专题20 电磁综合计算(原卷+解析卷)——【好题汇编】五年(2021-2025)高考物理真题分类汇编(新高考专用)

文档属性

名称 专题20 电磁综合计算(原卷+解析卷)——【好题汇编】五年(2021-2025)高考物理真题分类汇编(新高考专用)
格式 zip
文件大小 16.9MB
资源类型 试卷
版本资源 通用版
科目 物理
更新时间 2025-07-04 13:13:45

文档简介

中小学教育资源及组卷应用平台
专题20 电磁综合计算
1.(2025·黑吉辽蒙卷·高考真题)如图(a),固定在光滑绝缘水平面上的单匝正方形导体框,置于始终竖直向下的匀强磁场中,边与磁场边界平行,边中点位于磁场边界。导体框的质量,电阻、边长。磁感应强度B随时间t连续变化,内图像如图(b)所示。导体框中的感应电流I与时间t关系图像如图(c)所示,其中内的图像未画出,规定顺时针方向为电流正方向。
(1)求时边受到的安培力大小F;
(2)画出图(b)中内图像(无需写出计算过程);
(3)从开始,磁场不再随时间变化。之后导体框解除固定,给导体框一个向右的初速度,求ad边离开磁场时的速度大小。
【答案】(1)0.015N
(2)
(3)0.01m/s
【详解】(1)由法拉第电磁感应定律
由闭合电路欧姆定律可知,内线框中的感应电流大小为
由图(b)可知,时磁感应强度大小为
所以此时导线框的安培力大小为
(2)内线框内的感应电流大小为,根据楞次定律及安培定则可知感应电流方向为顺时针,由图(c)可知内的感应电流大小为
方向为逆时针,根据欧姆定律可知内的感应电动势大小为
由法拉第电磁感应定律
可知内磁感应强度的变化率为
解得时磁感应强度大小为
方向垂直于纸面向里,故的磁场随时间变化图为
(3)由动量定理可知
其中
联立解得经过磁场边界的速度大小为
2.(2025·河南·高考真题)如图,水平虚线上方区域有垂直于纸面向外的匀强磁场,下方区域有竖直向上的匀强电场。质量为m、带电量为q()的粒子从磁场中的a点以速度向右水平发射,当粒子进入电场时其速度沿右下方向并与水平虚线的夹角为,然后粒子又射出电场重新进入磁场并通过右侧b点,通过b点时其速度方向水平向右。a、b距水平虚线的距离均为h,两点之间的距离为。不计重力。
(1)求磁感应强度的大小;
(2)求电场强度的大小;
(3)若粒子从a点以竖直向下发射,长时间来看,粒子将向左或向右漂移,求漂移速度大小。(一个周期内粒子的位移与周期的比值为漂移速度)
【答案】(1)
(2)
(3)
【详解】(1)根据题意可知,画出粒子的运动轨迹,如图所示
由题意可知
设粒子在磁场中做圆周运动的半径为,由几何关系有
解得
由牛顿第二定律有
解得
(2)根据题意,由对称性可知,粒子射出电场时,速度大小仍为,方向与水平虚线的夹角为,由几何关系可得
则粒子在电场中的运动时间为
沿电场方向上,由牛顿第二定律有
由运动学公式有
联立解得
(3)若粒子从a点以竖直向下发射,画出粒子的运动轨迹,如图所示
由于粒子在磁场中运动的速度大小仍为,粒子在磁场中运动的半径仍为,由几何关系可得,粒子进入电场时速度与虚线的夹角
结合小问2分析可知,粒子在电场中的运动时间为
间的距离为
由几何关系可得

粒子在磁场中的运动时间为
则有
综上所述可知,粒子每隔时间向右移动,则漂移速度大小
3.(2025·陕晋青宁卷·高考真题)电子比荷是描述电子性质的重要物理量。在标准理想二极管中利用磁控法可测得比荷,一般其电极结构为圆筒面与中心轴线构成的圆柱体系统,结构简化如图(a)所示,圆筒足够长。在O点有一电子源,向空间中各个方向发射速度大小为的电子,某时刻起筒内加大小可调节且方向沿中心轴向下的匀强磁场,筒的横截面及轴截面示意图如图(b)所示,当磁感应强度大小调至时,恰好没有电子落到筒壁上,不计电子间相互作用及其重力的影响。求:(R、、均为已知量)
(1)电子的比荷;
(2)当磁感应强度大小调至时,筒壁上落有电子的区域面积S。
【答案】(1)
(2)
【详解】(1)当磁场的磁感应强度为时,电子刚好不会落到筒壁上。
则电子以速度垂直轴线方向射出,电子在磁场中做匀速圆周运动,轨迹恰好与圆筒壁相切,轨迹半径为
根据洛伦兹力提供向心力可得
联立解得
(2)磁感应强度调整为后,将电子速度沿垂直轴线和平行轴线方向进行分解,分别设,电子将在垂直轴线方向上做匀速圆周运动,平行轴线方向上做匀速直线运动,电子击中筒壁距离粒子源的最远点时,其垂直轴线方向的圆周运动轨迹与筒壁相切,则轨迹半径仍为
根据洛伦兹力提供向心力可得
联立解得
由射出到相切,经过半个周期,用时
根据速度的合成与分解可知
平行轴线方向运动距离
结合对称性,被电子击中的面积
4.(2025·贵州·高考真题)如图所示,轴水平向右,轴竖直向上,轴垂直纸面向里(图中未画出),在平面里有竖直向上的匀强电场,在的平面下方存在垂直纸面向里的匀强磁场,的平面上方有垂直纸面向里的匀强磁场(未知)。有一带正电的粒子,质量为,从坐标原点出发,沿轴正方向以速度射出后做圆周运动,其中,,点坐标。已知重力加速度为,粒子电荷量为。求:
(1)电场强度的大小及该粒子第一次经过平面时的位置对应的坐标值;
(2)当该带电粒子沿轴正方向飞出到达点时间最小时,求的大小;
(3)若将电场改成沿y轴正方向,粒子同样从坐标原点沿x轴以速度射出,求粒子的轨迹方程。
【答案】(1),
(2)
(3)
【详解】(1)由题意可知,粒子受到重力、洛伦兹力和电场力做匀速圆周运动,可以判断粒子受到的电场力与重力平衡,则
解得
粒子做匀速圆周运动,圆周运动轨迹如图所示
洛伦兹力提供向心力得
解得粒子运动的轨道半径
根据圆周运动轨迹,由几何关系得
代入数据解得。
(2)粒子做匀速圆周运动,可能的运动轨迹如图所示
设粒子进入磁场中速度方向与磁场分界面成角,由几何关系可得
可解得
设粒子在磁场中运动的轨道半径为,根据圆周运动轨迹可知粒子运动到点应满足
当取最小值时,运动时间最短。所以当时,运动时间最短,代入的值解得
根据
联立可得
当该带电粒子沿轴正方向飞出到达点时间最小时,的大小为。
(3)若将电场方向改为轴方向正方向,由受力分析,粒子受到沿轴正方向的洛伦兹力、沿轴负方向的重力、沿轴正方向的电场力,根据
解得粒子受到的洛伦兹力大小为
正好与重力相平衡,所以粒子在轴正方向做匀加速直线运动,有
由牛顿第二定律有
粒子在轴正方向做匀加速直线运动,有
联立解得轨迹方程
5.(2025·云南·高考真题)如图所示,光滑水平面上有一个长为L、宽为d的长方体空绝缘箱,其四周紧固一电阻为R的水平矩形导线框,箱子与导线框的总质量为M。与箱子右侧壁平行的磁场边界平面如截面图中虚线PQ所示,边界右侧存在范围足够大的匀强磁场,其磁感应强度大小为B、方向竖直向下。时刻,箱子在水平向右的恒力F(大小未知)作用下由静止开始做匀加速直线运动,这时箱子左侧壁上距离箱底h处、质量为m的木块(视为质点)恰好能与箱子保持相对静止。箱子右侧壁进入磁场瞬间,木块与箱子分离;箱子完全进入磁场前某时刻,木块落到箱子底部,且箱子与木块均不反弹(木块下落过程中与箱子侧壁无碰撞);木块落到箱子底部时即撤去F。运动过程中,箱子右侧壁始终与磁场边界平行,忽略箱壁厚度、箱子形变、导线粗细及空气阻力。木块与箱子内壁间的动摩擦因数为μ,假设最大静摩擦力等于滑动摩擦力,重力加速度为g。
(1)求F的大小;
(2)求时刻,箱子右侧壁距磁场边界的最小距离;
(3)若时刻,箱子右侧壁距磁场边界的距离为s(s大于(2)问中最小距离),求最终木块与箱子的速度大小。
【答案】(1)
(2)
(3)见解析
【详解】(1)对木块与箱子整体受力分析由牛顿第二定律
对木块受力分析,水平方向由牛顿第二定律
竖直方向由平衡条件
联立可得
(2)设箱子刚进入磁场中时速度为v,产生的感应电动势为
由闭合电路欧姆定律得,感应电流为
安培力大小为
联立可得
若要使两物体分离,此时有
其中
解得
由运动学公式
解得
故时刻,箱子右侧壁距磁场边界的最小距离为
(3)水平方向由运动学公式
竖直方向有
其中
可得力F作用的总时间为
水平方向对系统由动量定理
其中
联立可得
当时,最终木块与箱子的速度大小为
当时,最终木块与箱子的速度大小为
6.(2025·山东·高考真题)如图所示,平行轨道的间距为L,轨道平面与水平面夹角为α,二者的交线与轨道垂直,以轨道上O点为坐标原点,沿轨道向下为x轴正方向建立坐标系。轨道之间存在区域I、Ⅱ,区域I( 2L ≤ x < L)内充满磁感应强度大小为B、方向竖直向上的匀强磁场;区域Ⅱ(x ≥ 0)内充满方向垂直轨道平面向上的磁场,磁感应强度大小B1 = k1t+k2x,k1和k2均为大于零的常量,该磁场可视为由随时间t均匀增加的匀强磁场和随x轴坐标均匀增加的磁场叠加而成。将质量为m、边长为L、电阻为R的匀质正方形闭合金属框epqf时放置在轨道上,pq边与轨道垂直,由静止释放。已知轨道绝缘、光滑、足够长且不可移动,磁场上、下边界均与x轴垂直,整个过程中金属框不发生形变,重力加速度大小为g,不计自感。
(1)若金属框从开始进入到完全离开区域I的过程中匀速运动,求金属框匀速运动的速率v和释放时pq边与区域I上边界的距离s;
(2)金属框沿轨道下滑,当ef边刚进入区域Ⅱ时开始计时(t = 0),此时金属框的速率为v0,若,求从开始计时到金属框达到平衡状态的过程中,ef边移动的距离d。
【答案】(1),
(2)
【详解】(1)金属框从开始进入到完全离开区域I的过程中,金属框只有一条边切割磁感线,根据楞次定律可得,安培力水平向左,则
切割磁感线产生的电动势
线框中电流
线框做匀速直线运动,则
解得金属框从开始进入到完全离开区域I的过程的速率
金属框开始释放到pq边进入磁场的过程中,只有重力做功,由动能定理可得
可得释放时pq边与区域I上边界的距离
(2)当ef边刚进入区域Ⅱ时开始计时(t = 0),设线框ef边到O点的距离为s时,线框中产生的感应电动势,其中
此时线路中的感应电流
线框pq边受到沿轨道向上的安培力,大小为
线框ef边受到沿轨道向下的安培力,大小为
则线框受到的安培力
代入
化简得
当线框平衡时,可知此时线框速率为0。
则从开始计时到金属框达到平衡状态的过程中,根据动量定理可得

对时间累积求和可得
可得
7.(2025·河北·高考真题)某电磁助推装置设计如图,超级电容器经调控系统为电路提供1000A的恒定电流,水平固定的平行长直导轨处于垂直水平面的匀强磁场中,a可视为始终垂直导轨的导体棒,b为表面绝缘的无人机。初始时a静止于MM′处,b静止于a右侧某处。现将开关S接1端,a与b正碰后锁定并一起运动,损失动能全部储存为弹性势能。当a运行至NN′时将S接2端,同时解除锁定,所储势能瞬间全部转化为动能,a与b分离。已知电容器电容C为10F,导轨间距为0.5m,磁感应强度大小为1T,MM′到NN′的距离为5m,a、b质量分别为2kg、8kg,a在导轨间的电阻为0.01Ω。碰撞、分离时间极短,各部分始终接触良好,不计导轨电阻、摩擦和储能耗损,忽略电流对磁场的影响。
(1)若分离后某时刻a的速度大小为10m/s,求此时通过a的电流大小。
(2)忽略a、b所受空气阻力,当a与b的初始间距为1.25m时,求b分离后的速度大小,分析其是否为b能够获得的最大速度;并求a运动过程中电容器的电压减小量。
(3)忽略a所受空气阻力,若b所受空气阻力大小与其速度v的关系为f = kv2(k = 0.025N·s2/m2),初始位置与(2)问一致,试估算a运行至NN′时。a分离前的速度大小能否达到(2)问中分离前速度的99%,并给出结论。(0.992 = 0.980l)
【答案】(1)500A
(2)vb1 = 25m/s,能,ΔU = 40V
(3)能
【详解】(1)分离后a切割磁感线有E = BLv
则通过a的电流
解得I = 500A
(2)由于超级电容器经调控系统为电路提供I0 = 1000A的恒定电流,则当a与b的初始间距为1.25m时a与b碰撞前的速度为
a与b碰撞时根据动量守恒和能量守恒有mava = (ma+mb)v共,
a与b整体从MM′到NN′的过程中有
a与b分离时根据动量守恒和能量守恒有(ma+mb)v共1 = mava1+mbvb1,
联立解得vb1 = 25m/s
由于a和ab组合体均做匀变速直线运动,分别有,
则电容器流出的电荷量有Δq = I0(t1+t2)
a运动过程中电容器的电压减小量
(3)b所受f = kv2(k = 0.025N·s2/m2)的空气阻力后,a与b整体从MM′到NN′的过程中有(BI0L-kv2) = (ma+mb)a,
求解出

