,能否认为生产线智能化升级改造后,该工厂产品的优级品率提高了?()
附:
0.050 0.010 0.001
k 3.841 6.635 10828
(2023·新高考Ⅰ,21)甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投籃,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5.
(1)求第2次投篮的人是乙的概率;
(2)求第次投篮的人是甲的概率;
(3)已知:若随机变量服从两点分布,且,则.记前次(即从第1次到第次投篮)中甲投篮的次数为,求.
(2023·新高考Ⅱ,19)某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该指标的频率分布直方图:
利用该指标制定一个检测标准,需要确定临界值c,将该指标大于c的人判定为阳性,小于或等于c的人判定为阴性.此检测标准的漏诊率是将患病者判定为阴性的概率,记为;误诊率是将未患病者判定为阳性的概率,记为.假设数据在组内均匀分布,以事件发生的频率作为相应事件发生的概率.
(1)当漏诊率%时,求临界值c和误诊率;
(2)设函数,当时,求的解析式,并求在区间的最小值.
(2023·全国甲卷,理19)一项试验旨在研究臭氧效应.实验方案如下:选40只小白鼠,随机地将其中20只分配到实验组,另外20只分配到对照组,实验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g).
(1)设表示指定的两只小白鼠中分配到对照组的只数,求的分布列和数学期望;
(2)实验结果如下:
对照组的小白鼠体重的增加量从小到大排序为:
15.2 18.8 20.2 21.3 22.5 23.2 25.8 26.5 27.5 30.1
32.6 34.3 34.8 35.6 35.6 35.8 36.2 37.3 40.5 43.2
实验组的小白鼠体重的增加量从小到大排序为:
7.8 9.2 11.4 12.4 13.2 15.5 16.5 18.0 18.8 19.2
19.8 20.2 21.6 22.8 23.6 23.9 25.1 28.2 32.3 36.5
(i)求40只小鼠体重的增加量的中位数m,再分别统计两样本中小于m与不小于的数据的个数,完成如下列联表:
对照组
实验组
(ii)根据(i)中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与正常环境中体重的增加量有差异.
附:
0.100 0.050 0.010
2.706 3.841 6.635
(2023·全国甲卷,文19) 一项试验旨在研究臭氧效应,试验方案如下:选40只小白鼠,随机地将其中20只分配到试验组,另外20只分配到对照组,试验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g).试验结果如下:
对照组的小白鼠体重的增加量从小到大排序为
15.2 18.8 20.2 21.3 22.5 23.2 25.8 26.5 27.5 30.1
32.6 34.3 34.8 35.6 35.6 35.8 36.2 37.3 40.5 43.2
试验组的小白鼠体重的增加量从小到大排序为
7.8 9.2 11.4 12.4 13.2 15.5 16.5 18.0 18.8 19.2
19.8 20.2 21.6 22.8 23.6 23.9 25.1 28.2 32.3 36.5
(1)计算试验组的样本平均数;
(2)(ⅰ)求40只小白鼠体重的增加量的中位数m,再分别统计两样本中小于m与不小于m的数据的个数,完成如下列联表
对照组
试验组
(ⅱ)根据(i)中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?
附:,
0.100 0.050 0.010
2.706 3.841 6.635
(2023·全国乙卷,文理17)某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为,.试验结果如下:
试验序号 1 2 3 4 5 6 7 8 9 10
伸缩率 545 533 551 522 575 544 541 568 596 548
伸缩率 536 527 543 530 560 533 522 550 576 536
记,记的样本平均数为,样本方差为.
(1)求,;
(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高)
(2022·新高考Ⅰ,20)一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:
不够良好 良好
病例组 40 60
对照组 10 90
(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?
(2)从该地的人群中任选一人,A表示事件“选到的人卫生习惯不够良好”,B表示事件“选到的人患有该疾病”.与的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R.
(ⅰ)证明:;
(ⅱ)利用该调查数据,给出的估计值,并利用(ⅰ)的结果给出R的估计值.
附,
0.050 0.010 0.001
k 3.841 6.635 10.828
(2022·新高考Ⅱ,19)在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:
(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表);
(2)估计该地区一位这种疾病患者的年龄位于区间的概率;
(3)已知该地区这种疾病的患病率为,该地区年龄位于区间的人口占该地区总人口的.从该地区中任选一人,若此人的年龄位于区间,求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001).
(2022·全国甲卷,理19)甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.
(1)求甲学校获得冠军的概率;
(2)用X表示乙学校的总得分,求X的分布列与期望.
(2022·全国甲卷,文17) 甲、乙两城之间的长途客车均由A和B两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:
准点班次数 未准点班次数
A 240 20
B 210 30
(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;
(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?
附:,
0.100 0.050 0.010
2.706 3.841 6.635
(2022·全国乙卷,文理19) 某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:)和材积量(单位:),得到如下数据:
样本号i 1 2 3 4 5 6 7 8 9 10 总和
根部横截面积 0.04 0.06 0.04 0.08 0.08 0.05 0.05 0.07 0.07 0.06 0.6
材积量 0.25 0.40 0.22 0.54 0.51 0.34 0.36 0.46 0.42 0.40 3.9
并计算得.
(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;
(2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);
(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值. 附:相关系数.
(2021·新高考Ⅰ,18)某学校组织“一带一路”知识竞赛,有A,B两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束:若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分:B类问题中的每个问题回答正确得80分,否则得0分,己知小明能正确回答A类问题的概率为0.8,能正确回答B类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.
(1)若小明先回答A类问题,记为小明的累计得分,求的分布列;
(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.
(2021·新高考Ⅱ,21)一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代……,该微生物每代繁殖个数是相互独立的且有相同的分布列,设X表示1个微生物个体繁殖下一代的个数,.
(1)已知,求;
(2)设p表示该种微生物经过多代繁殖后临近灭绝的概率,p是关于x的方程:的一个最小正实根,求证:当时,,当时,;
(3)根据你的理解说明(2)问结论的实际含义.
(2021·全国甲卷,文理17)甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:
一级品 二级品 合计
甲机床 150 50 200
乙机床 120 80 200
合计 270 130 400
(1)甲机床、乙机床生产的产品中一级品的频率分别是多少
(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异
附:
0.050 0.010 0.001
k 3.841 6.635 10.828
(2021·全国乙卷,文理17)某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:
旧设备 9.8 10.3 10.0 10.2 9.9 9.8 10.0 10.1 10.2 9.7
新设备 10.1 10.4 10.1 10.0 10.1 10.3 10.6 10.5 10.4 10.5
旧设备和新设备生产产品的该项指标的样本平均数分别记为和,样本方差分别记为和.
(1)求,,,;
(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).
(2020·新高考Ⅰ,19)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和SO2浓度(单位:μg/m3),得下表:
SO2 PM2.5 [0,50] (50,150] (150,475]
[0,35] 32 18 4
(35,75] 6 8 12
(75,115] 3 7 10
(1)估计事件“该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过150”的概率;
(2)根据所给数据,完成下面的2×2列联表:
SO2 PM2.5 [0,150] (150,475]
[0,75]
(75,115]
(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与SO2浓度有关?
附:K2=
P(K2≥k) 0.050 0.010 0.001
k 3.841 6.635 10.828
(2020·全国卷Ⅰ,理19)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为,
(1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率;(3)求丙最终获胜的概率.
(2020·全国卷Ⅰ,文17)某厂接受了一项加工业务,加工出来产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:
甲分厂产品等级的频数分布表
等级 A B C D
频数 40 20 20 20
乙分厂产品等级的频数分布表
等级 A B C D
频数 28 17 34 21
(1)分别估计甲、乙两分厂加工出来一件产品为A级品的概率;
(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务
(2020·全国卷Ⅱ,理18)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(xi,yi)(i=1,2,…,20),其中xi和yi分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得,,,,.
(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);
(2)求样本(xi,yi)(i=1,2,…,20)的相关系数(精确到0.01);
(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.