a分离前的速度大小能达到(2)问中分离前速度的99%。
8.(2025·海南·高考真题)间距为L的金属导轨倾斜部分光滑,水平部分粗糙且平滑相接,导轨上方接有电源和开关,倾斜导轨与水平面夹角,处于垂直于导轨平面向上的匀强磁场中,水平导轨处于垂直竖直向下的匀强磁场中,磁感应强度大小均为,两相同导体棒、与水平导轨的动摩擦因数,最大静摩擦力等于滑动摩擦力,两棒质量均,接入电路中的电阻均为,棒仅在水平导轨上运动,两导体棒在运动过程中始终与导轨垂直并接触良好,且不互相碰撞,忽略金属导轨的电阻,重力加速度为。
(1)锁定水平导轨上的棒,闭合开关,棒静止在倾斜导轨上,求通过棒的电流;断开开关,同时解除棒的锁定,当棒下滑距离为时,棒开始运动,求棒从解除锁定到开始运动过程中,棒产生的焦耳热;
(2)此后棒在下滑过程中,电流达到稳定,求此时、棒的速度大小之差;
(3)棒中电流稳定之后继续下滑,从棒到达水平导轨开始计时,时刻棒速度为零,加速度不为零,此后某时刻,棒的加速度为零,速度不为零,求从时刻到某时刻,、的路程之差。
【答案】(1),
(2)
(3)
【详解】(1)棒静止在倾斜导轨上,根据平衡条件可得,
解得通过棒的电流为
设当棒下滑距离为时速度为,棒开始运动时回路中的电流为,此时对cd棒有
同时有,
分析可知棒从解除锁定到开始运动过程中,棒产生的焦耳热与ab棒产生的焦耳热相等,整个过程根据能量守恒可得
联立解得棒产生的焦耳热为
(2)分析可知棒在下滑过程中产生的电动势与cd棒在向左运动的过程中产生的电动势方向相反,故当电流达到稳定时,两棒的速度差恒定,故可知此时两棒的加速度相等,由于两棒受到的安培力大小相等,对两棒有,
同时有,
联立解得此时、棒的速度大小之差为
(3)分析可知从开始到时刻,两棒整体所受的合外力为零,故该过程系统动量守恒,设时刻ab棒的速度为,可知
解得
设某时刻时,ab棒速度为,cd棒速度为,棒的加速度为零,可得①
其中
分析可知此时两导体棒产生的电动势方向相反,可得②
从时刻到某时刻间,对两棒分别根据动量定理有,
变式可得,
两式相加得③
同时有 ④
联立①②③④可得从到某时刻,、的路程之差为
9.(2025·安徽·高考真题)如图,平行光滑金属导轨被固定在水平绝缘桌面上,导轨间距为L,右端连接阻值为R的定值电阻。水平导轨上足够长的矩形区域MNPQ存在竖直向上的匀强磁场,磁感应强度大小为B。某装置从MQ左侧沿导轨水平向右发射第1根导体棒,导体棒以初速度v0进入磁场,速度减为0时被锁定;从原位置再发射第2根相同的导体棒,导体棒仍以初速度v0进入磁场,速度减为0时被锁定,以此类推,直到发射第n根相同的导体棒进入磁场。已知导体棒的质量为m,电阻为R,长度恰好等于导轨间距,与导轨接触良好(发射前导体棒与导轨不接触),不计空气阻力、导轨的电阻,忽略回路中的电流对原磁场的影响。
求:
(1)第1根导体棒刚进入磁场时,所受安培力的功率;
(2)第2根导体棒从进入磁场到速度减为0的过程中,其横截面上通过的电荷量;
(3)从第1根导体棒进入磁场到第n根导体棒速度减为0的过程中,导轨右端定值电阻R上产生的总热量。
【答案】(1)
(2)
(3),n = 1,2,3,…
【详解】(1)第1根导体棒刚进入磁场时产生的感应电动势为E = BLv0
则此时回路的电流为
此时导体棒受到的安培力F安 = BIL
此时导体棒受安培力的功率
(2)第2根导体棒从进入磁场到速度减为0的过程中,根据动量定理有
其中
解得
(3)由于每根导体棒均以初速度v0进入磁场,速度减为0时被锁定,则根据能量守恒,每根导体棒进入磁场后产生的总热量均为
第1根导体棒进入磁场到速度减为0的过程中,导轨右端定值电阻R上产生的热量
第2根导体棒进入磁场到速度减为0的过程中,导轨右端定值电阻R上产生的热量
第3根导体棒进入磁场到速度减为0的过程中,导轨右端定值电阻R上产生的热量
第n根导体棒进入磁场到速度减为0的过程中,导轨右端定值电阻R上产生的热量
则从第1根导体棒进入磁场到第n根导体棒速度减为0的过程中,导轨右端定值电阻R上产生的总热量QR = QR1+QR2+QR3+…+QRn
通过分式分解和观察数列的“望远镜求和”性质,得出,n = 1,2,3,…
10.(2025·黑吉辽蒙卷·高考真题)如图,在平面第一、四象限内存在垂直平面向里的匀强磁场,磁感应强度大小为B,一带正电的粒子从点射入磁场,速度方向与y轴正方向夹角,从点射出磁场。已知粒子的电荷量为,质量为m,忽略粒子重力及磁场边缘效应。
(1)求粒子射入磁场的速度大小和在磁场中运动的时间。
(2)若在平面内某点固定一负点电荷,电荷量为,粒子质量取(k为静电力常量),粒子仍沿(1)中的轨迹从M点运动到N点,求射入磁场的速度大小。
(3)在(2)问条件下,粒子从N点射出磁场开始,经时间速度方向首次与N点速度方向相反,求(电荷量为Q的点电荷产生的电场中,取无限远处的电势为0时,与该点电荷距离为r处的电势)。
【答案】(1),
(2)
(3)
【详解】(1)作出正电荷在磁场中运动的轨迹,如图所示
由几何关系可知,正电荷在磁场中做匀速圆周运动的半径为
由洛伦兹力提供向心力
解得正电荷的入射速度大小为
正电荷在磁场中运动的周期为
所以正电荷从M运动到N的时间为
(2)由题意可知,在平面内的负电荷在圆心O处,由牛顿第二定律可知,其中
解得或(舍去)
(3)在(2)的条件下,由题意可知,粒子从N点离开,仅在点电荷的作用下运动,粒子所需要的向心力大于点电荷提供的库仑力,因此粒子无法做匀速圆周运动,即正电荷从N点离开磁场后绕负电荷做椭圆运动,如图所示
由能量守恒定律得
由开普勒第二定律可知
其中
联立解得
由牛顿第二定律
解得
故正电荷从点离开磁场后到首次速度变为与点的射出速度相反的时间为
11.(2025·湖北·高考真题)如图所示,两平行虚线MN、PQ间无磁场。MN左侧区域和PQ右侧区域内均有垂直于纸面向外的匀强磁场,磁感应强度大小分别为B和2B。一质量为m、电荷量为q的带正电粒子从MN左侧O点以大小为的初速度射出,方向平行于MN向上。已知O点到MN的距离为,粒子能回到O点,并在纸面内做周期性运动。不计重力,求
(1)粒子在MN左侧区域中运动轨迹的半径;
(2)粒子第一次和第二次经过PQ时位置的间距;
(3)粒子的运动周期
【答案】(1)
(2)
(3)
【详解】(1)粒子在左侧磁场中运动,根据洛伦兹力提供向心力有
可得
(2)粒子在左侧磁场运动,设从MN射出时速度方向与MN的夹角为θ,由于O到的距离,结合,根据几何关系可知;
粒子在MN和PQ之间做匀速直线运动,所以粒子从PQ进入右侧磁场时与PQ的夹角;粒子在右侧磁场做匀速圆周运动有
解得
根据几何关系可知粒子第一次和第二次经过PQ时位置的间距
(3)由图可知粒子在左边磁场运动的时间
粒子在右边磁场运动的时间
根据对称性可知粒子在MN左侧进出磁场的距离
所以粒子从MN到PQ过程中运动的距离为
粒子在MN和PQ之间运动的时间
综上可知粒子完成完整运动回到O点的周期为
12.(2025·陕晋青宁卷·高考真题)如图,有两个电性相同且质量分别为m、的粒子A、B,初始时刻相距,粒子A以速度沿两粒子连线向速度为0的粒子B运动,此时A、B两粒子系统的电势能等于。经时间粒子B到达P点,此时两粒子速度相同,同时开始给粒子B施加一恒力,方向与速度方向相同。当粒子B的速度为时,粒子A恰好运动至P点且速度为0,A、B粒子间距离恢复为,这时撤去恒力。己知任意两带电粒子系统的电势能与其距离成反比,忽略两粒子所受重力。求:(m、、、均为己知量)
(1)粒子B到达P点时的速度大小;
(2)时间内粒子B的位移大小;
(3)恒力作用的时间。
【答案】(1)
(2)
(3)
【详解】(1)根据动量守恒定律,解得
(2)两者共速时设间距为,根据能量守恒定律可知此时电势能为
根据题意电荷间的电势能与它们间的距离成反比,则
两者共速前的过程系统始终动量守恒,根据动量守恒则有
即有
根据位移关系可知
联立解得
(3)对全过程,对系统根据动能定理
对全过程,根据动量定理
联立解得
13.(2025·河南·高考真题)流式细胞仪可对不同类型的细胞进行分类收集,其原理如图所示。仅含有一个A细胞或B细胞的小液滴从喷嘴喷出(另有一些液滴不含细胞),液滴质量均为。当液滴穿过激光束、充电环时被分类充电,使含A、B细胞的液滴分别带上正、负电荷,电荷量均为。随后,液滴以的速度竖直进入长度为的电极板间,板间电场均匀、方向水平向右,电场强度大小为。含细胞的液滴最终被分别收集在极板下方处的A、B收集管中。不计重力、空气阻力以及带电液滴间的作用。求:
(1)含A细胞的液滴离开电场时偏转的距离;
(2)A、B细胞收集管的间距。
【答案】(1)
(2)0.11m
【详解】(1)由题意可知含A细胞的液滴在电场中做类平抛运动,垂直于电极板方向则
沿电极板方向
由牛顿第二定律
解得含A细胞的液滴离开电场时偏转的距离为
(2)含A细胞的液滴离开电场后做匀速直线运动,则

联立解得
有对称性可知则A、B细胞收集管的间距
14.(2025·四川·高考真题)如图所示,真空中固定放置两块较大的平行金属板,板间距为d,下极板接地,板间匀强电场大小恒为E。现有一质量为m、电荷量为q()的金属微粒,从两极板中央O点由静止释放。若微粒与极板碰撞前后瞬间机械能不变,碰撞后电性与极板相同,所带电荷量的绝对值不变。不计微粒重力。求:
(1)微粒第一次到达下极板所需时间;
(2)微粒第一次从上极板回到O点时的动量大小。
【答案】(1)
(2)
【详解】(1)由牛顿第二定律
由运动学公式
联立可得微粒第一次到达下极板所需的时间为
(2)微粒第一次到达下极板时的速度大小为
由于微粒与极板碰撞前后瞬间机械能不变,碰撞后电性与极板相同,所带电荷量的绝对值不变,设微粒碰后第一次到达上极板时的速度大小为,满足
代入解得
同理可得微粒第一次从上极板回到O点时的速度大小为,满足
代入解得
故微粒第一次从上极板回到O点时的动量大小为
15.(2025·江苏·高考真题)如图所示,在电场强度为E,方向竖直向下的匀强电场中,两个相同的带正电粒子a、b同时从O点以初速度射出,速度方向与水平方向夹角均为。已知粒子的质量为m。电荷量为q,不计重力及粒子间相互作用。求:
(1) a运动到最高点的时间t;
(2) a到达最高点时,a、b间的距离H。
【答案】(1)
(2)
【详解】(1)根据题意,不计重力及粒子间相互作用,则竖直方向上,由对球,根据牛顿第二定律有
a运动到最高点的时间,由运动学公式有
联立解得
(2)方法一、根据题意可知,两个小球均在水平方向上做匀速直线运动,且水平方向上的初速度均为,则两小球一直在同一竖直线上,斜上抛的小球竖直方向上运动的位移为
斜下抛的小球竖直方向上运动位移为
则小球a到达最高点时与小球b之间的距离
方法二、两个小球均受到相同电场力,以a球为参考系,球以的速度向下做匀速直线运动,则a到达最高点时,a、b间的距离
16.(2025·北京·高考真题)如图1所示,金属圆筒A接高压电源的正极,其轴线上的金属线B接负极。
(1)设两极间电压为U,求在B极附近电荷量为Q的负电荷到达A极过程中静电力做的功W。
(2)已知筒内距离轴线r处的电场强度大小,其中k为静电力常量,为金属线B单位长度的电荷量。如图2所示,在圆筒内横截面上,电荷量为q、质量为m的粒子绕轴线做半径不同的匀速圆周运动,其半径为和时的总能量分别为和。若,推理分析并比较与的大小。
(3)图1实为某种静电除尘装置原理图,空气分子在B极附近电离,筒内尘埃吸附电子而带负电,在电场作用下最终被A极收集。使分子或原子电离需要一定条件。以电离氢原子为例。根据玻尔原子模型,定态氢原子中电子在特定轨道上绕核做圆周运动,处于特定能量状态,只有当原子获得合适能量才能跃迁或电离。若氢原子处于外电场中,推导说明外电场的电场强度多大能将基态氢原子电离。(可能用到:元电荷,电子质量,静电力常量,基态氢原子轨道半径和能量)
【答案】(1)
(2)
(3)
【详解】(1)在B极附近电荷量为Q的负电荷到达A极过程中静电力做的功
(2)粒子在半径为处绕轴线做匀速圆周运动,其向心力由电场力提供,根据向心力公式

联立可得
解得粒子的动能
设无穷远处电势能为0,粒子从无穷远处移动到半径为r处,电场力做功
其中
代入可得
根据
可得粒子在半径为r处的电势能
粒子的总能量粒子的总能量
则,
根据数学知识可知对数函数在(0,)是增函数,且的二阶导数
所以是凹函数,已知,即是与的等差中项,根据凹函数的性质
移项可得
又因为
可得
(3)方法一:电子绕核做圆周运动,库仑力提供向心力,即
电子的动能
联立可得
根据库仑定律,电子与原子核之间的库仑力
电子从基态轨道半径a处运动到无穷远处,克服库仑力做功
积分可得
则电子在基态轨道半径a处的电势能
根据能量守恒定律,将基态氢原子电离所需的能量等于电子的动能与基态氢原子的势能之和,即
设外电场的电场强度为,电子在电场力作用下获得能量,当电子获得的能量等于将基态氢原子电离所需的能量时,氢原子被电离。电子在电场力作用下获得的能量
联立可得
代入数据解得
方法二:根据功能关系可得
代入数据可得
17.(2025·广西·高考真题)带电粒子绕着带电量为的源电荷做轨迹为椭圆的曲线运动,源电荷固定在椭圆左焦点F上,带电粒子电量为;已知椭圆焦距为c,半长轴为a,电势计算公式为,带电粒子速度的平方与其到电荷的距离的倒数满足如图关系。
(1)求在椭圆轨道半短轴顶点B的电势;
(2)求带电粒子从A到B的运动过程中,电场力对带电粒子做的功;
(3)用推理论证带电粒子动能与电势能之和是否守恒;若守恒,求其动能与电势能之和;若不守恒,说明理由。
【答案】(1)
(2)
(3)守恒,
【详解】(1)由几何关系可知,椭圆上任何一点到两焦点间距离之和为2a,故顶点B距源电荷的距离为
根据电势计算公式可得在椭圆轨道半短轴顶点B的电势为
(2)同理可知,在椭圆轨道半长轴顶点A的电势为
根据电场力做功与电势能的关系可知,带电粒子从A到B的运动过程中,电场力对带电粒子做的功为
(3)设带电粒子的质量为m,假设带电粒子动能与电势能之和守恒,则满足(定值)

根据图像可知关系为一条倾斜直线,故假设成立,将图像中代入关系式可得其动能与电势能之和为
18.(2025·北京·高考真题)北京谱仪是北京正负电子对撞机的一部分,它可以利用带电粒子在磁场中的运动测量粒子的质量、动量等物理量。
考虑带电粒子在磁感应强度为B的匀强磁场中的运动,且不计粒子间相互作用。
(1)一个电荷量为的粒子的速度方向与磁场方向垂直,推导得出粒子的运动周期T与质量m的关系。
(2)两个粒子质量相等、电荷量均为q,粒子1的速度方向与磁场方向垂直,粒子2的速度方向与磁场方向平行。在相同的时间内,粒子1在半径为R的圆周上转过的圆心角为,粒子2运动的距离为d。求:
a.粒子1与粒子2的速度大小之比;
b.粒子2的动量大小。
【答案】(1)
(2)a.;b.
【详解】(1)粒子速度方向与磁场垂直,做匀速圆周运动,洛伦兹力提供向心力
解得轨道半径
圆周运动的周期
将R代入得
比例关系为
(2)a.由题意知粒子1做圆周运动,线速度
粒子2做匀速直线运动,速度
所以速度之比

b.对粒子1,由洛伦兹力提供向心力有
可得
粒子2的动量
结合前面的分析可得
19.(2025·广东·高考真题)如图是研究颗粒碰撞荷电特性装置的简化图。两块水平绝缘平板与两块竖直的平行金属平板相接。金属平板之间接高压电源产生匀强电场。一带电颗粒从上方绝缘平板左端A点处,由静止开始向右下方运动,与下方绝缘平板在B点处碰撞,碰撞时电荷量改变,反弹后离开下方绝缘平板瞬间,颗粒的速度与所受合力垂直,其水平分速度与碰前瞬间相同,竖直分速度大小变为碰前瞬间的k倍()。已知颗粒质量为m,两绝缘平板间的距离为h,两金属平板间的距离为d,B点与左平板的距离为l,电源电压为U,重力加速度为g。忽略空气阻力和电场的边缘效应。求:
(1)颗粒碰撞前的电荷量q。
(2)颗粒在B点碰撞后的电荷量Q。
(3)颗粒从A点开始运动到第二次碰撞过程中,电场力对它做的功W。
【答案】(1)
(2)
(3)若时,,若时,
【详解】(1)根据题意可知,颗粒在竖直方向上做自由落体,则有
水平方向上做匀加速直线运动,则有,
解得
(2)根据题意可知,颗粒与绝缘板第一次碰撞时,竖直分速度为
水平分速度为
则第一次碰撞后竖直分速度为
设第一次碰撞后颗粒速度方向与水平方向夹角为,则有
由于第一次碰撞后瞬间颗粒所受合力与速度方向垂直,则有
联立解得
(3)根据题意可知,由于,则第一次碰撞后颗粒不能返回上绝缘板,若颗粒第二次碰撞是和下绝缘板碰撞,设从第一碰撞后到第二次碰撞前的运动时间为,则有
水平方向上做匀加速直线运动,加速度为
水平方向运动的距离为
则电场对颗粒做的功为
若,则颗粒第二次碰撞是和右侧金属板碰撞,则颗粒从第一次碰撞到第二次碰撞过程中水平方向位移为,颗粒从A点开始运动到第二次碰撞过程中,电场对颗粒做的功为
20.(2025·甘肃·高考真题)在自动化装配车间,常采用电磁驱动的机械臂系统,如图,ab、cd为两条足够长的光滑平行金属导轨,间距为L,电阻忽略不计。导轨置于磁感应强度大小为B,方向垂直纸面向里的匀强磁场中,导轨上有与之垂直并接触良好的金属机械臂1和2,质量均为m,电阻均为R。导轨左侧接有电容为C的电容器。初始时刻,机械臂1以初速度向右运动,机械臂2静止,运动过程中两机械臂不发生碰撞。系统达到稳定状态后,电流为零,两机械臂速度相同。
(1)求初始时刻机械臂1的感应电动势大小和感应电流方向;
(2)系统达到稳定状态前,若机械臂1和2中的电流分别为和,写出两机械臂各自所受安培力的大小;若电容器两端电压为U,写出电容器电荷量的表达式;
(3)稳系统达到稳定状态后两机械臂的速度。若要两机械臂不相撞,二者在初始时刻的间距至少为多少?
【答案】(1),沿机械臂1向上
(2),,
(3),方向向右;
【详解】(1)由法拉第电磁感应定律可知,初始时刻机械臂1的感应电动势大小为
由右手定则可知感应电流方向沿机械臂1向上。
(2)在达到稳定前,两机械臂电流分别为和,两机械臂安培力的大小分别为,
设电容器所带电荷量为Q,则
(3)达到稳定时,两机械臂的速度相同,产生的感应电动势与电容器的电压相等,回路中没有电流结合(2)问的分析可知此时,
同时
可得两机械臂的速度为
方向向右
结合(2)问分析,在任意时刻有