附:相关系数r=,=1.414.
(2020·全国卷Ⅱ,文18)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(xi,yi)(i=1,2,…,20),其中xi和yi分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得,,,,.
(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);
(2)求样本(xi,yi)(i=1,2,…,20)的相关系数(精确到0.01);
(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.
附:相关系数r=,=1.414.
(2020·全国卷Ⅲ,理18)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):
锻炼人次 空气质量等级 [0,200] (200,400] (400,600]
1(优) 2 16 25
2(良) 5 10 12
3(轻度污染) 6 7 8
4(中度污染) 7 2 0
(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;
(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);
(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?
人次≤400 人次>400
空气质量好
空气质量不好
附:,
P(K2≥k) 0.050 0.010 0.001
k 3.841 6.635 10.828
(2020·全国卷Ⅲ,文18)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):
锻炼人次 空气质量等级 [0,200] (200,400] (400,600]
1(优) 2 16 25
2(良) 5 10 12
3(轻度污染) 6 7 8
4(中度污染) 7 2 0
(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;
(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);
(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?
人次≤400 人次>400
空气质量好
空气质量不好
附:,
P(K2≥k) 0.050 0.010 0.001
k 3.841 6.635 10.828
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
2020年—2025年新课标全国卷高考数学试题分类汇编
9.排列组合、概率统计(逐题解析版)
一、选择题
(2025·全国二卷,1)样本数据2,8,14,16,20的平均数为( )
A.8 B.9 C.12 D.18
【答案】C
【解析】样本数据的平均数为.故选:C.
(2024·新高考Ⅰ,9,多选)为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值,样本方差,已知该种植区以往的亩收入服从正态分布,假设推动出口后的亩收入服从正态分布,则( )(若随机变量Z服从正态分布,)
A. B. C. D.
【答案】BC
【解析】依题可知,,所以,
故,C正确,D错误;
因为,所以,
因为,所以,
而,B正确,A错误,
故选:BC.
(2024·新高考Ⅱ,4)某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(单位:kg)并部分整理下表
亩产量 [900,950) [950,1000) [1000,1050) [1100,1150) [1150,1200)
频数 6 12 18 24 10
据表中数据,结论中正确的是( )
A. 100块稻田亩产量的中位数小于1050kg
B. 100块稻田中亩产量低于1100kg的稻田所占比例超过80%
C. 100块稻田亩产量的极差介于200kg至300kg之间
D. 100块稻田亩产量的平均值介于900kg至1000kg之间
【答案】C
【解析】对于 A, 根据频数分布表可知, ,
所以亩产量的中位数不小于 , 故 A 错误;
对于B,亩产量不低于的频数为,
所以低于的稻田占比为,故B错误;
对于C,稻田亩产量的极差最大为,最小为,故C正确;
对于D,由频数分布表可得,亩产量在的频数为,
所以平均值为,故D错误.
(2024·全国甲,文4)某独唱比赛的决赛阶段共有甲、乙、丙、丁四人参加,每人出场一次,出场次序由随机抽签确定,则丙不是第一个出场,且甲或乙最后出场的概率是( )
A. B. C. D.
【答案】C
【解析】解法一:画出树状图,如图,
由树状图可得,出场次序共有24种,
其中符合题意的出场次序共有8种,
故所求概率;
解法二:当甲最后出场,乙第一个出场,丙有种排法,丁就种,共种;
当甲最后出场,乙排第二位或第三位出场,丙有种排法,丁就种,共种;
于是甲最后出场共种方法,同理乙最后出场共种方法,于是共种出场顺序符合题意;
基本事件总数显然是,根据古典概型的计算公式,所求概率为.故选:C
(2023·新高考Ⅰ,9多选题)有一组样本数据,其中是最小值,是最大值,则( )
A. 的平均数等于的平均数
B. 的中位数等于的中位数
C. 的标准差不小于的标准差
D. 的极差不大于的极差
【答案】BD
【解析】对于选项A:设的平均数为,的平均数为,
则,
因为没有确定的大小关系,所以无法判断的大小,
例如:,可得;
例如,可得;
例如,可得;故A错误;
对于选项B:不妨设,
可知的中位数等于的中位数均为,故B正确;
对于选项C:因为是最小值,是最大值,
则的波动性不大于的波动性,即的标准差不大于的标准差,
例如:,则平均数,
标准差,
,则平均数,
标准差,
显然,即;故C错误;
对于选项D:不妨设,
则,当且仅当时,等号成立,故D正确;
故选:BD.
(2023·新高考Ⅱ,3)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( ).
A.种 B.种 C.种 D.种
【答案】D
【解析】根据分层抽样的定义知初中部共抽取人,高中部共抽取,
根据组合公式和分步计数原理则不同的抽样结果共有种.
故选:D.
(2023·新高考Ⅱ,12多选)在信道内传输0,1信号,信号传输相互独立.发送0时,收到1的概率为,收到0的概率为;发送1时,收到0的概率为,收到1的概率为. 考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输 是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).
A.采用单次传输方案,若依次发送1,0,1,则依次收到l,0,1的概率为
B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为
C.采用三次传输方案,若发送1,则译码为1的概率为
D.当时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率
【答案】ABD
【解析】对于A,依次发送1,0,1,则依次收到l,0,1的事件是发送1接收1、发送0接收0、发送1接收1的3个事件的积,
它们相互独立,所以所求概率为,A正确;
对于B,三次传输,发送1,相当于依次发送1,1,1,则依次收到l,0,1的事件,
是发送1接收1、发送1接收0、发送1接收1的3个事件的积,
它们相互独立,所以所求概率为,B正确;
对于C,三次传输,发送1,则译码为1的事件是依次收到1,1,0、1,0,1、0,1,1和1,1,1的事件和,
它们互斥,由选项B知,所以所求的概率为,C错误;
对于D,由选项C知,三次传输,发送0,则译码为0的概率,
单次传输发送0,则译码为0的概率,而,
因此,即,D正确.
故选:ABD
(2023·全国甲卷,理6)某地的中学生中有的同学爱好滑冰,的同学爱好滑雪,的同学爱好滑冰或爱好滑雪.在该地的中学生中随机调查一位同学,若该同学爱好滑雪,则该同学也爱好滑冰的概率为( )
A. 0.8 B. 0.6 C. 0.5 D. 0.4
【答案】A
【解析】
【分析】先算出同时爱好两项的概率,利用条件概率的知识求解.
【详解】同时爱好两项的概率为,
记“该同学爱好滑雪”为事件,记“该同学爱好滑冰”为事件,
则,
所以.
故选:.
(2023·全国甲卷,理9)现有5名志愿者报名参加公益活动,在某一星期的星期六、星期日两天,每天从这5人中安排2人参加公益活动,则恰有1人在这两天都参加的不同安排方式共有( )
A.120 B.60 C.30 D.20
【答案】B
【解析】不妨记五名志愿者为,假设连续参加了两天公益活动,再从剩余的4人抽取2人各参加星期六与星期天的公益活动,共有种方法,
同理:连续参加了两天公益活动,也各有种方法,
所以恰有1人连续参加了两天公益活动的选择种数有种.
故选:B.
(2023·全国甲卷,文4)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )
A. B. C. D.
【答案】D
【解析】依题意,从这4名学生中随机选2名组织校文艺汇演,总的基本事件有件,
其中这2名学生来自不同年级的基本事件有,
所以这2名学生来自不同年级的概率为.故选:D
(2023·全国乙卷,理5文7)设O为平面坐标系的坐标原点,在区域内随机取一点,记该点为A,则直线OA的倾斜角不大于的概率为( )
A. B. C. D.
【答案】C
【解析】因为区域表示以圆心,外圆半径,内圆半径的圆环,
则直线的倾斜角不大于的部分如阴影所示,在第一象限部分对应的圆心角,
结合对称性可得所求概率.
故选:C.
(2023·全国乙卷,理7)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( )
A.30种 B.60种 C.120种 D.240种
【答案】C
【解析】首先确定相同得读物,共有种情况,
然后两人各自的另外一种读物相当于在剩余的5种读物里,选出两种进行排列,共有种,
根据分步乘法公式则共有种,
故选:C.
(2023·全国乙卷,文9)某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为( )
A. B. C. D.
【答案】A
【解析】概率.
故选:A
(2022·新高考Ⅰ,5)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( )
A. B. C. D.
【答案】D
【解析】从2至8的7个整数中随机取2个不同的数,共有种不同的取法,
若两数不互质,不同的取法有:,共7种,
故所求概率.故选:D.
(2022·新高考Ⅱ,5)有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有( )
A. 12种 B. 24种 C. 36种 D. 48种
【答案】B
【解析】因为丙丁要在一起,先把丙丁捆绑,看做一个元素,连同乙,戊看成三个元素排列,有种排列方式;为使甲不在两端,必须且只需甲在此三个元素的中间两个位置任选一个位置插入,有2种插空方式;注意到丙丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有:种不同的排列方式,故选:B
(2022·全国甲卷,文理2)某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:
则( )
A.讲座前问卷答题的正确率的中位数小于
B.讲座后问卷答题的正确率的平均数大于
C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差
D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差
【答案】B
【解析】讲座前中位数为,所以错;
讲座后问卷答题的正确率只有一个是个,剩下全部大于等于,所以讲座后问卷答题的正确率的平均数大于,所以B对;
讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C错;
讲座后问卷答题的正确率的极差为,
讲座前问卷答题的正确率的极差为,所以错.
故选:B.
(2022·全国乙卷,理10)某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为,且.记该棋手连胜两盘的概率为p,则( )
A. p与该棋手和甲、乙、丙的比赛次序无关 B. 该棋手在第二盘与甲比赛,p最大
C. 该棋手在第二盘与乙比赛,p最大 D. 该棋手在第二盘与丙比赛,p最大
【答案】D
【解析】该棋手连胜两盘,则第二盘为必胜盘,
记该棋手在第二盘与甲比赛,比赛顺序为乙甲丙及丙甲乙的概率均为,
则此时连胜两盘的概率为


记该棋手在第二盘与乙比赛,且连胜两盘的概率为,

记该棋手在第二盘与丙比赛,且连胜两盘的概率为


即,,
则该棋手在第二盘与丙比赛,最大.选项D判断正确;选项BC判断错误;
与该棋手与甲、乙、丙的比赛次序有关.选项A判断错误.
故选:D
(2022·全国乙卷,文4)分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h),得如下茎叶图:
则下列结论中错误的是( )
A.甲同学周课外体育运动时长的样本中位数为7.4
B.乙同学周课外体育运动时长的样本平均数大于8
C.甲同学周课外体育运动时长大于8的概率的估计值大于0.4
D.乙同学周课外体育运动时长大于8的概率的估计值大于0.6
【答案】C
【解析】对于A选项,甲同学周课外体育运动时长的样本中位数为,A选项结论正确.
对于B选项,乙同学课外体育运动时长的样本平均数为:

B选项结论正确.
对于C选项,甲同学周课外体育运动时长大于的概率的估计值,
C选项结论错误.
对于D选项,乙同学周课外体育运动时长大于的概率的估计值,
D选项结论正确.
故选:C
(2021·新高考Ⅰ,8)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( )
A. 甲与丙相互独立 B. 甲与丁相互独立 C. 乙与丙相互独立 D. 丙与丁相互独立
【答案】B
【解析】
故选:B
(2021·新高考Ⅰ,9)有一组样本数据,,…,,由这组数据得到新样本数据,,…,,其中(为非零常数,则( )
A. 两组样本数据的样本平均数相同 B. 两组样本数据的样本中位数相同
C. 两组样本数据的样本标准差相同 D. 两组样数据的样本极差相同
【答案】CD
【解析】A:且,故平均数不相同,错误;
B:若第一组中位数为,则第二组的中位数为,显然不相同,错误;
C:,故方差相同,正确;
D:由极差的定义知:若第一组的极差为,则第二组的极差为,故极差相同,正确;
故选:CD
(2021·新高考Ⅱ,6)某物理量的测量结果服从正态分布,下列结论中不正确的是( )
A. 越小,该物理量在一次测量中在的概率越大
B. 越小,该物理量在一次测量中大于10的概率为0.5
C. 越小,该物理量在一次测量中小于9.99与大于10.01的概率相等
D. 越小,该物理量在一次测量中落在与落在的概率相等
【答案】D
【解析】对于A,为数据的方差,所以越小,数据在附近越集中,所以测量结果落在内的概率越大,故A正确;
对于B,由正态分布密度曲线的对称性可知该物理量一次测量大于10的概率为,故B正确;
对于C,由正态分布密度曲线的对称性可知该物理量一次测量结果大于的概率与小于的概率相等,故C正确;
对于D,因为该物理量一次测量结果落在的概率与落在的概率不同,所以一次测量结果落在的概率与落在的概率不同,故D错误.
故选:D.
(2021·新高考Ⅱ,9)下列统计量中,能度量样本的离散程度的是( )
A. 样本的标准差 B. 样本的中位数
C. 样本的极差 D. 样本的平均数
【答案】AC
【解析】由标准差定义可知,标准差考查的是数据的离散程度;
由中位数的定义可知,中位数考查的是数据的集中趋势;
由极差的定义可知,极差考查的是数据的离散程度;
由平均数的定义可知,平均数考查的是数据的集中趋势;
故选:AC.
(2021·新高考Ⅱ,12)设正整数,其中,记.则( )
A. B. C. D.
【答案】ACD
【解析】对于A选项,,,
所以,,A选项正确;
对于B选项,取,,,
而,则,即,B选项错误;
对于C选项,,
所以,,