对该式两边取全过程时间的累计有
其中,,

从开始到最终稳定的过程中,对机械臂1和机械臂2分别根据动量定理有

即,
可得
联立解得稳定时的速度和两棒间初始距离的最小值为
21.(2025·四川·高考真题)如图所示,长度均为s的两根光滑金属直导轨MN和PQ固定在水平绝缘桌面上,两者平行且相距l,M、P连线垂直于导轨,定滑轮位于N、Q连线中点正上方h处。MN和PQ单位长度的电阻均为r,M、P间连接一阻值为的电阻。空间有垂直于桌面向下的匀强磁场,磁感应强度大小为B。过定滑轮的不可伸长绝缘轻绳拉动质量为m、电阻不计的金属杆沿导轨向右做匀速直线运动,速度大小为v。零时刻,金属杆位于M、P连线处。金属杆在导轨上时与导轨始终垂直且接触良好,重力加速度大小为g。
(1)金属杆在导轨上运动时,回路的感应电动势;
(2)金属杆在导轨上与M、P连线相距d时,回路的热功率;
(3)金属杆在导轨上保持速度大小v做匀速直线运动的最大路程。
【答案】(1)
(2)
(3)
【详解】(1)金属杆在导轨上运动时,切割磁感线,产生感应电动势
(2)金属杆运动距离d时,电路中的总电阻为
故此时回路中的总的热功率为
(3)设金属杆保持速度大小v做匀速直线运动的最大路程为,此时刚好将要脱离导轨,此时绳子拉力为T,与水平方向的夹角为 ,对金属杆根据受力平衡可知,
根据位置关系有
同时有,
联立解得
22.(2025·重庆·高考真题)如图为小明设计的电容式压力传感器原理示意图,平行板电容器与绝缘侧壁构成密闭气腔。电容器上下极板水平,上极板固定,下极板质量为m、面积为S,可无摩擦上下滑动。初始时腔内气体(视为理想气体)压强为p,极板间距为d。当上下极板均不带电时,外界气体压强改变后,极板间距变为2d,腔内气体温度与初始时相同,重力加速度为g,不计相对介电常数的变化,求此时
(1)腔内气体的压强;
(2)外界气体的压强;
(3)电容器的电容变为初始时的多少倍。
【答案】(1)
(2)
(3)
【详解】(1)根据题意可知腔内气体温度,根据玻意耳定律有
其中,,
可得
(2)对下极板受力分析有
可得
(3)根据平行板电容器的决定式,变化后间距为2d,其他条件均不变
可知电容器的电容变为初始时的。
23.(2025·重庆·高考真题)研究小组设计了一种通过观察粒子在荧光屏上打出的亮点位置来测量粒子速度大小的装置,如题图所示,水平放置的荧光屏上方有沿竖直方向强度大小为B,方向垂直于纸面向外的匀强磁场。O、N、M均为荧光屏上的点,且在纸面内的同一直线上。发射管K(不计长度)位于O点正上方,仅可沿管的方向发射粒子,一端发射带正电粒子,另一端发射带负电粒子,同时发射的正、负粒子速度大小相同,方向相反,比荷均为。已知,,不计粒子所受重力及粒子间相互作用。
(1)若K水平发射的粒子在O点产生光点,求粒子的速度大小。
(2)若K从水平方向逆时针旋转60°,其两端同时发射的正、负粒子恰都能在N点产生光点,求粒子的速度大小。
(3)要使(2)问中发射的带正电粒子恰好在M点产生光点,可在粒子发射t时间后关闭磁场,忽略磁场变化的影响,求t。
【答案】(1)
(2)
(3)
【详解】(1)由题意粒子水平发射后做匀速圆周运动,要在O点产生光点,其运动半径
运动过程中由洛伦兹力提供向心力有
联立解得
(2)若K从水平方向逆时针旋转60°,其两端同时发射的正、负粒子恰都能在N点产生光点,则两端粒子的轨迹正好构成一个完整的圆,且在N点相切,如图
由于K从水平方向逆时针旋转60°,则,根据和和关系可知此时粒子做匀速圆周运动的半径为
根据洛伦兹力提供向心力可知
解得
(3)由题意带正电粒子恰好在M点产生光点,则关闭磁场时粒子速度恰好指向M,过M点做正电粒子轨迹的切线,切点为P,如图
根据前面解析可知,所以
由于,且
根据几何关系可知,而
所以
粒子在磁场中运动的周期,对应的圆心角
所以
24.(2025·湖南·高考真题)如图。直流电源的电动势为,内阻为,滑动变阻器R的最大阻值为,平行板电容器两极板水平放置,板间距离为d,板长为,平行板电容器的右侧存在方向垂直纸面向里的匀强磁场。闭合开关S,当滑片处于滑动变阻器中点时,质量为m的带正电粒子以初速度水平向右从电容器左侧中点a进入电容器,恰好从电容器下极板右侧边缘b点进入磁场,随后又从电容器上极板右侧边缘c点进入电容器,忽略粒子重力和空气阻力。
(1)求粒子所带电荷量q;
(2)求磁感应强度B的大小;
(3)若粒子离开b点时,在平行板电容器的右侧再加一个方向水平向右的匀强电场,场强大小为,求粒子相对于电容器右侧的最远水平距离。
【答案】(1)
(2)
(3)
【详解】(1)粒子在电容器中做类平抛运动,水平方向做匀速直线运动有
竖直方向做匀变速直线运动,
由闭合回路欧姆定律可得
联立可得
(2)粒子进入磁场与竖直方向的夹角为,
粒子在磁场中做匀速圆周运动
由几何关系易得
联立可得
(3)取一个竖直向上的速度使得其对应的洛伦兹力和水平向右的电场力平衡,则有
解得
粒子以速度向上做匀速直线运动,粒子做圆周运动的合速度的竖直方向分速度为
此时合速度与竖直方向的夹角为
合速度为
粒子做圆周运动的半径
最远距离为
25.(2025·云南·高考真题)磁屏蔽技术可以降低外界磁场对屏蔽区域的干扰。如图所示,区域存在垂直平面向里的匀强磁场,其磁感应强度大小为(未知)。第一象限内存在边长为的正方形磁屏蔽区ONPQ,经磁屏蔽后,该区域内的匀强磁场方向仍垂直平面向里,其磁感应强度大小为(未知),但满足。某质量为m、电荷量为的带电粒子通过速度选择器后,在平面内垂直y轴射入区域,经磁场偏转后刚好从ON中点垂直ON射入磁屏蔽区域。速度选择器两极板间电压U、间距d、内部磁感应强度大小已知,不考虑该粒子的重力。
(1)求该粒子通过速度选择器的速率;
(2)求以及y轴上可能检测到该粒子的范围;
(3)定义磁屏蔽效率,若在Q处检测到该粒子,则是多少?
【答案】(1)
(2),
(3)
【详解】(1)由于该粒子在速度选择器中受力平衡,故
其中
则该粒子通过速度选择器的速率为
(2)粒子在区域内左匀速圆周运动,从ON的中点垂直ON射入磁屏蔽区域,由几何关系可知
由洛伦兹力提供给向心力
联立可得
由于,根据洛伦兹力提供给向心力
解得
当时粒子磁屏蔽区向上做匀速直线运动,离开磁屏蔽区后根据左手定则,粒子向左偏转,如图所示
根据洛伦兹力提供向心力
可得
故粒子打在y轴3L处,综上所述y轴上可能检测到该粒子的范围为。
(3)若在Q处检测到该粒子,如图
由几何关系可知
解得
由洛伦兹力提供向心力
联立解得
其中
根据磁屏蔽效率可得若在Q处检测到该粒子,则
26.(2025·浙江·高考真题)同位素相对含量的测量在考古学中有重要应用,其测量系统如图1所示。将少量古木样品碳化、电离后,产生的离子经过静电分析仪ESA-I、磁体-I和高电压清除器,让只含有三种碳同位素、、的离子束(初速度可忽略不计)进入磁体-Ⅱ.磁体-Ⅱ由电势差为U的加速电极P,磁感应强度为B、半径为R的四分之一圆弧细管道和离子接收器F构成。通过调节U,可分离、、三种同位素,其中、的离子被接收器F所接收并计数,它们的离子数百分比与U之间的关系曲线如图2所示,而离子可通过接收器F,进入静电分析仪ESA-Ⅱ,被接收器D接收并计算。
(1)写出中子与发生核反应生成,以及发生衰变生成的核反应方程式:
(2)根据图2写出的离子所对应的U值,并求磁感应强度B的大小(计算结果保留两位有效数字。已知,原子质量单位,元电荷);
(3)如图1所示,ESA-Ⅱ可简化为间距两平行极板,在下极板开有间距的两小孔,仅允许入射角的离子通过。求两极板之间的电势差U:
(4)对古木样品,测得与离子数之比值为;采用同样办法,测得活木头中与的比值为,由于它与外部环境不断进行碳交换,该比例长期保持稳定。试计算古木被砍伐距今的时间(已知的半衰期约为5700年,)
【答案】(1),
(2),
(3)
(4)
【详解】(1)中子与发生核反应生成的核反应方程式为
发生衰变生成的核反应方程式为
(2)在加速电场中,由动能定理得
解得
磁场中,洛伦兹力提供向心力
联立解得

相比,的比荷更大,通过圆形管道所需要的电压更大,通过图2可知当电压为时,与的离子数百分比为,故的离子所对应的U值为。
根据整理得
(3)由题意知,粒子在板间做类斜抛运动,水平方向有

竖直方向有
,,
联立解得
(4)古木中与比值是活木头中的,说明经过衰变后只剩下,已知经过一个半衰期剩下,设经过n个半衰期,则有
解得
则砍伐时间
27.(2025·浙江·高考真题)如图所示,接有恒流源的正方形线框边长、质量m、电阻R,放在光滑水平地面上,线框部分处于垂直地面向下、磁感应强度为B的匀强磁场中。以磁场边界CD上一点为坐标原点,水平向右建立轴,线框中心和一条对角线始终位于轴上。开关S断开,线框保持静止,不计空气阻力。
(1)线框中心位于,闭合开关S后,线框中电流大小为I,求
①闭合开关S瞬间,线框受到的安培力大小;
②线框中心运动至过程中,安培力做功及冲量;
③线框中心运动至时,恒流源提供的电压;
(2)线框中心分别位于和,闭合开关S后,线框中电流大小为I,线框中心分别运动到所需时间分别为和,求。
【答案】(1)①2BIL;②,;③
(2)0
【详解】(1)①闭合开关S瞬间,线框在磁场中的有效长度为
所以线框受到的安培力大小为
②线框运动到x时,安培力大小为
则初始时和线框中心运动至时的安培力分别为

则线框中心运动至过程中,安培力做功为
由动能定理
可得
则安培力的冲量为
③由能量守恒定律
可得,恒流源提供的电压为
(2)类比于简谐运动,则回复力为
根据简谐运动周期公式
由题意可知,两次简谐运动周期相同,两次都从最大位移运动到平衡位置,时间均相同,则有

1.(2024·浙江·高考真题)探究性学习小组设计了一个能在喷镀板的上下表面喷镀不同离子的实验装置,截面如图所示。在xOy平面内,除x轴和虚线之间的区域外,存在磁感应强度大小为B,方向垂直纸面向外的匀强磁场,在无磁场区域内,沿着x轴依次放置离子源、长度为L的喷镀板P、长度均为L的栅极板M和N(由金属细丝组成的网状电极),喷镀板P上表面中点Q的坐标为(1.5L,0),栅极板M中点S的坐标为(3L,0),离子源产生a和b两种正离子,其中a离子质量为m,电荷量为q,b离子的比荷为a离子的倍,经电压U=kU0(其中,k大小可调,a和b离子初速度视为0)的电场加速后,沿着y轴射入上方磁场。经磁场偏转和栅极板N和M间电压UNM调控(UNM>0),a和b离子分别落在喷镀板的上下表面,并立即被吸收且电中和,忽略场的边界效应、离子受到的重力及离子间相互作用力。
(1)若U=U0,求a离子经磁场偏转后,到达x轴上的位置x0(用L表示)。
(2)调节U和UNM,并保持,使a离子能落到喷镀板P上表面任意位置,求:
①U的调节范围(用U0表示);
②b离子落在喷镀板P下表面的区域长度;
(3)要求a和b离子恰好分别落在喷镀板P上下表面的中点,求U和UNM的大小。
【答案】(1)L;(2)①;②;(3),
【详解】(1)对a离子根据动能定理得
a离子在匀强磁场中做匀速圆周运动
a离子经磁场偏转后,到达x轴上的位置,联立解得
(2)①要使a离子能落到喷镀板P上表面任意位置,只能经电压为U的电场加速后再经第一象限匀强磁场偏转一次打在P板上方任意处,则
结合(1)中分析得


②b离子经过电压为U的电场加速后在磁场中第一次偏转打在x轴上的位置坐标为
代入得
故可知b离子能从栅极板(坐标范围为)任意位置经电压为的电场减速射入虚线下方的磁场,此时
b离子先经过电压为U的电场加速再在第一象限磁场中做匀速圆周运动后再经过电压为的电场减速,因为根据动能定理得
同时有

当时,b离子从栅极板左端经虚线下方磁场偏转打在P,此时离栅极板左端的距离为
当时,b离子从栅极板右端经虚线下方磁场偏转打在P,此时离栅极板右端的距离为
故b离子落在喷镀板P下表面的区域长度为
(3)要求a离子落在喷镀板中点Q,由(1)可知
故可得
则b离子从处经过栅极板,若b离子减速一次恰好打在P板下方中央处,设,则同理可知
联立解得
则可得
当减速n次
联立得
当减速n次恰好打在P板下方中央处,可得

解得
即,n取整数,故可得,故可得
2.(2024·甘肃·高考真题)质谱仪是科学研究中的重要仪器,其原理如图所示。Ⅰ为粒子加速器,加速电压为U;Ⅱ为速度选择器,匀强电场的电场强度大小为,方向沿纸面向下,匀强磁场的磁感应强度大小为,方向垂直纸面向里;Ⅲ为偏转分离器,匀强磁场的磁感应强度大小为,方向垂直纸面向里。从S点释放初速度为零的带电粒子(不计重力),加速后进入速度选择器做直线运动、再由O点进入分离器做圆周运动,最后打到照相底片的P点处,运动轨迹如图中虚线所示。
(1)粒子带正电还是负电?求粒子的比荷。
(2)求O点到P点的距离。
(3)若速度选择器Ⅱ中匀强电场的电场强度大小变为(略大于),方向不变,粒子恰好垂直打在速度选择器右挡板的点上。求粒子打在点的速度大小。
【答案】(1)带正电,;(2);(3)
【详解】(1)由于粒子向上偏转,根据左手定则可知粒子带正电;设粒子的质量为m,电荷量为q,粒子进入速度选择器时的速度为,在速度选择器中粒子做匀速直线运动,由平衡条件
在加速电场中,由动能定理
联立解得,粒子的比荷为
(2)由洛伦兹力提供向心力
可得O点到P点的距离为
(3)粒子进入Ⅱ瞬间,粒子受到向上的洛伦兹力
向下的电场力
由于,且
所以通过配速法,如图所示
其中满足
则粒子在速度选择器中水平向右以速度做匀速运动的同时,竖直方向以做匀速圆周运动,当速度转向到水平向右时,满足垂直打在速度选择器右挡板的点的要求,故此时粒子打在点的速度大小为
3.(2024·浙江·高考真题)某小组探究“法拉第圆盘发电机与电动机的功用”,设计了如图所示装置。飞轮由三根长的辐条和金属圆环组成,可绕过其中心的水平固定轴转动,不可伸长细绳绕在圆环上,系着质量的物块,细绳与圆环无相对滑动。飞轮处在方向垂直环面的匀强磁场中,左侧电路通过电刷与转轴和圆环边缘良好接触,开关S可分别与图示中的电路连接。已知电源电动势、内阻、限流电阻、飞轮每根辐条电阻,电路中还有可调电阻R2(待求)和电感L,不计其他电阻和阻力损耗,不计飞轮转轴大小。
(1)开关S掷1,“电动机”提升物块匀速上升时,理想电压表示数。
①判断磁场方向,并求流过电阻R1的电流I;
②求物块匀速上升的速度v。
(2)开关S掷2,物块从静止开始下落,经过一段时间后,物块匀速下降的速度与“电动机”匀速提升物块的速度大小相等,
①求可调电阻R2的阻值;
②求磁感应强度B的大小。
【答案】(1)①垂直纸面向外,10A;②5m/s;(2)①;②2.5T
【详解】(1)①物块上升,则金属轮沿逆时针方向转动,辐条受到的安培力指向逆时针方向,辐条中电流方向从圆周指向O点,由左手定则可知,磁场方向垂直纸面向外;由闭合电路的欧姆定律可知


②辐条切割磁感线产生的电动势与电源电动势相反,设每根辐条产生的电动势为E1,则
解得
此时金属轮可视为电动机
当物块P匀速上升时
解得
另解:因,根据
解得
(2)①物块匀速下落时,由受力分析可知,辐条受到的安培力与第(1)问相同,经过R2的电流
由题意可知
每根辐条切割磁感线产生的感应电动势
解得
另解:由能量关系可知
解得
②根据

解得
4.(2024·海南·高考真题)如图,在xOy坐标系中有三个区域,圆形区域Ⅰ分别与x轴和y轴相切于P点和S点。半圆形区域Ⅱ的半径是区域Ⅰ半径的2倍。区域Ⅰ、Ⅱ的圆心连线与x轴平行,半圆与圆相切于Q点,QF垂直于x轴,半圆的直径MN所在的直线右侧为区域Ⅲ。区域Ⅰ、Ⅱ分别有磁感应强度大小为B、的匀强磁场,磁场方向均垂直纸面向外。区域Ⅰ下方有一粒子源和加速电场组成的发射器,可将质量为m、电荷量为q的粒子由电场加速到。改变发射器的位置,使带电粒子在OF范围内都沿着y轴正方向以相同的速度沿纸面射入区域Ⅰ。已知某粒子从P点射入区域Ⅰ,并从Q点射入区域Ⅱ(不计粒子的重力和粒子之间的影响)
(1)求加速电场两板间的电压U和区域Ⅰ的半径R;
(2)在能射入区域Ⅲ的粒子中,某粒子在区域Ⅱ中运动的时间最短,求该粒子在区域Ⅰ和区域Ⅱ中运动的总时间t;
(3)在区域Ⅲ加入匀强磁场和匀强电场,磁感应强度大小为B,方向垂直纸面向里,电场强度的大小,方向沿x轴正方向。此后,粒子源中某粒子经区域Ⅰ、Ⅱ射入区域Ⅲ,进入区域Ⅲ时速度方向与y轴负方向的夹角成74°角。当粒子动能最大时,求粒子的速度大小及所在的位置到y轴的距离。
【答案】(1),;(2);(3),
【详解】(1)根据动能定理得
解得
粒子进入区域I做匀速圆周运动,根据题意某粒子从P点射入区域Ⅰ,并从Q点射入区域Ⅱ,故可知此时粒子的运动轨迹半径与区域Ⅰ的半径R相等,粒子在磁场中运动洛伦兹力提供向心力
解得
(2)带电粒子在OF范围内都沿着y轴正方向以相同的速度沿纸面射入区域Ⅰ,由(1)可得,粒子的在磁场中做匀速圆周运动,轨迹半径均为R,因为在区域Ⅰ中的磁场半径和轨迹半径相等,粒子射入点、区域Ⅰ圆心O1、轨迹圆心O'、粒子出射点四点构成一个菱形,有几何关系可得,区域Ⅰ圆心O1和粒子出射点连线平行于粒子射入点与轨迹圆心O'连线,则区域Ⅰ圆心O1和粒子出射点水平,根据磁聚焦原理可知粒子都从Q点射出,粒子射入区域II,仍做匀速圆周运动,洛伦兹力提供向心力
解得
如图,要使粒子在区域Ⅱ中运动的时间最短,轨迹所对应的圆心角最小,可知在区域Ⅱ中运动的圆弧所对的弦长最短,即此时最短弦长为区域Ⅱ的磁场圆半径,根据几何知识可得此时在区域Ⅱ和区域Ⅰ中运动的轨迹所对应的圆心角都为,粒子在两区域磁场中运动周期分别为
故可得该粒子在区域Ⅰ和区域Ⅱ中运动的总时间为
(3)如图,将速度分解为沿y轴正方向的速度及速度,因为可得,故可知沿y轴正方向的速度产生的洛伦兹力与电场力平衡,粒子同时受到另一方向的洛伦兹力,故粒子沿y正方向做旋进运动,根据角度可知
故当方向为竖直向上时此时粒子速度最大,即最大速度为
圆周运动半径
根据几何关系可知此时所在的位置到y轴的距离为
5.(2024·广西·高考真题)某兴趣小组为研究非摩擦形式的阻力设计了如图甲的模型。模型由大齿轮、小齿轮、链条、阻力装置K及绝缘圆盘等组成。K由固定在绝缘圆盘上两个完全相同的环状扇形线圈、组成。小齿轮与绝缘圆盘固定于同一转轴上,转轴轴线位于磁场边界处,方向与磁场方向平行,匀强磁场磁感应强度大小为B,方向垂直纸面向里,与K所在平面垂直。大、小齿轮半径比为n,通过链条连接。K的结构参数见图乙,其中,每个线圈的圆心角为,圆心在转轴轴线上,电阻为R。不计摩擦,忽略磁场边界处的磁场,若大齿轮以的角速度保持匀速转动,以线圈的ab边某次进入磁场时为计时起点,求K转动一周。
(1)不同时间线圈受到的安培力大小;
(2)流过线圈的电流有效值;
(3)装置K消耗的平均电功率。
【答案】(1)见解析;(2);(3)
【详解】(1)由题意知大齿轮以的角速度保持匀速转动,大小齿轮线速度相等,则

可得小齿轮转动的角速度为
转动周期为
以线圈的ab边某次进入磁场时为计时起点,到cd边进入磁场,经历的时间为
这段时间内线圈产生的电动势为
电流为
受到的安培力大小
当ab边和cd边均进入磁场后到ab边离开磁场,经历的时间为
由于M1线圈磁通量不变,无感应电流,安培力大小为0;
当M1线圈ab边离开磁场到cd边离开磁场,经历的时间为
此时的安培力大小由前面分析可知
方向与进入时相反;
当M1线圈cd边离开磁场到ab边进入磁场,经历的时间为
同理可知安培力为0。
(2)根据(1)可知设流过线圈的电流有效值为I,则根据有效值定义有
其中

联立解得
(3)根据题意可知流过线圈和的电流有效值相同,则在一个周期内装置K消耗的平均电功率为
6.(2024·湖南·高考真题)如图,有一内半径为2r、长为L的圆筒,左右端面圆心O′、O处各开有一小孔。以O为坐标原点,取O′O方向为x轴正方向建立xyz坐标系。在筒内x ≤ 0区域有一匀强磁场,磁感应强度大小为B,方向沿x轴正方向;筒外x ≥ 0区域有一匀强电场,场强大小为E,方向沿y轴正方向。一电子枪在O′处向圆筒内多个方向发射电子,电子初速度方向均在xOy平面内,且在x轴正方向的分速度大小均为v0。已知电子的质量为m、电量为e,设电子始终未与筒壁碰撞,不计电子之间的相互作用及电子的重力。
(1)若所有电子均能经过O进入电场,求磁感应强度B的最小值;
(2)取(1)问中最小的磁感应强度B,若进入磁场中电子的速度方向与x轴正方向最大夹角为θ,求tanθ的绝对值;
(3)取(1)问中最小的磁感应强度B,求电子在电场中运动时y轴正方向的最大位移。
【答案】(1);(2);(3)
【详解】(1)电子在匀强磁场中运动时,将其分解为沿x轴的匀速直线运动和在yOz平面内的匀速圆周运动,设电子入射时沿y轴的分速度大小为,由电子在x轴方向做匀速直线运动得
在yOz平面内,设电子做匀速圆周运动的半径为R,周期为T,由牛顿第二定律知
可得

由题意可知所有电子均能经过O进入电场,则有
联立得
当时,B有最小值,可得
(2)将电子的速度分解,如图所示

当有最大值时,最大,R最大,此时,又

联立可得

(3)当最大时,电子在电场中运动时沿y轴正方向有最大位移,根据匀变速直线运动规律有
由牛顿第二定律知

联立得
7.(2024·海南·高考真题)虚接是常见的电路故障,如图所示,电热器A与电热器B并联。电路中的C处由于某种原因形成了虚接,造成了该处接触电阻0~240Ω之间不稳定变化,可等效为电阻,已知MN两端电压,A与B的电阻,求:
(1)MN间电阻R的变化范围;
(2)当,电热器B消耗的功率(保留3位有效数字)
【答案】(1);(2)
【详解】(1)根据电路可知当时MN间电阻R的阻值最小,为
当时MN间电阻R的阻值最大,为
故MN间电阻R的变化范围为
(2)当,通过电热器B的电流为
此时电热器B消耗的功率为
解得
8.(2024·北京·高考真题)我国“天宫”空间站采用霍尔推进器控制姿态和修正轨道。图为某种霍尔推进器的放电室(两个半径接近的同轴圆筒间的区域)的示意图。放电室的左、右两端分别为阳极和阴极,间距为d。阴极发射电子,一部分电子进入放电室,另一部分未进入。稳定运行时,可视为放电室内有方向沿轴向向右的匀强电场和匀强磁场,电场强度和磁感应强度大小分别为E和;还有方向沿半径向外的径向磁场,大小处处相等。放电室内的大量电子可视为处于阳极附近,在垂直于轴线的平面绕轴线做半径为R的匀速圆周运动(如截面图所示),可与左端注入的氙原子碰撞并使其电离。每个氙离子的质量为M、电荷量为,初速度近似为零。氙离子经过电场加速,最终从放电室右端喷出,与阴极发射的未进入放电室的电子刚好完全中和。
已知电子的质量为m、电荷量为;对于氙离子,仅考虑电场的作用。
(1)求氙离子在放电室内运动的加速度大小a;
(2)求径向磁场的磁感应强度大小;
(3)设被电离的氙原子数和进入放电室的电子数之比为常数k,单位时间内阴极发射的电子总数为n,求此霍尔推进器获得的推力大小F。
【答案】(1);(2);(3)
【详解】(1)对于氙离子,仅考虑电场的作用,则氙离子在放电室时只受电场力作用,由牛顿第二定律
解得氙离子在放电室内运动的加速度大小
(2)电子在阳极附近在垂直于轴线的平面绕轴线做半径做匀速圆周运动,则轴线方向上所受电场力与径向磁场给的洛仑兹力平衡,沿着轴线方向的匀强磁场给的洛仑兹力提供向心力,即

解得径向磁场的磁感应强度大小为
(3)单位时间内阴极发射的电子总数为n,被电离的氙原子数和进入放电室的电子数之比为常数k,则单位时间内被电离的氙离子数
氙离子经电场加速,有
时间内氙离子所受到的作用力为,由动量定理有
解得
由牛顿第三定律可知,霍尔推进器获得的推力大小

9.(2024·河北·高考真题)如图,边长为的正方形金属细框固定放置在绝缘水平面上,细框中心O处固定一竖直细导体轴。间距为L、与水平面成角的平行导轨通过导线分别与细框及导体轴相连。导轨和细框分别处在与各自所在平面垂直的匀强磁场中,磁感应强度大小均为B。足够长的细导体棒在水平面内绕O点以角速度匀速转动,水平放置在导轨上的导体棒始终静止。棒在转动过程中,棒在所受安培力达到最大和最小时均恰好能静止。已知棒在导轨间的电阻值为R,电路中其余部分的电阻均不计,棒始终与导轨垂直,各部分始终接触良好,不计空气阻力,重力加速度大小为g。
(1)求棒所受安培力的最大值和最小值。
(2)锁定棒,推动棒下滑,撤去推力瞬间,棒的加速度大小为a,所受安培力大小等于(1)问中安培力的最大值,求棒与导轨间的动摩擦因数。
【答案】(1),;(2)
【详解】(1)当OA运动到正方形细框对角线瞬间,切割的有效长度最大,,此时感应电流最大,CD棒所受的安培力最大,根据法拉第电磁感应定律得
根据闭合电路欧姆定律得
故CD棒所受的安培力最大为
当OA运动到与细框一边平行时瞬间,切割的有效长度最短,感应电流最小,CD棒受到的安培力最小,得
故CD棒所受的安培力最小为
(2)当CD棒受到的安培力最小时根据平衡条件得
当CD棒受到的安培力最大时根据平衡条件得
联立解得
撤去推力瞬间,根据牛顿第二定律得
解得
10.(2024·山东·高考真题)如图所示,在Oxy坐标系x>0,y>0区域内充满垂直纸面向里,磁感应强度大小为B的匀强磁场。磁场中放置一长度为L的挡板,其两端分别位于x、y轴上M、N两点,∠OMN=60°,挡板上有一小孔K位于MN中点。△OMN之外的第一象限区域存在恒定匀强电场。位于y轴左侧的粒子发生器在0<y<的范围内可以产生质量为m,电荷量为+q的无初速度的粒子。粒子发生器与y轴之间存在水平向右的匀强加速电场,加速电压大小可调,粒子经此电场加速后进入磁场,挡板厚度不计,粒子可沿任意角度穿过小孔,碰撞挡板的粒子不予考虑,不计粒子重力及粒子间相互作用力。
(1)求使粒子垂直挡板射入小孔K的加速电压U0;
(2)调整加速电压,当粒子以最小的速度从小孔K射出后恰好做匀速直线运动,求第一象限中电场强度的大小和方向;
(3)当加速电压为时,求粒子从小孔K射出后,运动过程中距离y轴最近位置的坐标。
【答案】(1);(2),方向沿x轴正方向;(3)(n=0,1,2 )
【详解】(1)根据题意,作出粒子垂直挡板射入小孔K的运动轨迹如图所示
根据几何关系可知粒子在磁场中做圆周运动的轨迹半径为
在区域根据洛伦兹力提供向心力有
在匀强加速电场中由动能定理有
联立解得
(2)根据题意,当轨迹半径最小时,粒子速度最小,则作出粒子以最小的速度从小孔K射出的运动轨迹如图所示
根据几何关系可知粒子在磁场中做圆周运动的轨迹半径为
在区域根据洛伦兹力提供向心力有
粒子从小孔K射出后恰好做匀速直线运动,由左手定则可知粒子经过小孔K后受到的洛伦兹力沿x轴负方向,则粒子经过小孔K后受到的电场力沿x轴正方向,粒子带正电,则之外第一象限区域电场强度的方向沿x轴正方向,大小满足
联立可得
(3)在匀强加速电场中由动能定理有
可得
在区域根据洛伦兹力提供向心力有
可得粒子在区域运动的轨迹半径
作出从小孔K射出的粒子的运动轨迹如图所示
设粒子从小孔射出的速度方向与轴正方向夹角为,根据几何关系可知
则粒子从小孔射出的速度方向与轴正方向的夹角为,该速度沿轴和轴正方向的分速度大小为

则粒子从射出后的运动可分解为沿轴正方向的匀速直线运动和速度大小为的匀速圆周运动,可知
解得
粒子做圆周运动的周期为,粒子至少运动距离轴最近,加上整周期则粒子运动,时距离轴最近,则最近位置的横坐标为
纵坐标为

综上所述,最近的位置坐标,。
11.(2024·北京·高考真题)如图甲所示为某种“电磁枪”的原理图。在竖直向下的匀强磁场中,两根相距L的平行长直金属导轨水平放置,左端接电容为C的电容器,一导体棒放置在导轨上,与导轨垂直且接触良好,不计导轨电阻及导体棒与导轨间的摩擦。已知磁场的磁感应强度大小为B,导体棒的质量为m、接入电路的电阻为R。开关闭合前电容器的电荷量为Q。
(1)求闭合开关瞬间通过导体棒的电流I;
(2)求闭合开关瞬间导体棒的加速度大小a;
(3)在图乙中定性画出闭合开关后导体棒的速度v随时间t的变化图线。
【答案】(1);(2);(3)
【详解】(1)开关闭合前电容器的电荷量为Q,则电容器两极板间电压
开关闭合瞬间,通过导体棒的电流
解得闭合开关瞬间通过导体棒的电流为
(2)开关闭合瞬间由牛顿第二定律有
将电流I代入解得
(3)由(2)中结论可知,随着电容器放电,所带电荷量不断减少,所以导体棒的加速度不断减小,其v-t图线如图所示
12.(2024·河北·高考真题)如图,竖直向上的匀强电场中,用长为L的绝缘细线系住一带电小球,在竖直平面内绕O点做圆周运动。图中A、B为圆周上的两点,A点为最低点,B点与O点等高。当小球运动到A点时,细线对小球的拉力恰好为0,已知小球的电荷量为、质量为m,A、B两点间的电势差为U,重力加速度大小为g,求:
(1)电场强度E的大小。
(2)小球在A、B两点的速度大小。
【答案】(1);(2),
【详解】(1)在匀强电场中,根据公式可得场强为
(2)在A点细线对小球的拉力为0,根据牛顿第二定律得
A到B过程根据动能定理得
联立解得
13.(2024·江西·高考真题)如图(a)所示,轨道左侧斜面倾斜角满足sinθ1 = 0.6,摩擦因数,足够长的光滑水平导轨处于磁感应强度为B = 0.5T的匀强磁场中,磁场方向竖直向上,右侧斜面导轨倾角满足sinθ2 = 0.8,摩擦因数。现将质量为m甲 = 6kg的导体杆甲从斜面上高h = 4m处由静止释放,质量为m乙 = 2kg的导体杆乙静止在水平导轨上,与水平轨道左端的距离为d。已知导轨间距为l = 2m,两杆电阻均为R = 1Ω,其余电阻不计,不计导体杆通过水平导轨与斜面导轨连接处的能量损失,且若两杆发生碰撞,则为完全非弹性碰撞,取g = 10m/s2,求:
(1)甲杆刚进入磁场,乙杆的加速度?
(2)乙杆第一次滑上斜面前两杆未相碰,距离d满足的条件?
(3)若乙前两次在右侧倾斜导轨上相对于水平导轨的竖直高度y随时间t的变化如图(b)所示(t1、t2、t3、t4、b均为未知量),乙第二次进入右侧倾斜导轨之前与甲发生碰撞,甲在0 ~ t3时间内未进入右侧倾斜导轨,求d的取值范围。
【答案】(1)a乙0 = 2m/s2,方向水平向右;(2)d ≥ 24m;(3)
【详解】(1)甲从静止运动至水平导轨时,根据动能定理有
甲刚进人磁场时,平动切割磁感线有
E0 = Blv0
则根据欧姆定律可知此时回路的感应电流为
根据楞次定律可知,回路中的感应电流沿逆时针方向(俯视),结合左手定则可知,乙所受安培力方向水平向右,由牛顿第二定律有
BI0l = m2a乙0
带入数据有
a乙0 = 2m/s2,方向水平向右
(2)甲和乙在磁场中运动的过程中,系统不受外力作用,则系统动量守恒,若两者共速时恰不相碰,则有
m1v0 = (m1+m2)v共
对乙根据动量定理有
其中
联立解得
dmin = Δx = 24m
则d满足
d ≥ 24m
(3)根据(2)问可知,从甲刚进入磁场至甲、乙第一次在水平导轨运动稳定,相对位移为Δx = 24m,且稳定时的速度v共 = 6m/s乙第一次在右侧斜轨上向上运动的过程中,根据牛顿第二定律有
m2gsinθ2+μ2m2gcosθ2 = m2a乙上
根据匀变速直线运动位移与速度的关系有
2a乙上x上 = v共2
乙第一次在右侧斜轨上向下运动的过程中,根据牛顿第二定律有
m2gsinθ2-μ2m2gcosθ2 = m2a乙下
再根据匀变速直线运动位移与速度的关系有
2a乙下x下 = v12

x上 = x下
联立解得乙第一次滑下右侧轨道最低点的速度
v1 = 5m/s
由于两棒发生碰撞,则为完全非弹性碰撞,则甲乙整体第一次在右侧倾斜轨道上向上运动有
(m1+m2)gsinθ2+μ2(m1+m2)gcosθ2 = (m1+m2)a共上
同理有
2a共上x共上 = v2
且由图(b)可知
x上 = 4.84x共上
解得甲、乙碰撞后的速度
乙第一次滑下右侧轨道最低点后与甲相互作用的过程中,甲、乙组成的系统合外力为零,根据动量守恒有
m1v2-m2v1 = (m1+m2))v
解得乙第一次滑下右侧轨道最低点时甲的速度为
若乙第一次滑下右侧轨道最低点时与甲发生碰撞,则对应d的最小值,乙第一次在右侧斜轨上运动的过程,对甲根据动量定理有
其中
解得
根据位移关系有
dmin′-Δx = Δx1
解得
若乙返回水平导轨后,当两者共速时恰好碰撞,则对应d的最大值,对乙从返回水平导轨到与甲碰撞前瞬间的过程,根据动量定理有
其中
解得
根据位移关系有
dmax-Δx-Δx1 = Δx2
解得
则d的取值范围为
14.(2024·辽宁·高考真题)现代粒子加速器常用电磁场控制粒子团的运动及尺度。简化模型如图:Ⅰ、Ⅱ区宽度均为L,存在垂直于纸面的匀强磁场,磁感应强度等大反向;Ⅲ、Ⅳ区为电场区,Ⅳ区电场足够宽,各区边界均垂直于x轴,O为坐标原点。甲、乙为粒子团中的两个电荷量均为+q,质量均为m的粒子。如图,甲、乙平行于x轴向右运动,先后射入Ⅰ区时速度大小分别为和。甲到P点时,乙刚好射入Ⅰ区。乙经过Ⅰ区的速度偏转角为30°,甲到O点时,乙恰好到P点。已知Ⅲ区存在沿+x方向的匀强电场,电场强度大小。不计粒子重力及粒子间相互作用,忽略边界效应及变化的电场产生的磁场。
(1)求磁感应强度的大小B;
(2)求Ⅲ区宽度d;
(3)Ⅳ区x轴上的电场方向沿x轴,电场强度E随时间t、位置坐标x的变化关系为,其中常系数,已知、k未知,取甲经过O点时。已知甲在Ⅳ区始终做匀速直线运动,设乙在Ⅳ区受到的电场力大小为F,甲、乙间距为Δx,求乙追上甲前F与Δx间的关系式(不要求写出Δx的取值范围)
【答案】(1);(2);(3)
【详解】(1)对乙粒子,如图所示
由洛伦兹力提供向心力
由几何关系
联立解得,磁感应强度的大小为
(2)由题意可知,根据对称性,乙在磁场中运动的时间为
对甲粒子,由对称性可知,甲粒子沿着直线从P点到O点,由运动学公式
由牛顿第二定律
联立可得Ⅲ区宽度为
(3)甲粒子经过O点时的速度为
因为甲在Ⅳ区始终做匀速直线运动,则
可得
设乙粒子经过Ⅲ区的时间为,乙粒子在Ⅳ区运动时间为,则上式中
对乙可得
整理可得
对甲可得