所以,,因此,,C选项正确;
对于D选项,,故,D选项正确.
故选:ACD.
(2021·全国甲卷,文理2)为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:
根据此频率分布直方图,下面结论中不正确的是( )
A. 该地农户家庭年收入低于4.5万元的农户比率估计为6%
B. 该地农户家庭年收入不低于10.5万元的农户比率估计为10%
C. 估计该地农户家庭年收入的平均值不超过6.5万元
D. 估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间
【答案】C
【解析】因为频率直方图中的组距为1,所以各组的直方图的高度等于频率.样本频率直方图中的频率即可作为总体的相应比率的估计值.
该地农户家庭年收入低于4.5万元的农户的比率估计值为,故A正确;
该地农户家庭年收入不低于10.5万元的农户比率估计值为,故B正确;
该地农户家庭年收入介于4.5万元至8.5万元之间的比例估计值为,故D正确;
该地农户家庭年收入的平均值的估计值为(万元),超过6.5万元,故C错误.
综上,给出结论中不正确的是C.
故选:C.
(2021·全国甲卷,理10) 将4个1和2个0随机排成一行,则2个0不相邻的概率为( )
A. B. C. D.
【答案】C
【解析】将4个1和2个0随机排成一行,可利用插空法,4个1产生5个空,若2个0相邻,则有种排法,若2个0不相邻,则有种排法,所以2个0不相邻的概率为.故选:C.
(2021·全国甲卷,文10)将3个1和2个0随机排成一行,则2个0不相邻的概率为( )
A. 0.3 B. 0.5 C. 0.6 D. 0.8
【答案】C
【解析】,故选:C.
(2021·全国乙卷,理6) 将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( )
A. 60种 B. 120种 C. 240种 D. 480种
【答案】C
【解析】根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人,组成一个小组,有种选法;然后连同其余三人,看成四个元素,四个项目看成四个不同的位置,四个不同的元素在四个不同的位置的排列方法数有4!种,根据乘法原理,完成这件事,共有种不同的分配方案,
故选:C.
(2020·新高考Ⅰ,3)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )
A.120种 B.90种 C.60种 D.30种
【答案】C 【解析】首先从名同学中选名去甲场馆,方法数有;然后从其余名同学中选名去乙场馆,方法数有;最后剩下的名同学去并场馆.故不同的安排方法共有种.
(2020·新高考Ⅰ,5)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( )
A.62% B.56% C.46% D.42%
【答案】C 【解析】记“该中学学生喜欢足球”为事件,“该中学学生喜欢游泳”为事件,则“该中学学生喜欢足球或游泳”为事件,“该中学学生既喜欢足球又喜欢游泳”为事件,
则,,,
所以
所以该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例为.
(2020·新高考Ⅰ,12)(多选题)信息熵是信息论中的一个重要概念.设随机变量X所有可能的取值为,且,定义X的信息熵.( )
A.若n=1,则H(X)=0
B.若n=2,则H(X)随着的增大而增大
C.若,则H(X)随着n的增大而增大
D.若n=2m,随机变量Y所有可能的取值为,且,则H(X)≤H(Y)
【答案】AC 【解析】对于A选项,若,则,所以,所以A选项正确.
对于B选项,若,则,,所以
,当时,,
当时,,两者相等,所以B选项错误.
对于C选项,若,则,
则随着的增大而增大,所以C选项正确.
对于D选项,若,随机变量的所有可能的取值为,且().


由于,所以,所以,
所以,
所以,所以D选项错误.
故选:AC
(2020·全国卷Ⅰ,文理5)某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:°C)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据得到下面的散点图:
由此散点图,在10°C至40°C之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是( )
A. B. C. D.
【答案】D
【解析】由散点图分布可知,散点图分布在一个对数函数的图象附近,
因此,最适合作为发芽率和温度的回归方程类型的是.故选:D.
(2020·全国卷Ⅰ,理8)的展开式中x3y3的系数为( )
A.5 B.10 C.15 D.20
【答案】C 【解析】展开式的通项公式为(且)
所以与展开式的乘积可表示为:

在中,令,可得:,该项中的系数为,
在中,令,可得:,该项中的系数为.
所以的系数为.
(2020·全国卷Ⅰ,文4)设O为正方形ABCD的中心,在O,A,B,C,D中任取3点,则取到的3点共线的概率为( )
A. B. C. D.
【答案】A
【解析】如图,从5个点中任取3个有
共种不同取法,
3点共线只有与共2种情况,由古典概型的概率计算公式知,取到3点共线的概率为.故选:A
(2020·全国卷Ⅱ,理3文4)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( )
A.10名 B.18名 C.24名 D.32名
【答案】B【解析】由题意,第二天新增订单数为,故需要志愿者名.
(2020·全国卷Ⅱ,文3)如图,将钢琴上的12个键依次记为a1,a2,…,a12.设1≤iA.5 B.8 C.10 D.15
【答案】C
【解析】根据题意可知,原位大三和弦满足:.
∴;;;;.
原位小三和弦满足:.
∴;;;;.
故个数之和为10.
(2020·全国卷Ⅲ,理3)在一组样本数据中,1,2,3,4出现的频率分别为,且,则下面四种情形中,对应样本的标准差最大的一组是( )
A. B.
C. D.
【答案】B
【解析】对于A选项,该组数据的平均数为,
方差为;
对于B选项,该组数据的平均数为,
方差为;
对于C选项,该组数据的平均数为,
方差为;
对于D选项,该组数据的平均数为,
方差为.
因此,B选项这一组的标准差最大.
故选:B.
(2020·全国卷Ⅲ,文3)设一组样本数据x1,x2,…,xn的方差为0.01,则数据10x1,10x2,…,10xn的方差为( )
A.0.01 B.0.1 C.1 D.10
【答案】C 【解析】因为数据的方差是数据的方差的倍,所以所求数据方差为.
二、填空题
(2025·全国一卷,14)一个箱子里有5个相同的球,分别以1~5标号,若每次取一颗,有放回地取三次,记至少取出一次的球的个数X,则数学期望_________.
【答案】
【解析】法一:依题意,的可能取值为1、2、3,总的选取可能数为,
其中:三次抽取同一球,选择球的编号有5种方式,故,
:恰好两种不同球被取出(即一球出现两次,另一球出现一次),选取出现两次的球有5种方式,选取出现一次的球有4种方式,其中选取出现一次球的位置有3种可能,故事件的可能情况有种,故,
:三种不同球被取出,由排列数可知事件的可能情有况种,故,
所以.
法二:依题意,假设随机变量,其中:
其中,则,
由于球的对称性,易知所有相等,
则由期望的线性性质,得,
由题意可知,球在单次抽取中未被取出的概率为,
由于抽取独立,三次均未取出球的概率为,
因此球至少被取出一次的概率为:,故,
所以.
(2024·新高考Ⅰ,14)甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为_________.
【答案】
【解析】设甲在四轮游戏中的得分分别为,四轮的总得分为.
对于任意一轮,甲乙两人在该轮出示每张牌的概率都均等,其中使得甲获胜的出牌组合有六种,从而甲在该轮获胜的概率,所以.
从而.
记.
如果甲得0分,则组合方式是唯一的:必定是甲出1,3,5,7分别对应乙出2,4,6,8,所以;
如果甲得3分,则组合方式也是唯一的:必定是甲出1,3,5,7分别对应乙出8,2,4,6,所以.
而的所有可能取值是0,1,2,3,故,.
所以,,两式相减即得,故.
所以甲总得分不小于2的概率为.
(2024·新高考Ⅱ,14)在如图的4×4方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有________种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是________.
【答案】 ①. 24 ②. 112
【解析】由题意知,选4个方格,每行和每列均恰有一个方格被选中,
则第一列有4个方格可选,第二列有3个方格可选,
第三列有2个方格可选,第四列有1个方格可选,
所以共有种选法;
每种选法可标记为,分别表示第一、二、三、四列的数字,
则所有的可能结果为:




所以选中的方格中,的4个数之和最大,为.
故答案为:24;112
(2024·全国甲,理13)的展开式中,各项系数的最大值是______.
【答案】5
【解析】由题展开式通项公式为,且,
设展开式中第项系数最大,则,,即,又,故,所以展开式中系数最大的项是第9项,且该项系数为.
(2024·全国甲,理16)有6个相同的球,分别标有数字1、2、3、4、5、6,从中不放回地随机抽取3次,每次取1个球.记为前两次取出的球上数字的平均值,为取出的三个球上数字的平均值,则与差的绝对值不超过的概率是______.
【答案】
【解析】从6个不同的球中不放回地抽取3次,共有种,设前两个球的号码为,第三个球的号码为,则,故,故,
故, 若,则,则为:,故有2种,
若,则,则为:,
,故有10种,
当,则,则为:
,,
故有16种,
当,则,同理有16种,
当,则,同理有10种,
当,则,同理有2种,
共与的差的绝对值不超过时不同的抽取方法总数为,
故所求概率为.
(2023·新高考Ⅰ,13)某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有________种(用数字作答).
【答案】64
【解析】(1)当从8门课中选修2门,则不同的选课方案共有种;
(2)当从8门课中选修3门,
①若体育类选修课1门,则不同的选课方案共有种;
②若体育类选修课2门,则不同的选课方案共有种;
综上所述:不同选课方案共有种.
故答案为:64.
(2022·新高考Ⅰ,13)的展开式中的系数为________________(用数字作答).
【答案】-28
【解析】因为,所以的展开式中含的项为,的展开式中的系数为-28.
(2022·新高考Ⅱ,13)已知随机变量X服从正态分布,且,则____________.
【答案】##.
【解析】
【分析】根据正态分布曲线的性质即可解出.
【详解】因为,所以,因此.
故答案为:.
(2022·全国甲卷,理15)从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________.
【答案】.
【解析】从正方体的个顶点中任取个,有个结果,这个点在同一个平面的有个,故所求概率.
(2022·全国乙卷,理13)从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.
【答案】##0.3
【解析】解法一:设这5名同学分别为甲,乙,1,2,3,从5名同学中随机选3名,
有:(甲,乙,1),(甲,乙,2),(甲,乙,3),(甲,1,2),(甲,1,3),(甲,2,3),(乙,1,2),(乙,1,3),(乙,2,3),(1,2,3),共10种选法;
其中,甲、乙都入选的选法有3种,故所求概率.
故答案为:.
解法二:从5名同学中随机选3名的方法数为
甲、乙都入选的方法数为,所以甲、乙都入选的概率
故答案为:
(2022·全国乙卷,文14)从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.
【答案】
【解析】解法一:设这5名同学分别为甲,乙,1,2,3,从5名同学中随机选3名,
有:(甲,乙,1),(甲,乙,2),(甲,乙,3),(甲,1,2),(甲,1,3),(甲,2,3),(乙,1,2),(乙,1,3),(乙,2,3),(1,2,3),共10种选法;
其中,甲、乙都入选的选法有3种,故所求概率.
故答案为:.
解法二:从5名同学中随机选3名的方法数为
甲、乙都入选的方法数为,所以甲、乙都入选的概率
故答案为:
(2020·全国卷Ⅱ,理14)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.
【答案】
【解析】4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,先取2名同学看作一组,选法有:,
现在可看成是3组同学分配到3个小区,分法有:,
根据分步乘法原理,可得不同的安排方法种
故答案为:.
(2020·全国卷Ⅲ,理14)的展开式中常数项是__________(用数字作答).
【答案】
【解析】,其二项式展开通项:
当,解得,的展开式中常数项是:.
故答案为:.
三、解答题
(2025·全国一卷,15)为研究某疾病与超声波检查结果的关系,从做过超声波检查的人群中随机调查了1000人,得到如下列联表:
超声波检查结果 组别 正常 不正常 合计
患该疾病 20 180 200
未患该疾病 780 20 800
合计 800 200 1000
(1)记超声波检查结果不正常者患该疾病的概率为P,求P的估计值;
(2)根据小概率值的独立性检验,分析超声波检查结果是否与患该疾病有关.
附,
0.050 0.010 0.001
3.841 6.635 10.828
【解析】(1)根据表格可知,检查结果不正常的人中有人患病,所以的估计值为;
(2)零假设为:超声波检查结果与患病无关,
根据表中数据可得,,
根据小概率值的独立性检验,我们推断不成立,即认为超声波检查结果与患该病有关,该推断犯错误的概率不超过.
(2025·全国二卷,19)甲、乙两人进行乒乓球练习,每个球胜者得1分,负者得0分.设每个球甲胜的概率为,乙胜的概率为q,,且各球的胜负相互独立,对正整数,记为打完k个球后甲比乙至少多得2分的概率,为打完k个球后乙比甲至少多得2分的概率.
(1)求(用p表示);(2)若,求p;(3)证明:对任意正整数m,.
【答案】(1),
(2)
(3)证明过程见解析
【解析】(1)为打完3个球后甲比乙至少多得两分的概率,故只能甲胜三场,
故所求为,为打完4个球后甲比乙至少多得两分的概率,故甲胜三场或四场,
故所求为;
(2)由(1)得,,同理,若,,
则,
由于,所以,解得;
(3)我们有

以及

至此我们得到,,同理有,.
故,即.
另一方面,由于
且同理有.
故结合,
就能得到,即,证毕.
(2024·新高考Ⅱ,18)某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮3次,若3次都未投中,则该队被淘汰,比赛成员为0分;若至少投中一次,则该队进入第二阶段,由该队的另一名队员投篮3次,每次投中得5分,未投中得0分.该队的比赛成绩为第二阶段的得分总和.某参赛队由甲、乙两名队员组成,设甲每次投中的概率为p,乙每次投中的概率为q,各次投中与否相互独立.
(1)若,,甲参加第一阶段比赛,求甲、乙所在队的比赛成绩不少于5分的概率;
(2)假设,
(i)为使得甲、乙所在队的比赛成绩为15分的概率最大,应该由谁参加第一阶段比赛?
(ii)为使得甲、乙,所在队的比赛成绩的数学期望最大,应该由谁参加第一阶段比赛?
【解析】(1)甲、乙所在队的比赛成绩不少于5分,则甲第一阶段至少投中1次,乙第二阶段也至少投中1次,
比赛成绩不少于5分的概率.
(2)(i)若甲先参加第一阶段比赛,则甲、乙所在队的比赛成绩为15分的概率为,
若乙先参加第一阶段比赛,则甲、乙所在队的比赛成绩为15分的概率为,


,应该由甲参加第一阶段比赛.
(ii)若甲先参加第一阶段比赛,数学成绩的所有可能取值为0,5,10,15,




记乙先参加第一阶段比赛,数学成绩的所有可能取值为0,5,10,15,
同理

因为,则,,
则,
应该由甲参加第一阶段比赛.
(2024·全国甲,理17文18)某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:
优级品 合格品 不合格品 总计
甲车间 26 24 0 50
乙车间 70 28 2 100
总计 96 52 2 150
(1)填写如下列联表:
优级品 非优级品
甲车间
乙车间
能否有的把握认为甲、乙两车间产品的优级品率存在差异?能否有的把握认为甲,乙两车间产品的优级品率存在差异?
(2)已知升级改造前该工厂产品的优级品率,设为升级改造后抽取的n件产品的优级品率.如果,则认为该工厂产品的优级品率提高了,根据抽取的150件产品的数据,能否认为生产线智能化升级改造后,该工厂产品的优级品率提高了?()
附:
0.050 0.010 0.001
k 3.841 6.635 10828
【解析】(1)根据题意可得列联表:
优级品 非优级品
甲车间 26 24
乙车间 70 30
可得,因为,
所以有的把握认为甲、乙两车间产品的优级品率存在差异,没有的把握认为甲,乙两车间产品的优级品率存在差异.
(2)由题意可知:生产线智能化升级改造后,该工厂产品的优级品的频率为,
用频率估计概率可得,
又因为升级改造前该工厂产品的优级品率,
则,
可知,
所以可以认为生产线智能化升级改造后,该工厂产品的优级品率提高了.
(2023·新高考Ⅰ,21)甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投籃,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5.
(1)求第2次投篮的人是乙的概率;
(2)求第次投篮的人是甲的概率;
(3)已知:若随机变量服从两点分布,且,则.记前次(即从第1次到第次投篮)中甲投篮的次数为,求.
【解析】(1)记“第次投篮的人是甲”为事件,“第次投篮的人是乙”为事件,
所以,
.
(2)设,依题可知,,则

即,
构造等比数列,
设,解得,则,
又,所以是首项为,公比为的等比数列,
即.
(3)因为,,
所以当时,,
故.
(2023·新高考Ⅱ,19)某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该指标的频率分布直方图:
利用该指标制定一个检测标准,需要确定临界值c,将该指标大于c的人判定为阳性,小于或等于c的人判定为阴性.此检测标准的漏诊率是将患病者判定为阴性的概率,记为;误诊率是将未患病者判定为阳性的概率,记为.假设数据在组内均匀分布,以事件发生的频率作为相应事件发生的概率.
(1)当漏诊率%时,求临界值c和误诊率;
(2)设函数,当时,求的解析式,并求在区间的最小值.
【答案】(1),;
(2),最小值为.
【解析】(1)依题可知,左边图形第一个小矩形的面积为,所以,
所以,解得:,