化简可得乙追上甲前F与Δx间的关系式为
15.(2024·辽宁·高考真题)如图,理想变压器原、副线圈的匝数比为n1:n2 = 5:1,原线圈接在电压峰值为Um的正弦交变电源上,副线圈的回路中接有阻值为R的电热丝,电热丝密封在绝热容器内,容器内封闭有一定质量的理想气体。接通电路开始加热,加热前气体温度为T0。
(1)求变压器的输出功率P;
(2)已知该容器内的气体吸收的热量Q与其温度变化量ΔT成正比,即Q = CΔT,其中C已知。若电热丝产生的热量全部被气体吸收,要使容器内的气体压强达到加热前的2倍,求电热丝的通电时间t。
【答案】(1);(2)
【详解】(1)由原线圈正弦交流电的峰值可知变压器输入电压有效值为
设变压器副线圈的输出电压为U2,根据理想变压器的电压与匝数之间的关系有
联立解得
理想变压器的输出功率等于R的热功率,即
(2)设加热前容器内气体的压强为p0,则加热后气体的压强为2p0,温度为T2,容器内的气体做等容变化,则有
由知气体吸收的热量
根据热力学第一定律,气体的体积不变,所以W = 0,容器是绝热容器,则
电热丝产生的热量全部被气体吸收
联立整理得
解得
16.(2024·广东·高考真题)如图甲所示。两块平行正对的金属板水平放置,板间加上如图乙所示幅值为、周期为的交变电压。金属板左侧存在一水平向右的恒定匀强电场,右侧分布着垂直纸面向外的匀强磁场。磁感应强度大小为B.一带电粒子在时刻从左侧电场某处由静止释放,在时刻从下板左端边缘位置水平向右进入金属板间的电场内,在时刻第一次离开金属板间的电场、水平向右进入磁场,并在时刻从下板右端边缘位置再次水平进入金属板间的电场。已知金属板的板长是板间距离的倍,粒子质量为m。忽略粒子所受的重力和场的边缘效应。
(1)判断带电粒子的电性并求其所带的电荷量q;
(2)求金属板的板间距离D和带电粒子在时刻的速度大小v;
(3)求从时刻开始到带电粒子最终碰到上金属板的过程中,电场力对粒子做的功W。
【答案】(1)正电;;(2);;(3)
【详解】(1)根据带电粒子在右侧磁场中的运动轨迹结合左手定则可知,粒子带正电;粒子在磁场中运动的周期为
根据
则粒子所带的电荷量
(2)若金属板的板间距离为D,则板长粒子在板间运动时
出电场时竖直速度为零,则竖直方向
在磁场中时
其中的
联立解得
(3)带电粒子在电场和磁场中的运动轨迹如图,由(2)的计算可知金属板的板间距离
则粒子在3t0时刻再次进入中间的偏转电场,在4 t0时刻进入左侧的电场做减速运动速度为零后反向加速,在6 t0时刻再次进入中间的偏转电场,6.5 t0时刻碰到上极板,因粒子在偏转电场中运动时,在时间t0内电场力做功为零,在左侧电场中运动时,往返一次电场力做功也为零,可知整个过程中只有开始进入左侧电场时电场力做功和最后0.5t0时间内电场力做功,则
17.(2024·湖北·高考真题)如图所示,两足够长平行金属直导轨MN、PQ的间距为L,固定在同一水平面内,直导轨在左端M、P点分别与两条竖直固定、半径为L的圆弧导轨相切。MP连线与直导轨垂直,其左侧无磁场,右侧存在磁感应强度大小为B、方向竖直向下的匀强磁场。长为L、质量为m、电阻为R的金属棒ab跨放在两圆弧导轨的最高点。质量为2m、电阻为6R的均匀金属丝制成一个半径为L的圆环,水平放置在两直导轨上,其圆心到两直导轨的距离相等。忽略导轨的电阻、所有摩擦以及金属环的可能形变,金属棒、金属环均与导轨始终接触良好,重力加速度大小为g。现将金属棒ab由静止释放,求
(1)ab刚越过MP时产生的感应电动势大小;
(2)金属环刚开始运动时的加速度大小;
(3)为使ab在整个运动过程中不与金属环接触,金属环圆心初始位置到MP的最小距离。
【答案】(1);(2);(3)
【详解】(1)根据题意可知,对金属棒ab由静止释放到刚越过MP过程中,由动能定理有
解得
则ab刚越过MP时产生的感应电动势大小为
(2)根据题意可知,金属环在导轨间两段圆弧并联接入电路中,轨道外侧的两端圆弧金属环被短路,由几何关系可得,每段圆弧的电阻为
可知,整个回路的总电阻为
ab刚越过MP时,通过ab的感应电流为
对金属环由牛顿第二定律有
解得
(3)根据题意,结合上述分析可知,金属环和金属棒ab所受的安培力等大反向,则系统的动量守恒,由于金属环做加速运动,金属棒做减速运动,为使ab在整个运动过程中不与金属环接触,则有当金属棒ab和金属环速度相等时,金属棒ab恰好追上金属环,设此时速度为,由动量守恒定律有
解得
对金属棒,由动量定理有
则有
设金属棒运动距离为,金属环运动的距离为,则有
联立解得
则金属环圆心初始位置到MP的最小距离
18.(2024·江苏·高考真题)如图所示,粗糙斜面的动摩擦因数为μ,倾角为θ,斜面长为L。一个质量为m的物块,在电动机作用下,从 A点由静止加速至 B点时达到最大速度v,之后作匀速运动至C点,关闭电动机,从 C点又恰好到达最高点D。求:
(1)CD段长x;
(2)BC段电动机的输出功率P;
(3)全过程物块增加的机械能E1和电动机消耗的总电能 E2的比值。
【答案】(1);(2);(3)
【详解】(1)物块在CD段运动过程中,由牛顿第二定律得
由运动学公式
联立解得
(2)物块在BC段匀速运动,得电动机的牵引力为
由得
(3)全过程物块增加的机械能为
整个过程由能量守恒得电动机消耗的总电能转化为物块增加的机械能和摩擦产生的内能,故可知
故可得
19.(2024·安徽·高考真题)如图所示,一“U”型金属导轨固定在竖直平面内,一电阻不计,质量为m的金属棒ab垂直于导轨,并静置于绝缘固定支架上。边长为L的正方形cdef区域内,存在垂直于纸面向外的匀强磁场。支架上方的导轨间,存在竖直向下的匀强磁场。两磁场的磁感应强度大小B随时间的变化关系均为B = kt(SI),k为常数(k > 0)。支架上方的导轨足够长,两边导轨单位长度的电阻均为r,下方导轨的总电阻为R。t = 0时,对ab施加竖直向上的拉力,恰使其向上做加速度大小为a的匀加速直线运动,整个运动过程中ab与两边导轨接触良好。已知ab与导轨间动摩擦因数为μ,重力加速度大小为g。不计空气阻力,两磁场互不影响。
(1)求通过面积Scdef的磁通量大小随时间t变化的关系式,以及感应电动势的大小,并写出ab中电流的方向;
(2)求ab所受安培力的大小随时间t变化的关系式;
(3)求经过多长时间,对ab所施加的拉力达到最大值,并求此最大值。
【答案】(1)kL2·t,kL2,从a流向b;(2);(3)
【详解】(1)通过面积的磁通量大小随时间t变化的关系式为
根据法拉第电磁感应定律得
由楞次定律可知ab中的电流从a流向b。
(2)根据左手定则可知ab受到的安培力方向垂直导轨面向里,大小为
F安=BIL
其中
B=kt
设金属棒向上运动的位移为x,则根据运动学公式
所以导轨上方的电阻为
由闭合电路欧姆定律得
联立得ab所受安培力的大小随时间t变化的关系式为
(3)由题知t = 0时,对ab施加竖直向上的拉力,恰使其向上做加速度大小为a的匀加速直线运动,则对ab受力分析由牛顿第二定律
其中
联立可得
整理有
根据均值不等式可知,当时,F有最大值,故解得
F的最大值为
20.(2024·浙江·高考真题)类似光学中的反射和折射现象,用磁场或电场调控也能实现质子束的“反射”和“折射”。如图所示,在竖直平面内有三个平行区域Ⅰ、Ⅱ和Ⅲ;Ⅰ区宽度为d,存在磁感应强度大小为B、方向垂直平面向外的匀强磁场,Ⅱ区的宽度很小。Ⅰ区和Ⅲ区电势处处相等,分别为和,其电势差。一束质量为m、电荷量为e的质子从O点以入射角射向Ⅰ区,在P点以出射角射出,实现“反射”;质子束从P点以入射角射入Ⅱ区,经Ⅱ区“折射”进入Ⅲ区,其出射方向与法线夹角为“折射”角。已知质子仅在平面内运动,单位时间发射的质子数为N,初速度为,不计质子重力,不考虑质子间相互作用以及质子对磁场和电势分布的影响。
(1)若不同角度射向磁场的质子都能实现“反射”,求d的最小值;
(2)若,求“折射率”n(入射角正弦与折射角正弦的比值)
(3)计算说明如何调控电场,实现质子束从P点进入Ⅱ区发生“全反射”(即质子束全部返回Ⅰ区)
(4)在P点下方距离处水平放置一长为的探测板(Q在P的正下方),长为,质子打在探测板上即被吸收中和。若还有另一相同质子束,与原质子束关于法线左右对称,同时从O点射入Ⅰ区,且,求探测板受到竖直方向力F的大小与U之间的关系。
【答案】(1);(2);(3);(4)见解析
【详解】(1)根据牛顿第二定律
不同角度射向磁场的质子都能实现“反射”,d的最小值为
(2)设水平方向为方向,竖直方向为方向,方向速度不变,方向速度变小,假设折射角为,根据动能定理
解得
根据速度关系
解得
(3)全反射的临界情况:到达Ⅲ区的时候方向速度为零,即
可得
即应满足
(4)临界情况有两个:1、全部都能打到,2、全部都打不到的情况,根据几何关系可得
所以如果的情况下,折射角小于入射角,两边射入的粒子都能打到板上,分情况讨论如下:
①当时

解得
全部都打不到板的情况
②根据几何知识可知当从Ⅱ区射出时速度与竖直方向夹角为时,粒子刚好打到D点,水平方向速度为
所以

解得
即当时
③部分能打到的情况,根据上述分析可知条件为(),此时仅有O点右侧的一束粒子能打到板上,因此

解得
21.(2024·浙江·高考真题)如图1所示,扫描隧道显微镜减振装置由绝缘减振平台和磁阻尼减振器组成。平台通过三根关于轴对称分布的相同轻杆悬挂在轻质弹簧的下端O,弹簧上端固定悬挂在点,三个相同的关于轴对称放置的减振器位于平台下方。如图2所示,每个减振器由通过绝缘轻杆固定在平台下表面的线圈和固定在桌面上能产生辐向磁场的铁磁体组成,辐向磁场分布关于线圈中心竖直轴对称,线圈所在处磁感应强度大小均为B。处于静止状态的平台受到外界微小扰动,线圈在磁场中做竖直方向的阻尼运动,其位移随时间变化的图像如图3所示。已知时速度为,方向向下,、时刻的振幅分别为,。平台和三个线圈的总质量为m,弹簧的劲度系数为k,每个线圈半径为r、电阻为R。当弹簧形变量为时,其弹性势能为。不计空气阻力,求
(1)平台静止时弹簧的伸长量;
(2)时,每个线圈所受到安培力F的大小;
(3)在时间内,每个线圈产生的焦耳热Q;
(4)在时间内,弹簧弹力冲量的大小。
【答案】(1);(2);(3);(4)
【详解】(1)平台静止时,穿过三个线圈的的磁通量不变,线圈中不产生感应电流,线圈不受到安培力作用,O点受力平衡,因此由胡克定律可知此时弹簧的伸长量
(2)在时速度为,设每个线圈的周长为L,由电磁感应定律可得线圈中产生的感应电流
每个线圈所受到安培力F的大小
(3)由减震器的作用平台上下不移动,由能量守恒定律可得平台在时间内,振动时能量的减少量为,由能量守恒定律
在时间内,振动时能量的减少转化为线圈的焦耳热,可知每个线圈产生的焦耳热
(4)取向上为正方向,全程由动量定理可得
其中
联立解得弹簧弹力冲量的大小为
1.(2023·福建·高考真题)如图(a),一粗糙、绝缘水平面上有两个质量均为m的小滑块A和B,其电荷量分别为和。A右端固定有轻质光滑绝缘细杆和轻质绝缘弹簧,弹簧处于原长状态。整个空间存在水平向右场强大小为E的匀强电场。A、B与水平面间的最大静摩擦力等于滑动摩擦力,其大小均为。时,A以初速度向右运动,B处于静止状态。在时刻,A到达位置S,速度为,此时弹簧未与B相碰;在时刻,A的速度达到最大,此时弹簧的弹力大小为;在细杆与B碰前的瞬间,A的速度为,此时。时间内A的图像如图(b)所示,为图线中速度的最小值,、、均为未知量。运动过程中,A、B处在同一直线上,A、B的电荷量始终保持不变,它们之间的库仑力等效为真空中点电荷间的静电力,静电力常量为k;B与弹簧接触瞬间没有机械能损失,弹簧始终在弹性限度内。
(1)求时间内,合外力对A所做的功;
(2)求时刻A与B之间的距离;
(3)求时间内,匀强电场对A和B做的总功;
(4)若增大A的初速度,使其到达位置S时的速度为,求细杆与B碰撞前瞬间A的速度。
【答案】(1);(2);(3);(4)
【详解】(1)时间内根据动能定理可知合外力做的功为
(2)由图(b)可知时刻A的加速度为0,此时滑块A所受合外力为0,设此时A与B之间的距离为r0,根据平衡条件有
其中
联立可得
(3)在时刻,A的速度达到最大,此时A所受合力为0,设此时A和B的距离为r1,则有
且有

联立解得
时间内,匀强电场对A和B做的总功
(4)过S后,A、B的加速度相同,则A、B速度的变化相同。设弹簧的初始长度为;A在S位置时,此时刻A、B的距离为,A速度最大时,AB距离为,细杆与B碰撞时,A、B距离为。
A以过S时,到B与杆碰撞时,A增加的速度为,则B同样增加速度为,设B与杠相碰时,B向左运动。设B与弹簧相碰到B与杆相碰时,B向左运动。对A根据动能定理有
对B有
当A以过S时,设B与杆碰撞时,A速度为,则B速度为,设B与杠相碰时,B向左运动。设B与弹簧相碰到B与杆相碰时,B向左运动。
对A根据动能定理有
对B
联立解得
2.(2023·福建·高考真题)阿斯顿(F.Aston)借助自己发明的质谱仪发现了氖等元素的同位素而获得诺贝尔奖,质谱仪分析同位素简化的工作原理如图所示。在上方存在一垂直纸面向外的匀强磁场,磁感应强度大小为B。两个氖离子在O处以相同速度v垂直磁场边界入射,在磁场中发生偏转,分别落在M和N处。已知某次实验中,,落在M处氖离子比荷(电荷量和质量之比)为;P、O、M、N、P在同一直线上;离子重力不计。
(1)求OM的长度;
(2)若ON的长度是OM的1.1倍,求落在N处氖离子的比荷。
【答案】(1);(2)
【详解】(1)粒子进入磁场,洛伦兹力提供圆周运动的向心力则有
整理得
OM的长度为
(2)若ON的长度是OM的1.1倍,则ON运动轨迹半径为OM运动轨迹半径1.1倍,根据洛伦兹力提供向心力得
整理得
3.(2023·广东·高考真题)光滑绝缘的水平面上有垂直平面的匀强磁场,磁场被分成区域Ⅰ和Ⅱ,宽度均为,其俯视图如图(a)所示,两磁场磁感应强度随时间的变化如图(b)所示,时间内,两区域磁场恒定,方向相反,磁感应强度大小分别为和,一电阻为,边长为的刚性正方形金属框,平放在水平面上,边与磁场边界平行.时,线框边刚好跨过区域Ⅰ的左边界以速度向右运动.在时刻,边运动到距区域Ⅰ的左边界处,线框的速度近似为零,此时线框被固定,如图(a)中的虚线框所示。随后在时间内,Ⅰ区磁感应强度线性减小到0,Ⅱ区磁场保持不变;时间内,Ⅱ区磁感应强度也线性减小到0。求:

(1)时线框所受的安培力;
(2)时穿过线框的磁通量;
(3)时间内,线框中产生的热量。
【答案】(1),方向水平向左;(2);(3)
【详解】(1)由图可知时线框切割磁感线的感应电动势为
则感应电流大小为
所受的安培力为
方向水平向左;
(2)在时刻,边运动到距区域Ⅰ的左边界处,线框的速度近似为零,此时线框被固定,则时穿过线框的磁通量为
方向垂直纸面向里;
(3)时间内,Ⅱ区磁感应强度也线性减小到0,则有
感应电流大小为
则时间内,线框中产生的热量为
4.(2023·天津·高考真题)科学研究中可以用电场和磁场实现电信号放大,某信号放大装置示意如图,其主要由阴极、中间电极(电极1,电极2, …,电极n)和阳极构成,该装置处于匀强磁场中,各相邻电极存在电势差。由阴极发射的电子射入电极1,激发出更多的电子射入电极2,依此类推,电子数逐级增加,最终被阳极收集,实现电信号放大。图中所有中间电极均沿x轴放置在xOz平面内,磁场平行于z轴,磁感应强度的大小为B。已知电子质量为m,电荷量为e。忽略电子间的相互作用力,不计重力。
(1)若电极间电势差很小可忽略,从电极1上O点激发出多个电子,它们的初速度方向与y轴的正方向夹角均为,其中电子a、b的初速度分别处于xOy 、yOz平面的第一象限内,并都能运动到电极2。
(i)试判断磁场方向;
(ii)分别求出a和b到达电极2所用的时间和;
(2)若单位时间内由阴极发射的电子数保持稳定,阴极、中间电极发出的电子全部到达下一相邻电极。设每个射入中间电极的电子在该电极上激发出个电子, ,U为相邻电极间电势差。试定性画出阳极收集电子而形成的电流I和U关系的图像,并说明理由
【答案】(1)(ⅰ)沿z轴反方向;(ⅱ),(2)见解析
【详解】(1)(ⅰ)a电子,初速度方向在xoy平面内,与y轴正方向成θ角;若磁场方向沿z轴正方向,a电子在洛伦兹力作用下向x轴负方向偏转,不符合题题意;若磁场方向沿z轴反方向,a电子在洛伦兹力作用下向x轴正方向偏转,符合题意;
b电子,初速度方向在zoy平面内,与y轴正方向成θ角。将b电子初速度沿坐标轴分解,沿z轴的分速度与磁感线平行不受力,沿y轴方向的分速度受到洛伦兹力使得电子沿x轴正方向偏转,根据左手定则可知,磁场方向沿z轴反方向。符合题意;
综上可知,磁感应强度B的方向沿z轴反方向。
(ⅱ)a电子在洛伦兹力作用下运动轨迹如图
由图可知电子运动到下一个极板的时间
b电子,沿z轴的分速度与磁感线平行不受力,对应匀速直线运动;沿y轴方向的分速度受到洛伦兹力使电子向右偏转,电子运动半个圆周到下一个极板的时间
(2)设,单位时间内阴极逸出的电子数量N0不变,每个电子打到极板上可以激发δ个电子,经过n次激发阳极处接收电子数量
对应的电流
可得I-U图像如图
5.(2023·天津·高考真题)如图,如图所示,一不可伸长的轻绳上端固定,下端系在单匝匀质正方形金属框上边中点O处,框处于静止状态。一个三角形区域的顶点与O点重合,框的下边完全处在该区域中。三角形区域内加有随时间变化的匀强磁场,磁感应强度大小B与时间t的关系为B = kt(k > 0的常数),磁场与框平面垂直,框的面积为框内磁场区域面积的2倍,金属框质量为m,电阻为R,边长为l,重力加速度g,求:
(1)金属框中的感应电动势大小E;
(2)金属框开始向上运动的时刻t0;