(2)当时,

当时,
,
故,
所以在区间的最小值为.
(2023·全国甲卷,理19)一项试验旨在研究臭氧效应.实验方案如下:选40只小白鼠,随机地将其中20只分配到实验组,另外20只分配到对照组,实验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g).
(1)设表示指定的两只小白鼠中分配到对照组的只数,求的分布列和数学期望;
(2)实验结果如下:
对照组的小白鼠体重的增加量从小到大排序为:
15.2 18.8 20.2 21.3 22.5 23.2 25.8 26.5 27.5 30.1
32.6 34.3 34.8 35.6 35.6 35.8 36.2 37.3 40.5 43.2
实验组的小白鼠体重的增加量从小到大排序为:
7.8 9.2 11.4 12.4 13.2 15.5 16.5 18.0 18.8 19.2
19.8 20.2 21.6 22.8 23.6 23.9 25.1 28.2 32.3 36.5
(i)求40只小鼠体重的增加量的中位数m,再分别统计两样本中小于m与不小于的数据的个数,完成如下列联表:
对照组
实验组
(ii)根据(i)中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与正常环境中体重的增加量有差异.
附:
0.100 0.050 0.010
2.706 3.841 6.635
【答案】(1)分布列见解析,
(2)(i);列联表见解析,(ii)能
【解析】(1)依题意,的可能取值为,
则,,,
所以分布列为:
故.
(2)(i)依题意,可知这40只小白鼠体重增量的中位数是将两组数据合在一起,从小到大排后第20位与第21位数据的平均数,观察数据可得第20位为,第21位数据为,
所以,
故列联表为:
合计
对照组 6 14 20
实验组 14 6 20
合计 20 20 40
(ii)由(i)可得,,
所以能有的把握认为小白鼠在高浓度臭氧环境中与正常环境中体重的增加量有差异.
(2023·全国甲卷,文19) 一项试验旨在研究臭氧效应,试验方案如下:选40只小白鼠,随机地将其中20只分配到试验组,另外20只分配到对照组,试验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g).试验结果如下:
对照组的小白鼠体重的增加量从小到大排序为
15.2 18.8 20.2 21.3 22.5 23.2 25.8 26.5 27.5 30.1
32.6 34.3 34.8 35.6 35.6 35.8 36.2 37.3 40.5 43.2
试验组的小白鼠体重的增加量从小到大排序为
7.8 9.2 11.4 12.4 13.2 15.5 16.5 18.0 18.8 19.2
19.8 20.2 21.6 22.8 23.6 23.9 25.1 28.2 32.3 36.5
(1)计算试验组的样本平均数;
(2)(ⅰ)求40只小白鼠体重的增加量的中位数m,再分别统计两样本中小于m与不小于m的数据的个数,完成如下列联表
对照组
试验组
(ⅱ)根据(i)中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?
附:,
0.100 0.050 0.010
2.706 3.841 6.635
【解析】(1)试验组样本平均数为:
(2)(i)依题意,可知这40只小鼠体重的中位数是将两组数据合在一起,从小到大排后第20位与第21位数据的平均数,
由原数据可得第11位数据为,后续依次为,
故第20位为,第21位数据为,
所以,
故列联表为:
合计
对照组 6 14 20
试验组 14 6 20
合计 20 20 40
(ii)由(i)可得,,
所以能有的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异.
(2023·全国乙卷,理17)某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为,.试验结果如下:
试验序号 1 2 3 4 5 6 7 8 9 10
伸缩率 545 533 551 522 575 544 541 568 596 548
伸缩率 536 527 543 530 560 533 522 550 576 536
记,记的样本平均数为,样本方差为.
(1)求,;
(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高)
【答案】(1),;(2)认为甲工艺处理后橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.
【解析】(1),


的值分别为: ,

(2)由(1)知:,,故有,
所以认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.
(2023·全国乙卷,文17)某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为,.试验结果如下:
试验序号 1 2 3 4 5 6 7 8 9 10
伸缩率 545 533 551 522 575 544 541 568 596 548
伸缩率 536 527 543 530 560 533 522 550 576 536
记,记样本平均数为,样本方差为.
(1)求,;
(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高)
【解析】(1),


的值分别为: ,

(2)由(1)知:,,故有,
所以认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.
(2022·新高考Ⅰ,20)一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:
不够良好 良好
病例组 40 60
对照组 10 90
(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?
(2)从该地的人群中任选一人,A表示事件“选到的人卫生习惯不够良好”,B表示事件“选到的人患有该疾病”.与的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R.
(ⅰ)证明:;
(ⅱ)利用该调查数据,给出的估计值,并利用(ⅰ)的结果给出R的估计值.
附,
0.050 0.010 0.001
k 3.841 6.635 10.828
【解析】(1)由已知,
又,,
所以有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异.
(2)(i)因为,
所以,所以,
(ii) 由已知,,又,,
所以.
(2022·新高考Ⅱ,19)在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:
(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表);
(2)估计该地区一位这种疾病患者的年龄位于区间的概率;
(3)已知该地区这种疾病的患病率为,该地区年龄位于区间的人口占该地区总人口的.从该地区中任选一人,若此人的年龄位于区间,求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001).
【解析】(1)平均年龄
(岁).
(2)设{一人患这种疾病的年龄在区间},所以

(3)设“任选一人年龄位于区间[4050)”,“从该地区中任选一人患这种疾病”,
则由已知得:,
则由条件概率公式可得,从该地区中任选一人,若此人的年龄位于区间,此人患这种疾病的概率为.
(2022·全国甲卷,理19)甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.
(1)求甲学校获得冠军的概率;
(2)用X表示乙学校的总得分,求X的分布列与期望.
【解析】(1)设甲在三个项目中获胜的事件依次记为,所以甲学校获得冠军的概率为

(2)依题可知,的可能取值为,所以,
,



即的分布列为
0 10 20 30
0.16 0.44 0.34 0.06
期望.
(2022·全国甲卷,文17) 甲、乙两城之间的长途客车均由A和B两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:
准点班次数 未准点班次数
A 240 20
B 210 30
(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;
(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?
附:,
0.100 0.050 0.010
2.706 3.841 6.635
【解析】(1)根据表中数据,A共有班次260次,准点班次有240次,设A家公司长途客车准点事件为M,则;
B共有班次240次,准点班次有210次,设B家公司长途客车准点事件为N,则.
A家公司长途客车准点的概率为;B家公司长途客车准点的概率为.
(2)列联表
准点班次数 未准点班次数 合计
A 240 20 260
B 210 30 240
合计 450 50 500
=,
根据临界值表可知,有的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关.
(2022·全国乙卷,文理19) 某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:)和材积量(单位:),得到如下数据:
样本号i 1 2 3 4 5 6 7 8 9 10 总和
根部横截面积 0.04 0.06 0.04 0.08 0.08 0.05 0.05 0.07 0.07 0.06 0.6
材积量 0.25 0.40 0.22 0.54 0.51 0.34 0.36 0.46 0.42 0.40 3.9
并计算得.
(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;
(2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);
(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.
附:相关系数.
【解析】(1)样本中10棵这种树木的根部横截面积的平均值,样本中10棵这种树木的材积量的平均值,据此可估计该林区这种树木平均一棵的根部横截面积为,
平均一棵的材积量为.
(2)
则.
(3)设该林区这种树木的总材积量的估计值为,又已知树木的材积量与其根部横截面积近似成正比,
可得,解之得.
则该林区这种树木的总材积量估计为.
(2021·新高考Ⅰ,18)某学校组织“一带一路”知识竞赛,有A,B两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束:若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分:B类问题中的每个问题回答正确得80分,否则得0分,己知小明能正确回答A类问题的概率为0.8,能正确回答B类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.
(1)若小明先回答A类问题,记为小明的累计得分,求的分布列;
(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.
【解析】(1)由题可知,的所有可能取值为,,.



所以的分布列为
(2)由(1)知,.
若小明先回答问题,记为小明的累计得分,则的所有可能取值为,,.



所以.
因为,所以小明应选择先回答类问题.
(2021·新高考Ⅱ,21)一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代……,该微生物每代繁殖个数是相互独立的且有相同的分布列,设X表示1个微生物个体繁殖下一代的个数,.
(1)已知,求;
(2)设p表示该种微生物经过多代繁殖后临近灭绝的概率,p是关于x的方程:的一个最小正实根,求证:当时,,当时,;
(3)根据你的理解说明(2)问结论的实际含义.
【解析】(1).
(2)设,
因为,故,
若,则,故.

因为,,
故有两个不同零点,且,
且时,;时,;
故在,上为增函数,在上为减函数,
若,因为在为增函数且,
而当时,因为在上为减函数,故,
故为的一个最小正实根,
若,因为且在上为减函数,故1为的一个最小正实根,
综上,若,则.
若,则,故.
此时,,
故有两个不同零点,且,
且时,;时,;
故在,上为增函数,在上为减函数,
而,故,
又,故在存在一个零点,且.
所以为的一个最小正实根,此时,
故当时,.
(3)意义:每一个该种微生物繁殖后代的平均数不超过1,则若干代必然灭绝,若繁殖后代的平均数超过1,则若干代后被灭绝的概率小于1.
(2021·全国甲卷,文理17)甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:
一级品 二级品 合计
甲机床 150 50 200
乙机床 120 80 200
合计 270 130 400
(1)甲机床、乙机床生产的产品中一级品的频率分别是多少
(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异
附:
0.050 0.010 0.001
k 3.841 6.635 10.828
【解析】(1)甲机床生产的产品中的一级品的频率为,
乙机床生产的产品中的一级品的频率为.
(2),
故能有99%的把握认为甲机床的产品与乙机床的产品质量有差异.
(2021·全国乙卷,文理17)某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:
旧设备 9.8 10.3 10.0 10.2 9.9 9.8 10.0 10.1 10.2 9.7
新设备 10.1 10.4 10.1 10.0 10.1 10.3 10.6 10.5 10.4 10.5
旧设备和新设备生产产品的该项指标的样本平均数分别记为和,样本方差分别记为和.
(1)求,,,;
(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).
【解析】(1),


.
(2)依题意,,,
,所以新设备生产产品的该项指标的均值较旧设备有显著提高.
(2020·新高考Ⅰ,19)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和SO2浓度(单位:μg/m3),得下表:
SO2 PM2.5 [0,50] (50,150] (150,475]
[0,35] 32 18 4
(35,75] 6 8 12
(75,115] 3 7 10
(1)估计事件“该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过150”的概率;
(2)根据所给数据,完成下面的2×2列联表:
SO2 PM2.5 [0,150] (150,475]
[0,75]
(75,115]
(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与SO2浓度有关?
附:K2=
P(K2≥k) 0.050 0.010 0.001
k 3.841 6.635 10.828
【解析】(1)用频率估计概率,从而得到“该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过150”的概率P==0.64;
(2)根据所给数据,可得下面的2×2列联表:
SO2 PM2.5 [0,150] (150,475]
[0,75] 64 16
(75,115] 10 10
(3)根据列联表中的数据可得

因为根据临界值表可知,有的把握认为该市一天空气中浓度与浓度有关.
(2020·全国卷Ⅰ,理19)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为,
(1)求甲连胜四场的概率;
(2)求需要进行第五场比赛的概率;
(3)求丙最终获胜的概率.
【解析】(1)记事件甲连胜四场,则;
(2)记事件为甲输,事件为乙输,事件为丙输,
则四局内结束比赛的概率为,
所以,需要进行第五场比赛的概率为;
(3)记事件为甲输,事件为乙输,事件为丙输,记事件甲赢,记事件丙赢,
则甲赢的基本事件包括:、、、、、、、,
所以,甲赢的概率为.
由对称性可知,乙赢的概率和甲赢的概率相等,
所以丙赢的概率为.
方法2:情形一:进行四场比赛丙获胜,概率
情形二:进行五场比赛,意味着丙一定会输掉一场比赛,且一定赢下第五场比赛.
①丙第二场输,则第三场不打,第四场第五场均要赢,此时概率为;
②丙第三场输,则第二场赢,第四场不打,第五场赢,此时概率为
③丙第四场输,则第二场赢,第三场赢,第五场赢(可能第四场对手未尝败绩,另一对手已淘汰,此时
丙仍奋战第五场),此时概率为
综上所述,丙最终获胜的概率为.
(2020·全国卷Ⅰ,文17)某厂接受了一项加工业务,加工出来产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:
甲分厂产品等级的频数分布表
等级 A B C D
频数 40 20 20 20
乙分厂产品等级的频数分布表
等级 A B C D
频数 28 17 34 21
(1)分别估计甲、乙两分厂加工出来一件产品为A级品的概率;
(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务
【解析】(1)由表可知,甲厂加工出来的一件产品为级品的概率为,乙厂加工出来的一件产品为级品的概率为;
(2)甲分厂加工件产品的总利润为元,
所以甲分厂加工件产品的平均利润为元每件;
乙分厂加工件产品的总利润为
元,
所以乙分厂加工件产品的平均利润为元每件.
故厂家选择甲分厂承接加工任务.
(2020·全国卷Ⅱ,文理18)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(xi,yi)(i=1,2,…,20),其中xi和yi分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得,,,,.
(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);
(2)求样本(xi,yi)(i=1,2,…,20)的相关系数(精确到0.01);
(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.
附:相关系数r=,=1.414.
【解析】(1)样区野生动物平均数为,
地块数为200,该地区这种野生动物的估计值为
(2)样本的相关系数为:
(3)由于各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样先将植物覆盖面积按优中差分成三层,在各层内按比例抽取样本,在每层内用简单随机抽样法抽取样本即可.
(2020·全国卷Ⅲ,理18)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):
锻炼人次 空气质量等级 [0,200] (200,400] (400,600]
1(优) 2 16 25
2(良) 5 10 12
3(轻度污染) 6 7 8
4(中度污染) 7 2 0
(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;
(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);
(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?
人次≤400 人次>400
空气质量好
空气质量不好
附:,
P(K2≥k) 0.050 0.010 0.001
k 3.841 6.635 10.828
【解析】(1)由频数分布表可知,该市一天的空气质量等级为的概率为,等级为的概率为,等级为的概率为,等级为的概率为;
(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为
(3)列联表如下:
人次 人次
空气质量不好
空气质量好

因此,有的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.
(2020·全国卷Ⅲ,文18)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):
锻炼人次 空气质量等级 [0,200] (200,400] (400,600]
1(优) 2 16 25
2(良) 5 10 12
3(轻度污染) 6 7 8
4(中度污染) 7 2 0
(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;
(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);
(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?
人次≤400 人次>400
空气质量好
空气质量不好
附:,
P(K2≥k) 0.050 0.010 0.001
k 3.841 6.635 10.828
【解析】(1)由频数分布表可知,该市一天空气质量等级为的概率为,等级为的概率为,等级为的概率为,等级为的概率为;
(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为
(3)列联表如下:
人次 人次
空气质量不好
空气质量好

因此,有的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)
同课章节目录