【答案】(1);(2)
【详解】(1)根据法拉第电磁感应定律有
(2)由图可知线框受到的安培力为
当线框开始向上运动时有
mg = FA
解得
6.(2023·北京·高考真题)某种负离子空气净化原理如图所示。由空气和带负电的灰尘颗粒物(视为小球)组成的混合气流进入由一对平行金属板构成的收集器。在收集器中,空气和带电颗粒沿板方向的速度保持不变。在匀强电场作用下,带电颗粒打到金属板上被收集,已知金属板长度为L,间距为d、不考虑重力影响和颗粒间相互中小学教育资源及组卷应用平台
专题20 电磁综合计算
1.(2025·黑吉辽蒙卷·高考真题)如图(a),固定在光滑绝缘水平面上的单匝正方形导体框,置于始终竖直向下的匀强磁场中,边与磁场边界平行,边中点位于磁场边界。导体框的质量,电阻、边长。磁感应强度B随时间t连续变化,内图像如图(b)所示。导体框中的感应电流I与时间t关系图像如图(c)所示,其中内的图像未画出,规定顺时针方向为电流正方向。
(1)求时边受到的安培力大小F;
(2)画出图(b)中内图像(无需写出计算过程);
(3)从开始,磁场不再随时间变化。之后导体框解除固定,给导体框一个向右的初速度,求ad边离开磁场时的速度大小。
2.(2025·河南·高考真题)如图,水平虚线上方区域有垂直于纸面向外的匀强磁场,下方区域有竖直向上的匀强电场。质量为m、带电量为q()的粒子从磁场中的a点以速度向右水平发射,当粒子进入电场时其速度沿右下方向并与水平虚线的夹角为,然后粒子又射出电场重新进入磁场并通过右侧b点,通过b点时其速度方向水平向右。a、b距水平虚线的距离均为h,两点之间的距离为。不计重力。
(1)求磁感应强度的大小;
(2)求电场强度的大小;
(3)若粒子从a点以竖直向下发射,长时间来看,粒子将向左或向右漂移,求漂移速度大小。(一个周期内粒子的位移与周期的比值为漂移速度)
3.(2025·陕晋青宁卷·高考真题)电子比荷是描述电子性质的重要物理量。在标准理想二极管中利用磁控法可测得比荷,一般其电极结构为圆筒面与中心轴线构成的圆柱体系统,结构简化如图(a)所示,圆筒足够长。在O点有一电子源,向空间中各个方向发射速度大小为的电子,某时刻起筒内加大小可调节且方向沿中心轴向下的匀强磁场,筒的横截面及轴截面示意图如图(b)所示,当磁感应强度大小调至时,恰好没有电子落到筒壁上,不计电子间相互作用及其重力的影响。求:(R、、均为已知量)
(1)电子的比荷;
(2)当磁感应强度大小调至时,筒壁上落有电子的区域面积S。
4.(2025·贵州·高考真题)如图所示,轴水平向右,轴竖直向上,轴垂直纸面向里(图中未画出),在平面里有竖直向上的匀强电场,在的平面下方存在垂直纸面向里的匀强磁场,的平面上方有垂直纸面向里的匀强磁场(未知)。有一带正电的粒子,质量为,从坐标原点出发,沿轴正方向以速度射出后做圆周运动,其中,,点坐标。已知重力加速度为,粒子电荷量为。求:
(1)电场强度的大小及该粒子第一次经过平面时的位置对应的坐标值;
(2)当该带电粒子沿轴正方向飞出到达点时间最小时,求的大小;
(3)若将电场改成沿y轴正方向,粒子同样从坐标原点沿x轴以速度射出,求粒子的轨迹方程。
5.(2025·云南·高考真题)如图所示,光滑水平面上有一个长为L、宽为d的长方体空绝缘箱,其四周紧固一电阻为R的水平矩形导线框,箱子与导线框的总质量为M。与箱子右侧壁平行的磁场边界平面如截面图中虚线PQ所示,边界右侧存在范围足够大的匀强磁场,其磁感应强度大小为B、方向竖直向下。时刻,箱子在水平向右的恒力F(大小未知)作用下由静止开始做匀加速直线运动,这时箱子左侧壁上距离箱底h处、质量为m的木块(视为质点)恰好能与箱子保持相对静止。箱子右侧壁进入磁场瞬间,木块与箱子分离;箱子完全进入磁场前某时刻,木块落到箱子底部,且箱子与木块均不反弹(木块下落过程中与箱子侧壁无碰撞);木块落到箱子底部时即撤去F。运动过程中,箱子右侧壁始终与磁场边界平行,忽略箱壁厚度、箱子形变、导线粗细及空气阻力。木块与箱子内壁间的动摩擦因数为μ,假设最大静摩擦力等于滑动摩擦力,重力加速度为g。
(1)求F的大小;
(2)求时刻,箱子右侧壁距磁场边界的最小距离;
(3)若时刻,箱子右侧壁距磁场边界的距离为s(s大于(2)问中最小距离),求最终木块与箱子的速度大小。
6.(2025·山东·高考真题)如图所示,平行轨道的间距为L,轨道平面与水平面夹角为α,二者的交线与轨道垂直,以轨道上O点为坐标原点,沿轨道向下为x轴正方向建立坐标系。轨道之间存在区域I、Ⅱ,区域I( 2L ≤ x < L)内充满磁感应强度大小为B、方向竖直向上的匀强磁场;区域Ⅱ(x ≥ 0)内充满方向垂直轨道平面向上的磁场,磁感应强度大小B1 = k1t+k2x,k1和k2均为大于零的常量,该磁场可视为由随时间t均匀增加的匀强磁场和随x轴坐标均匀增加的磁场叠加而成。将质量为m、边长为L、电阻为R的匀质正方形闭合金属框epqf时放置在轨道上,pq边与轨道垂直,由静止释放。已知轨道绝缘、光滑、足够长且不可移动,磁场上、下边界均与x轴垂直,整个过程中金属框不发生形变,重力加速度大小为g,不计自感。
(1)若金属框从开始进入到完全离开区域I的过程中匀速运动,求金属框匀速运动的速率v和释放时pq边与区域I上边界的距离s;
(2)金属框沿轨道下滑,当ef边刚进入区域Ⅱ时开始计时(t = 0),此时金属框的速率为v0,若,求从开始计时到金属框达到平衡状态的过程中,ef边移动的距离d。
7.(2025·河北·高考真题)某电磁助推装置设计如图,超级电容器经调控系统为电路提供1000A的恒定电流,水平固定的平行长直导轨处于垂直水平面的匀强磁场中,a可视为始终垂直导轨的导体棒,b为表面绝缘的无人机。初始时a静止于MM′处,b静止于a右侧某处。现将开关S接1端,a与b正碰后锁定并一起运动,损失动能全部储存为弹性势能。当a运行至NN′时将S接2端,同时解除锁定,所储势能瞬间全部转化为动能,a与b分离。已知电容器电容C为10F,导轨间距为0.5m,磁感应强度大小为1T,MM′到NN′的距离为5m,a、b质量分别为2kg、8kg,a在导轨间的电阻为0.01Ω。碰撞、分离时间极短,各部分始终接触良好,不计导轨电阻、摩擦和储能耗损,忽略电流对磁场的影响。
(1)若分离后某时刻a的速度大小为10m/s,求此时通过a的电流大小。
(2)忽略a、b所受空气阻力,当a与b的初始间距为1.25m时,求b分离后的速度大小,分析其是否为b能够获得的最大速度;并求a运动过程中电容器的电压减小量。
(3)忽略a所受空气阻力,若b所受空气阻力大小与其速度v的关系为f = kv2(k = 0.025N·s2/m2),初始位置与(2)问一致,试估算a运行至NN′时。a分离前的速度大小能否达到(2)问中分离前速度的99%,并给出结论。(0.992 = 0.980l)
8.(2025·海南·高考真题)间距为L的金属导轨倾斜部分光滑,水平部分粗糙且平滑相接,导轨上方接有电源和开关,倾斜导轨与水平面夹角,处于垂直于导轨平面向上的匀强磁场中,水平导轨处于垂直竖直向下的匀强磁场中,磁感应强度大小均为,两相同导体棒、与水平导轨的动摩擦因数,最大静摩擦力等于滑动摩擦力,两棒质量均,接入电路中的电阻均为,棒仅在水平导轨上运动,两导体棒在运动过程中始终与导轨垂直并接触良好,且不互相碰撞,忽略金属导轨的电阻,重力加速度为。
(1)锁定水平导轨上的棒,闭合开关,棒静止在倾斜导轨上,求通过棒的电流;断开开关,同时解除棒的锁定,当棒下滑距离为时,棒开始运动,求棒从解除锁定到开始运动过程中,棒产生的焦耳热;
(2)此后棒在下滑过程中,电流达到稳定,求此时、棒的速度大小之差;
(3)棒中电流稳定之后继续下滑,从棒到达水平导轨开始计时,时刻棒速度为零,加速度不为零,此后某时刻,棒的加速度为零,速度不为零,求从时刻到某时刻,、的路程之差。
9.(2025·安徽·高考真题)如图,平行光滑金属导轨被固定在水平绝缘桌面上,导轨间距为L,右端连接阻值为R的定值电阻。水平导轨上足够长的矩形区域MNPQ存在竖直向上的匀强磁场,磁感应强度大小为B。某装置从MQ左侧沿导轨水平向右发射第1根导体棒,导体棒以初速度v0进入磁场,速度减为0时被锁定;从原位置再发射第2根相同的导体棒,导体棒仍以初速度v0进入磁场,速度减为0时被锁定,以此类推,直到发射第n根相同的导体棒进入磁场。已知导体棒的质量为m,电阻为R,长度恰好等于导轨间距,与导轨接触良好(发射前导体棒与导轨不接触),不计空气阻力、导轨的电阻,忽略回路中的电流对原磁场的影响。
求:
(1)第1根导体棒刚进入磁场时,所受安培力的功率;
(2)第2根导体棒从进入磁场到速度减为0的过程中,其横截面上通过的电荷量;
(3)从第1根导体棒进入磁场到第n根导体棒速度减为0的过程中,导轨右端定值电阻R上产生的总热量。
10.(2025·黑吉辽蒙卷·高考真题)如图,在平面第一、四象限内存在垂直平面向里的匀强磁场,磁感应强度大小为B,一带正电的粒子从点射入磁场,速度方向与y轴正方向夹角,从点射出磁场。已知粒子的电荷量为,质量为m,忽略粒子重力及磁场边缘效应。
(1)求粒子射入磁场的速度大小和在磁场中运动的时间。
(2)若在平面内某点固定一负点电荷,电荷量为,粒子质量取(k为静电力常量),粒子仍沿(1)中的轨迹从M点运动到N点,求射入磁场的速度大小。
(3)在(2)问条件下,粒子从N点射出磁场开始,经时间速度方向首次与N点速度方向相反,求(电荷量为Q的点电荷产生的电场中,取无限远处的电势为0时,与该点电荷距离为r处的电势)。
11.(2025·湖北·高考真题)如图所示,两平行虚线MN、PQ间无磁场。MN左侧区域和PQ右侧区域内均有垂直于纸面向外的匀强磁场,磁感应强度大小分别为B和2B。一质量为m、电荷量为q的带正电粒子从MN左侧O点以大小为的初速度射出,方向平行于MN向上。已知O点到MN的距离为,粒子能回到O点,并在纸面内做周期性运动。不计重力,求
(1)粒子在MN左侧区域中运动轨迹的半径;
(2)粒子第一次和第二次经过PQ时位置的间距;
(3)粒子的运动周期
12.(2025·陕晋青宁卷·高考真题)如图,有两个电性相同且质量分别为m、的粒子A、B,初始时刻相距,粒子A以速度沿两粒子连线向速度为0的粒子B运动,此时A、B两粒子系统的电势能等于。经时间粒子B到达P点,此时两粒子速度相同,同时开始给粒子B施加一恒力,方向与速度方向相同。当粒子B的速度为时,粒子A恰好运动至P点且速度为0,A、B粒子间距离恢复为,这时撤去恒力。己知任意两带电粒子系统的电势能与其距离成反比,忽略两粒子所受重力。求:(m、、、均为己知量)
(1)粒子B到达P点时的速度大小;
(2)时间内粒子B的位移大小;
(3)恒力作用的时间。
13.(2025·河南·高考真题)流式细胞仪可对不同类型的细胞进行分类收集,其原理如图所示。仅含有一个A细胞或B细胞的小液滴从喷嘴喷出(另有一些液滴不含细胞),液滴质量均为。当液滴穿过激光束、充电环时被分类充电,使含A、B细胞的液滴分别带上正、负电荷,电荷量均为。随后,液滴以的速度竖直进入长度为的电极板间,板间电场均匀、方向水平向右,电场强度大小为。含细胞的液滴最终被分别收集在极板下方处的A、B收集管中。不计重力、空气阻力以及带电液滴间的作用。求:
(1)含A细胞的液滴离开电场时偏转的距离;
(2)A、B细胞收集管的间距。
14.(2025·四川·高考真题)如图所示,真空中固定放置两块较大的平行金属板,板间距为d,下极板接地,板间匀强电场大小恒为E。现有一质量为m、电荷量为q()的金属微粒,从两极板中央O点由静止释放。若微粒与极板碰撞前后瞬间机械能不变,碰撞后电性与极板相同,所带电荷量的绝对值不变。不计微粒重力。求:
(1)微粒第一次到达下极板所需时间;
(2)微粒第一次从上极板回到O点时的动量大小。
16.(2025·北京·高考真题)如图1所示,金属圆筒A接高压电源的正极,其轴线上的金属线B接负极。
(1)设两极间电压为U,求在B极附近电荷量为Q的负电荷到达A极过程中静电力做的功W。
(2)已知筒内距离轴线r处的电场强度大小,其中k为静电力常量,为金属线B单位长度的电荷量。如图2所示,在圆筒内横截面上,电荷量为q、质量为m的粒子绕轴线做半径不同的匀速圆周运动,其半径为和时的总能量分别为和。若,推理分析并比较与的大小。
(3)图1实为某种静电除尘装置原理图,空气分子在B极附近电离,筒内尘埃吸附电子而带负电,在电场作用下最终被A极收集。使分子或原子电离需要一定条件。以电离氢原子为例。根据玻尔原子模型,定态氢原子中电子在特定轨道上绕核做圆周运动,处于特定能量状态,只有当原子获得合适能量才能跃迁或电离。若氢原子处于外电场中,推导说明外电场的电场强度多大能将基态氢原子电离。(可能用到:元电荷,电子质量,静电力常量,基态氢原子轨道半径和能量)
17.(2025·广西·高考真题)带电粒子绕着带电量为的源电荷做轨迹为椭圆的曲线运动,源电荷固定在椭圆左焦点F上,带电粒子电量为;已知椭圆焦距为c,半长轴为a,电势计算公式为,带电粒子速度的平方与其到电荷的距离的倒数满足如图关系。
(1)求在椭圆轨道半短轴顶点B的电势;
(2)求带电粒子从A到B的运动过程中,电场力对带电粒子做的功;
(3)用推理论证带电粒子动能与电势能之和是否守恒;若守恒,求其动能与电势能之和;若不守恒,说明理由。
18.(2025·北京·高考真题)北京谱仪是北京正负电子对撞机的一部分,它可以利用带电粒子在磁场中的运动测量粒子的质量、动量等物理量。
考虑带电粒子在磁感应强度为B的匀强磁场中的运动,且不计粒子间相互作用。
(1)一个电荷量为的粒子的速度方向与磁场方向垂直,推导得出粒子的运动周期T与质量m的关系。
(2)两个粒子质量相等、电荷量均为q,粒子1的速度方向与磁场方向垂直,粒子2的速度方向与磁场方向平行。在相同的时间内,粒子1在半径为R的圆周上转过的圆心角为,粒子2运动的距离为d。求:
a.粒子1与粒子2的速度大小之比;
b.粒子2的动量大小。
19.(2025·广东·高考真题)如图是研究颗粒碰撞荷电特性装置的简化图。两块水平绝缘平板与两块竖直的平行金属平板相接。金属平板之间接高压电源产生匀强电场。一带电颗粒从上方绝缘平板左端A点处,由静止开始向右下方运动,与下方绝缘平板在B点处碰撞,碰撞时电荷量改变,反弹后离开下方绝缘平板瞬间,颗粒的速度与所受合力垂直,其水平分速度与碰前瞬间相同,竖直分速度大小变为碰前瞬间的k倍()。已知颗粒质量为m,两绝缘平板间的距离为h,两金属平板间的距离为d,B点与左平板的距离为l,电源电压为U,重力加速度为g。忽略空气阻力和电场的边缘效应。求:
(1)颗粒碰撞前的电荷量q。
(2)颗粒在B点碰撞后的电荷量Q。
(3)颗粒从A点开始运动到第二次碰撞过程中,电场力对它做的功W。
20.(2025·甘肃·高考真题)在自动化装配车间,常采用电磁驱动的机械臂系统,如图,ab、cd为两条足够长的光滑平行金属导轨,间距为L,电阻忽略不计。导轨置于磁感应强度大小为B,方向垂直纸面向里的匀强磁场中,导轨上有与之垂直并接触良好的金属机械臂1和2,质量均为m,电阻均为R。导轨左侧接有电容为C的电容器。初始时刻,机械臂1以初速度向右运动,机械臂2静止,运动过程中两机械臂不发生碰撞。系统达到稳定状态后,电流为零,两机械臂速度相同。
(1)求初始时刻机械臂1的感应电动势大小和感应电流方向;
(2)系统达到稳定状态前,若机械臂1和2中的电流分别为和,写出两机械臂各自所受安培力的大小;若电容器两端电压为U,写出电容器电荷量的表达式;
(3)稳系统达到稳定状态后两机械臂的速度。若要两机械臂不相撞,二者在初始时刻的间距至少为多少?
21.(2025·四川·高考真题)如图所示,长度均为s的两根光滑金属直导轨MN和PQ固定在水平绝缘桌面上,两者平行且相距l,M、P连线垂直于导轨,定滑轮位于N、Q连线中点正上方h处。MN和PQ单位长度的电阻均为r,M、P间连接一阻值为的电阻。空间有垂直于桌面向下的匀强磁场,磁感应强度大小为B。过定滑轮的不可伸长绝缘轻绳拉动质量为m、电阻不计的金属杆沿导轨向右做匀速直线运动,速度大小为v。零时刻,金属杆位于M、P连线处。金属杆在导轨上时与导轨始终垂直且接触良好,重力加速度大小为g。
(1)金属杆在导轨上运动时,回路的感应电动势;
(2)金属杆在导轨上与M、P连线相距d时,回路的热功率;
(3)金属杆在导轨上保持速度大小v做匀速直线运动的最大路程。
22.(2025·重庆·高考真题)如图为小明设计的电容式压力传感器原理示意图,平行板电容器与绝缘侧壁构成密闭气腔。电容器上下极板水平,上极板固定,下极板质量为m、面积为S,可无摩擦上下滑动。初始时腔内气体(视为理想气体)压强为p,极板间距为d。当上下极板均不带电时,外界气体压强改变后,极板间距变为2d,腔内气体温度与初始时相同,重力加速度为g,不计相对介电常数的变化,求此时
(1)腔内气体的压强;
(2)外界气体的压强;
(3)电容器的电容变为初始时的多少倍。
23.(2025·重庆·高考真题)研究小组设计了一种通过观察粒子在荧光屏上打出的亮点位置来测量粒子速度大小的装置,如题图所示,水平放置的荧光屏上方有沿竖直方向强度大小为B,方向垂直于纸面向外的匀强磁场。O、N、M均为荧光屏上的点,且在纸面内的同一直线上。发射管K(不计长度)位于O点正上方,仅可沿管的方向发射粒子,一端发射带正电粒子,另一端发射带负电粒子,同时发射的正、负粒子速度大小相同,方向相反,比荷均为。已知,,不计粒子所受重力及粒子间相互作用。
(1)若K水平发射的粒子在O点产生光点,求粒子的速度大小。
(2)若K从水平方向逆时针旋转60°,其两端同时发射的正、负粒子恰都能在N点产生光点,求粒子的速度大小。
(3)要使(2)问中发射的带正电粒子恰好在M点产生光点,可在粒子发射t时间后关闭磁场,忽略磁场变化的影响,求t。
24.(2025·湖南·高考真题)如图。直流电源的电动势为,内阻为,滑动变阻器R的最大阻值为,平行板电容器两极板水平放置,板间距离为d,板长为,平行板电容器的右侧存在方向垂直纸面向里的匀强磁场。闭合开关S,当滑片处于滑动变阻器中点时,质量为m的带正电粒子以初速度水平向右从电容器左侧中点a进入电容器,恰好从电容器下极板右侧边缘b点进入磁场,随后又从电容器上极板右侧边缘c点进入电容器,忽略粒子重力和空气阻力。
(1)求粒子所带电荷量q;
(2)求磁感应强度B的大小;
(3)若粒子离开b点时,在平行板电容器的右侧再加一个方向水平向右的匀强电场,场强大小为,求粒子相对于电容器右侧的最远水平距离。
25.(2025·云南·高考真题)磁屏蔽技术可以降低外界磁场对屏蔽区域的干扰。如图所示,区域存在垂直平面向里的匀强磁场,其磁感应强度大小为(未知)。第一象限内存在边长为的正方形磁屏蔽区ONPQ,经磁屏蔽后,该区域内的匀强磁场方向仍垂直平面向里,其磁感应强度大小为(未知),但满足。某质量为m、电荷量为的带电粒子通过速度选择器后,在平面内垂直y轴射入区域,经磁场偏转后刚好从ON中点垂直ON射入磁屏蔽区域。速度选择器两极板间电压U、间距d、内部磁感应强度大小已知,不考虑该粒子的重力。
(1)求该粒子通过速度选择器的速率;
(2)求以及y轴上可能检测到该粒子的范围;
(3)定义磁屏蔽效率,若在Q处检测到该粒子,则是多少?
26.(2025·浙江·高考真题)同位素相对含量的测量在考古学中有重要应用,其测量系统如图1所示。将少量古木样品碳化、电离后,产生的离子经过静电分析仪ESA-I、磁体-I和高电压清除器,让只含有三种碳同位素、、的离子束(初速度可忽略不计)进入磁体-Ⅱ.磁体-Ⅱ由电势差为U的加速电极P,磁感应强度为B、半径为R的四分之一圆弧细管道和离子接收器F构成。通过调节U,可分离、、三种同位素,其中、的离子被接收器F所接收并计数,它们的离子数百分比与U之间的关系曲线如图2所示,而离子可通过接收器F,进入静电分析仪ESA-Ⅱ,被接收器D接收并计算。
(1)写出中子与发生核反应生成,以及发生衰变生成的核反应方程式:
(2)根据图2写出的离子所对应的U值,并求磁感应强度B的大小(计算结果保留两位有效数字。已知,原子质量单位,元电荷);
(3)如图1所示,ESA-Ⅱ可简化为间距两平行极板,在下极板开有间距的两小孔,仅允许入射角的离子通过。求两极板之间的电势差U:
(4)对古木样品,测得与离子数之比值为;采用同样办法,测得活木头中与的比值为,由于它与外部环境不断进行碳交换,该比例长期保持稳定。试计算古木被砍伐距今的时间(已知的半衰期约为5700年,)
27.(2025·浙江·高考真题)如图所示,接有恒流源的正方形线框边长、质量m、电阻R,放在光滑水平地面上,线框部分处于垂直地面向下、磁感应强度为B的匀强磁场中。以磁场边界CD上一点为坐标原点,水平向右建立轴,线框中心和一条对角线始终位于轴上。开关S断开,线框保持静止,不计空气阻力。
(1)线框中心位于,闭合开关S后,线框中电流大小为I,求
①闭合开关S瞬间,线框受到的安培力大小;
②线框中心运动至过程中,安培力做功及冲量;
③线框中心运动至时,恒流源提供的电压;
(2)线框中心分别位于和,闭合开关S后,线框中电流大小为I,线框中心分别运动到所需时间分别为和,求。
1.(2024·浙江·高考真题)探究性学习小组设计了一个能在喷镀板的上下表面喷镀不同离子的实验装置,截面如图所示。在xOy平面内,除x轴和虚线之间的区域外,存在磁感应强度大小为B,方向垂直纸面向外的匀强磁场,在无磁场区域内,沿着x轴依次放置离子源、长度为L的喷镀板P、长度均为L的栅极板M和N(由金属细丝组成的网状电极),喷镀板P上表面中点Q的坐标为(1.5L,0),栅极板M中点S的坐标为(3L,0),离子源产生a和b两种正离子,其中a离子质量为m,电荷量为q,b离子的比荷为a离子的倍,经电压U=kU0(其中,k大小可调,a和b离子初速度视为0)的电场加速后,沿着y轴射入上方磁场。经磁场偏转和栅极板N和M间电压UNM调控(UNM>0),a和b离子分别落在喷镀板的上下表面,并立即被吸收且电中和,忽略场的边界效应、离子受到的重力及离子间相互作用力。
(1)若U=U0,求a离子经磁场偏转后,到达x轴上的位置x0(用L表示)。
(2)调节U和UNM,并保持,使a离子能落到喷镀板P上表面任意位置,求:
①U的调节范围(用U0表示);
②b离子落在喷镀板P下表面的区域长度;
(3)要求a和b离子恰好分别落在喷镀板P上下表面的中点,求U和UNM的大小。
2.(2024·甘肃·高考真题)质谱仪是科学研究中的重要仪器,其原理如图所示。Ⅰ为粒子加速器,加速电压为U;Ⅱ为速度选择器,匀强电场的电场强度大小为,方向沿纸面向下,匀强磁场的磁感应强度大小为,方向垂直纸面向里;Ⅲ为偏转分离器,匀强磁场的磁感应强度大小为,方向垂直纸面向里。从S点释放初速度为零的带电粒子(不计重力),加速后进入速度选择器做直线运动、再由O点进入分离器做圆周运动,最后打到照相底片的P点处,运动轨迹如图中虚线所示。
(1)粒子带正电还是负电?求粒子的比荷。
(2)求O点到P点的距离。
(3)若速度选择器Ⅱ中匀强电场的电场强度大小变为(略大于),方向不变,粒子恰好垂直打在速度选择器右挡板的点上。求粒子打在点的速度大小。
3.(2024·浙江·高考真题)某小组探究“法拉第圆盘发电机与电动机的功用”,设计了如图所示装置。飞轮由三根长的辐条和金属圆环组成,可绕过其中心的水平固定轴转动,不可伸长细绳绕在圆环上,系着质量的物块,细绳与圆环无相对滑动。飞轮处在方向垂直环面的匀强磁场中,左侧电路通过电刷与转轴和圆环边缘良好接触,开关S可分别与图示中的电路连接。已知电源电动势、内阻、限流电阻、飞轮每根辐条电阻,电路中还有可调电阻R2(待求)和电感L,不计其他电阻和阻力损耗,不计飞轮转轴大小。
(1)开关S掷1,“电动机”提升物块匀速上升时,理想电压表示数。
①判断磁场方向,并求流过电阻R1的电流I;
②求物块匀速上升的速度v。
(2)开关S掷2,物块从静止开始下落,经过一段时间后,物块匀速下降的速度与“电动机”匀速提升物块的速度大小相等,
①求可调电阻R2的阻值;
②求磁感应强度B的大小。
4.(2024·海南·高考真题)如图,在xOy坐标系中有三个区域,圆形区域Ⅰ分别与x轴和y轴相切于P点和S点。半圆形区域Ⅱ的半径是区域Ⅰ半径的2倍。区域Ⅰ、Ⅱ的圆心连线与x轴平行,半圆与圆相切于Q点,QF垂直于x轴,半圆的直径MN所在的直线右侧为区域Ⅲ。区域Ⅰ、Ⅱ分别有磁感应强度大小为B、的匀强磁场,磁场方向均垂直纸面向外。区域Ⅰ下方有一粒子源和加速电场组成的发射器,可将质量为m、电荷量为q的粒子由电场加速到。改变发射器的位置,使带电粒子在OF范围内都沿着y轴正方向以相同的速度沿纸面射入区域Ⅰ。已知某粒子从P点射入区域Ⅰ,并从Q点射入区域Ⅱ(不计粒子的重力和粒子之间的影响)
(1)求加速电场两板间的电压U和区域Ⅰ的半径R;
(2)在能射入区域Ⅲ的粒子中,某粒子在区域Ⅱ中运动的时间最短,求该粒子在区域Ⅰ和区域Ⅱ中运动的总时间t;
(3)在区域Ⅲ加入匀强磁场和匀强电场,磁感应强度大小为B,方向垂直纸面向里,电场强度的大小,方向沿x轴正方向。此后,粒子源中某粒子经区域Ⅰ、Ⅱ射入区域Ⅲ,进入区域Ⅲ时速度方向与y轴负方向的夹角成74°角。当粒子动能最大时,求粒子的速度大小及所在的位置到y轴的距离。
5.(2024·广西·高考真题)某兴趣小组为研究非摩擦形式的阻力设计了如图甲的模型。模型由大齿轮、小齿轮、链条、阻力装置K及绝缘圆盘等组成。K由固定在绝缘圆盘上两个完全相同的环状扇形线圈、组成。小齿轮与绝缘圆盘固定于同一转轴上,转轴轴线位于磁场边界处,方向与磁场方向平行,匀强磁场磁感应强度大小为B,方向垂直纸面向里,与K所在平面垂直。大、小齿轮半径比为n,通过链条连接。K的结构参数见图乙,其中,每个线圈的圆心角为,圆心在转轴轴线上,电阻为R。不计摩擦,忽略磁场边界处的磁场,若大齿轮以的角速度保持匀速转动,以线圈的ab边某次进入磁场时为计时起点,求K转动一周。
(1)不同时间线圈受到的安培力大小;
(2)流过线圈的电流有效值;
(3)装置K消耗的平均电功率。
6.(2024·湖南·高考真题)如图,有一内半径为2r、长为L的圆筒,左右端面圆心O′、O处各开有一小孔。以O为坐标原点,取O′O方向为x轴正方向建立xyz坐标系。在筒内x ≤ 0区域有一匀强磁场,磁感应强度大小为B,方向沿x轴正方向;筒外x ≥ 0区域有一匀强电场,场强大小为E,方向沿y轴正方向。一电子枪在O′处向圆筒内多个方向发射电子,电子初速度方向均在xOy平面内,且在x轴正方向的分速度大小均为v0。已知电子的质量为m、电量为e,设电子始终未与筒壁碰撞,不计电子之间的相互作用及电子的重力。
(1)若所有电子均能经过O进入电场,求磁感应强度B的最小值;
(2)取(1)问中最小的磁感应强度B,若进入磁场中电子的速度方向与x轴正方向最大夹角为θ,求tanθ的绝对值;
(3)取(1)问中最小的磁感应强度B,求电子在电场中运动时y轴正方向的最大位移。
7.(2024·海南·高考真题)虚接是常见的电路故障,如图所示,电热器A与电热器B并联。电路中的C处由于某种原因形成了虚接,造成了该处接触电阻0~240Ω之间不稳定变化,可等效为电阻,已知MN两端电压,A与B的电阻,求:
(1)MN间电阻R的变化范围;
(2)当,电热器B消耗的功率(保留3位有效数字)
8.(2024·北京·高考真题)我国“天宫”空间站采用霍尔推进器控制姿态和修正轨道。图为某种霍尔推进器的放电室(两个半径接近的同轴圆筒间的区域)的示意图。放电室的左、右两端分别为阳极和阴极,间距为d。阴极发射电子,一部分电子进入放电室,另一部分未进入。稳定运行时,可视为放电室内有方向沿轴向向右的匀强电场和匀强磁场,电场强度和磁感应强度大小分别为E和;还有方向沿半径向外的径向磁场,大小处处相等。放电室内的大量电子可视为处于阳极附近,在垂直于轴线的平面绕轴线做半径为R的匀速圆周运动(如截面图所示),可与左端注入的氙原子碰撞并使其电离。每个氙离子的质量为M、电荷量为,初速度近似为零。氙离子经过电场加速,最终从放电室右端喷出,与阴极发射的未进入放电室的电子刚好完全中和。
已知电子的质量为m、电荷量为;对于氙离子,仅考虑电场的作用。
(1)求氙离子在放电室内运动的加速度大小a;
(2)求径向磁场的磁感应强度大小;
(3)设被电离的氙原子数和进入放电室的电子数之比为常数k,单位时间内阴极发射的电子总数为n,求此霍尔推进器获得的推力大小F。
9.(2024·河北·高考真题)如图,边长为的正方形金属细框固定放置在绝缘水平面上,细框中心O处固定一竖直细导体轴。间距为L、与水平面成角的平行导轨通过导线分别与细框及导体轴相连。导轨和细框分别处在与各自所在平面垂直的匀强磁场中,磁感应强度大小均为B。足够长的细导体棒在水平面内绕O点以角速度匀速转动,水平放置在导轨上的导体棒始终静止。棒在转动过程中,棒在所受安培力达到最大和最小时均恰好能静止。已知棒在导轨间的电阻值为R,电路中其余部分的电阻均不计,棒始终与导轨垂直,各部分始终接触良好,不计空气阻力,重力加速度大小为g。
(1)求棒所受安培力的最大值和最小值。
(2)锁定棒,推动棒下滑,撤去推力瞬间,棒的加速度大小为a,所受安培力大小等于(1)问中安培力的最大值,求棒与导轨间的动摩擦因数。
10.(2024·山东·高考真题)如图所示,在Oxy坐标系x>0,y>0区域内充满垂直纸面向里,磁感应强度大小为B的匀强磁场。磁场中放置一长度为L的挡板,其两端分别位于x、y轴上M、N两点,∠OMN=60°,挡板上有一小孔K位于MN中点。△OMN之外的第一象限区域存在恒定匀强电场。位于y轴左侧的粒子发生器在0<y<的范围内可以产生质量为m,电荷量为+q的无初速度的粒子。粒子发生器与y轴之间存在水平向右的匀强加速电场,加速电压大小可调,粒子经此电场加速后进入磁场,挡板厚度不计,粒子可沿任意角度穿过小孔,碰撞挡板的粒子不予考虑,不计粒子重力及粒子间相互作用力。
(1)求使粒子垂直挡板射入小孔K的加速电压U0;
(2)调整加速电压,当粒子以最小的速度从小孔K射出后恰好做匀速直线运动,求第一象限中电场强度的大小和方向;
(3)当加速电压为时,求粒子从小孔K射出后,运动过程中距离y轴最近位置的坐标。
11.(2024·北京·高考真题)如图甲所示为某种“电磁枪”的原理图。在竖直向下的匀强磁场中,两根相距L的平行长直金属导轨水平放置,左端接电容为C的电容器,一导体棒放置在导轨上,与导轨垂直且接触良好,不计导轨电阻及导体棒与导轨间的摩擦。已知磁场的磁感应强度大小为B,导体棒的质量为m、接入电路的电阻为R。开关闭合前电容器的电荷量为Q。
(1)求闭合开关瞬间通过导体棒的电流I;
(2)求闭合开关瞬间导体棒的加速度大小a;
(3)在图乙中定性画出闭合开关后导体棒的速度v随时间t的变化图线。
12.(2024·河北·高考真题)如图,竖直向上的匀强电场中,用长为L的绝缘细线系住一带电小球,在竖直平面内绕O点做圆周运动。图中A、B为圆周上的两点,A点为最低点,B点与O点等高。当小球运动到A点时,细线对小球的拉力恰好为0,已知小球的电荷量为、质量为m,A、B两点间的电势差为U,重力加速度大小为g,求:
(1)电场强度E的大小。
(2)小球在A、B两点的速度大小。
13.(2024·江西·高考真题)如图(a)所示,轨道左侧斜面倾斜角满足sinθ1 = 0.6,摩擦因数,足够长的光滑水平导轨处于磁感应强度为B = 0.5T的匀强磁场中,磁场方向竖直向上,右侧斜面导轨倾角满足sinθ2 = 0.8,摩擦因数。现将质量为m甲 = 6kg的导体杆甲从斜面上高h = 4m处由静止释放,质量为m乙 = 2kg的导体杆乙静止在水平导轨上,与水平轨道左端的距离为d。已知导轨间距为l = 2m,两杆电阻均为R = 1Ω,其余电阻不计,不计导体杆通过水平导轨与斜面导轨连接处的能量损失,且若两杆发生碰撞,则为完全非弹性碰撞,取g = 10m/s2,求:
(1)甲杆刚进入磁场,乙杆的加速度?
(2)乙杆第一次滑上斜面前两杆未相碰,距离d满足的条件?
(3)若乙前两次在右侧倾斜导轨上相对于水平导轨的竖直高度y随时间t的变化如图(b)所示(t1、t2、t3、t4、b均为未知量),乙第二次进入右侧倾斜导轨之前与甲发生碰撞,甲在0 ~ t3时间内未进入右侧倾斜导轨,求d的取值范围。
14.(2024·辽宁·高考真题)现代粒子加速器常用电磁场控制粒子团的运动及尺度。简化模型如图:Ⅰ、Ⅱ区宽度均为L,存在垂直于纸面的匀强磁场,磁感应强度等大反向;Ⅲ、Ⅳ区为电场区,Ⅳ区电场足够宽,各区边界均垂直于x轴,O为坐标原点。甲、乙为粒子团中的两个电荷量均为+q,质量均为m的粒子。如图,甲、乙平行于x轴向右运动,先后射入Ⅰ区时速度大小分别为和。甲到P点时,乙刚好射入Ⅰ区。乙经过Ⅰ区的速度偏转角为30°,甲到O点时,乙恰好到P点。已知Ⅲ区存在沿+x方向的匀强电场,电场强度大小。不计粒子重力及粒子间相互作用,忽略边界效应及变化的电场产生的磁场。
(1)求磁感应强度的大小B;
(2)求Ⅲ区宽度d;
(3)Ⅳ区x轴上的电场方向沿x轴,电场强度E随时间t、位置坐标x的变化关系为,其中常系数,已知、k未知,取甲经过O点时。已知甲在Ⅳ区始终做匀速直线运动,设乙在Ⅳ区受到的电场力大小为F,甲、乙间距为Δx,求乙追上甲前F与Δx间的关系式(不要求写出Δx的取值范围)
15.(2024·辽宁·高考真题)如图,理想变压器原、副线圈的匝数比为n1:n2 = 5:1,原线圈接在电压峰值为Um的正弦交变电源上,副线圈的回路中接有阻值为R的电热丝,电热丝密封在绝热容器内,容器内封闭有一定质量的理想气体。接通电路开始加热,加热前气体温度为T0。
(1)求变压器的输出功率P;
(2)已知该容器内的气体吸收的热量Q与其温度变化量ΔT成正比,即Q = CΔT,其中C已知。若电热丝产生的热量全部被气体吸收,要使容器内的气体压强达到加热前的2倍,求电热丝的通电时间t。
16.(2024·广东·高考真题)如图甲所示。两块平行正对的金属板水平放置,板间加上如图乙所示幅值为、周期为的交变电压。金属板左侧存在一水平向右的恒定匀强电场,右侧分布着垂直纸面向外的匀强磁场。磁感应强度大小为B.一带电粒子在时刻从左侧电场某处由静止释放,在时刻从下板左端边缘位置水平向右进入金属板间的电场内,在时刻第一次离开金属板间的电场、水平向右进入磁场,并在时刻从下板右端边缘位置再次水平进入金属板间的电场。已知金属板的板长是板间距离的倍,粒子质量为m。忽略粒子所受的重力和场的边缘效应。
(1)判断带电粒子的电性并求其所带的电荷量q;
(2)求金属板的板间距离D和带电粒子在时刻的速度大小v;
(3)求从时刻开始到带电粒子最终碰到上金属板的过程中,电场力对粒子做的功W。
17.(2024·湖北·高考真题)如图所示,两足够长平行金属直导轨MN、PQ的间距为L,固定在同一水平面内,直导轨在左端M、P点分别与两条竖直固定、半径为L的圆弧导轨相切。MP连线与直导轨垂直,其左侧无磁场,右侧存在磁感应强度大小为B、方向竖直向下的匀强磁场。长为L、质量为m、电阻为R的金属棒ab跨放在两圆弧导轨的最高点。质量为2m、电阻为6R的均匀金属丝制成一个半径为L的圆环,水平放置在两直导轨上,其圆心到两直导轨的距离相等。忽略导轨的电阻、所有摩擦以及金属环的可能形变,金属棒、金属环均与导轨始终接触良好,重力加速度大小为g。现将金属棒ab由静止释放,求
(1)ab刚越过MP时产生的感应电动势大小;
(2)金属环刚开始运动时的加速度大小;
(3)为使ab在整个运动过程中不与金属环接触,金属环圆心初始位置到MP的最小距离。
18.(2024·江苏·高考真题)如图所示,粗糙斜面的动摩擦因数为μ,倾角为θ,斜面长为L。一个质量为m的物块,在电动机作用下,从 A点由静止加速至 B点时达到最大速度v,之后作匀速运动至C点,关闭电动机,从 C点又恰好到达最高点D。求:
(1)CD段长x;
(2)BC段电动机的输出功率P;
(3)全过程物块增加的机械能E1和电动机消耗的总电能 E2的比值。
19.(2024·安徽·高考真题)如图所示,一“U”型金属导轨固定在竖直平面内,一电阻不计,质量为m的金属棒ab垂直于导轨,并静置于绝缘固定支架上。边长为L的正方形cdef区域内,存在垂直于纸面向外的匀强磁场。支架上方的导轨间,存在竖直向下的匀强磁场。两磁场的磁感应强度大小B随时间的变化关系均为B = kt(SI),k为常数(k > 0)。支架上方的导轨足够长,两边导轨单位长度的电阻均为r,下方导轨的总电阻为R。t = 0时,对ab施加竖直向上的拉力,恰使其向上做加速度大小为a的匀加速直线运动,整个运动过程中ab与两边导轨接触良好。已知ab与导轨间动摩擦因数为μ,重力加速度大小为g。不计空气阻力,两磁场互不影响。
(1)求通过面积Scdef的磁通量大小随时间t变化的关系式,以及感应电动势的大小,并写出ab中电流的方向;
(2)求ab所受安培力的大小随时间t变化的关系式;
(3)求经过多长时间,对ab所施加的拉力达到最大值,并求此最大值。
20.(2024·浙江·高考真题)类似光学中的反射和折射现象,用磁场或电场调控也能实现质子束的“反射”和“折射”。如图所示,在竖直平面内有三个平行区域Ⅰ、Ⅱ和Ⅲ;Ⅰ区宽度为d,存在磁感应强度大小为B、方向垂直平面向外的匀强磁场,Ⅱ区的宽度很小。Ⅰ区和Ⅲ区电势处处相等,分别为和,其电势差。一束质量为m、电荷量为e的质子从O点以入射角射向Ⅰ区,在P点以出射角射出,实现“反射”;质子束从P点以入射角射入Ⅱ区,经Ⅱ区“折射”进入Ⅲ区,其出射方向与法线夹角为“折射”角。已知质子仅在平面内运动,单位时间发射的质子数为N,初速度为,不计质子重力,不考虑质子间相互作用以及质子对磁场和电势分布的影响。
(1)若不同角度射向磁场的质子都能实现“反射”,求d的最小值;
(2)若,求“折射率”n(入射角正弦与折射角正弦的比值)
(3)计算说明如何调控电场,实现质子束从P点进入Ⅱ区发生“全反射”(即质子束全部返回Ⅰ区)
(4)在P点下方距离处水平放置一长为的探测板(Q在P的正下方),长为,质子打在探测板上即被吸收中和。若还有另一相同质子束,与原质子束关于法线左右对称,同时从O点射入Ⅰ区,且,求探测板受到竖直方向力F的大小与U之间的关系。
21.(2024·浙江·高考真题)如图1所示,扫描隧道显微镜减振装置由绝缘减振平台和磁阻尼减振器组成。平台通过三根关于轴对称分布的相同轻杆悬挂在轻质弹簧的下端O,弹簧上端固定悬挂在点,三个相同的关于轴对称放置的减振器位于平台下方。如图2所示,每个减振器由通过绝缘轻杆固定在平台下表面的线圈和固定在桌面上能产生辐向磁场的铁磁体组成,辐向磁场分布关于线圈中心竖直轴对称,线圈所在处磁感应强度大小均为B。处于静止状态的平台受到外界微小扰动,线圈在磁场中做竖直方向的阻尼运动,其位移随时间变化的图像如图3所示。已知时速度为,方向向下,、时刻的振幅分别为,。平台和三个线圈的总质量为m,弹簧的劲度系数为k,每个线圈半径为r、电阻为R。当弹簧形变量为时,其弹性势能为。不计空气阻力,求
(1)平台静止时弹簧的伸长量;
(2)时,每个线圈所受到安培力F的大小;
(3)在时间内,每个线圈产生的焦耳热Q;
(4)在时间内,弹簧弹力冲量的大小。
1.(2023·福建·高考真题)如图(a),一粗糙、绝缘水平面上有两个质量均为m的小滑块A和B,其电荷量分别为和。A右端固定有轻质光滑绝缘细杆和轻质绝缘弹簧,弹簧处于原长状态。整个空间存在水平向右场强大小为E的匀强电场。A、B与水平面间的最大静摩擦力等于滑动摩擦力,其大小均为。时,A以初速度向右运动,B处于静止状态。在时刻,A到达位置S,速度为,此时弹簧未与B相碰;在时刻,A的速度达到最大,此时弹簧的弹力大小为;在细杆与B碰前的瞬间,A的速度为,此时。时间内A的图像如图(b)所示,为图线中速度的最小值,、、均为未知量。运动过程中,A、B处在同一直线上,A、B的电荷量始终保持不变,它们之间的库仑力等效为真空中点电荷间的静电力,静电力常量为k;B与弹簧接触瞬间没有机械能损失,弹簧始终在弹性限度内。
(1)求时间内,合外力对A所做的功;
(2)求时刻A与B之间的距离;
(3)求时间内,匀强电场对A和B做的总功;
(4)若增大A的初速度,使其到达位置S时的速度为,求细杆与B碰撞前瞬间A的速度。
2.(2023·福建·高考真题)阿斯顿(F.Aston)借助自己发明的质谱仪发现了氖等元素的同位素而获得诺贝尔奖,质谱仪分析同位素简化的工作原理如图所示。在上方存在一垂直纸面向外的匀强磁场,磁感应强度大小为B。两个氖离子在O处以相同速度v垂直磁场边界入射,在磁场中发生偏转,分别落在M和N处。已知某次实验中,,落在M处氖离子比荷(电荷量和质量之比)为;P、O、M、N、P在同一直线上;离子重力不计。
(1)求OM的长度;
(2)若ON的长度是OM的1.1倍,求落在N处氖离子的比荷。
3.(2023·广东·高考真题)光滑绝缘的水平面上有垂直平面的匀强磁场,磁场被分成区域Ⅰ和Ⅱ,宽度均为,其俯视图如图(a)所示,两磁场磁感应强度随时间的变化如图(b)所示,时间内,两区域磁场恒定,方向相反,磁感应强度大小分别为和,一电阻为,边长为的刚性正方形金属框,平放在水平面上,边与磁场边界平行.时,线框边刚好跨过区域Ⅰ的左边界以速度向右运动.在时刻,边运动到距区域Ⅰ的左边界处,线框的速度近似为零,此时线框被固定,如图(a)中的虚线框所示。随后在时间内,Ⅰ区磁感应强度线性减小到0,Ⅱ区磁场保持不变;时间内,Ⅱ区磁感应强度也线性减小到0。求:

(1)时线框所受的安培力;
(2)时穿过线框的磁通量;
(3)时间内,线框中产生的热量。
4.(2023·天津·高考真题)科学研究中可以用电场和磁场实现电信号放大,某信号放大装置示意如图,其主要由阴极、中间电极(电极1,电极2, …,电极n)和阳极构成,该装置处于匀强磁场中,各相邻电极存在电势差。由阴极发射的电子射入电极1,激发出更多的电子射入电极2,依此类推,电子数逐级增加,最终被阳极收集,实现电信号放大。图中所有中间电极均沿x轴放置在xOz平面内,磁场平行于z轴,磁感应强度的大小为B。已知电子质量为m,电荷量为e。忽略电子间的相互作用力,不计重力。
(1)若电极间电势差很小可忽略,从电极1上O点激发出多个电子,它们的初速度方向与y轴的正方向夹角均为,其中电子a、b的初速度分别处于xOy 、yOz平面的第一象限内,并都能运动到电极2。
(i)试判断磁场方向;
(ii)分别求出a和b到达电极2所用的时间和;
(2)若单位时间内由阴极发射的电子数保持稳定,阴极、中间电极发出的电子全部到达下一相邻电极。设每个射入中间电极的电子在该电极上激发出个电子, ,U为相邻电极间电势差。试定性画出阳极收集电子而形成的电流I和U关系的图像,并说明理由
5.(2023·天津·高考真题)如图,如图所示,一不可伸长的轻绳上端固定,下端系在单匝匀质正方形金属框上边中点O处,框处于静止状态。一个三角形区域的顶点与O点重合,框的下边完全处在该区域中。三角形区域内加有随时间变化的匀强磁场,磁感应强度大小B与时间t的关系为B = kt(k > 0的常数),磁场与框平面垂直,框的面积为框内磁场区域面积的2倍,金属框质量为m,电阻为R,边长为l,重力加速度g,求:
(1)金属框中的感应电动势大小E;
(2)金属框开始向上运动的时刻t0;

6.(2023·北京·高考真题)某种负离子空气净化原理如图所示。由空气和带负电的灰尘颗粒物(视为小球)组成的混合气流进入由一对平行金属板构成的收集器。在收集器中,空气和带电颗粒沿板方向的速度保持不变。在匀强电场作用下,带电颗粒打到金属板上被收集,已知金属板长度为L,间距为d、不考虑重力影响和颗粒间相互作用。
(1)若不计空气阻力,质量为m、电荷量为的颗粒恰好全部被收集,求两金属板间的电压;
(2)若计空气阻力,颗粒所受阻力与其相对于空气的速度v方向相反,大小为,其中r为颗粒的半径,k为常量。假设颗粒在金属板间经极短时间加速达到最大速度。
a、半径为R、电荷量为的颗粒恰好全部被收集,求两金属板间的电压;
b、已知颗粒的电荷量与其半径的平方成正比,进入收集器的均匀混合气流包含了直径为和的两种颗粒,若的颗粒恰好100%被收集,求的颗粒被收集的百分比。

7.(2023·北京·高考真题)2022年,我国阶段性建成并成功运行了“电磁撬”,创造了大质量电磁推进技术的世界最高速度纪录。一种两级导轨式电磁推进的原理如图所示。两平行长直金属导轨固定在水平面,导轨间垂直安放金属棒。金属棒可沿导轨无摩擦滑行,且始终与导轨接触良好,电流从一导轨流入,经过金属棒,再从另一导轨流回,图中电源未画出。导轨电流在两导轨间产生的磁场可视为匀强磁场,磁感应强度B与电流i的关系式为(k为常量)。金属棒被该磁场力推动。当金属棒由第一级区域进入第二级区域时,回路中的电流由I变为。已知两导轨内侧间距为L,每一级区域中金属棒被推进的距离均为s,金属棒的质量为m。求:
(1)金属棒经过第一级区域时受到安培力的大小F;
(2)金属棒经过第一、二级区域的加速度大小之比;
(3)金属棒从静止开始经过两级区域推进后的速度大小v。

8.(2023·山东·高考真题)如图所示,在,的区域中,存在沿y轴正方向、场强大小为E的匀强电场,电场的周围分布着垂直纸面向外的恒定匀强磁场。一个质量为m,电量为q的带正电粒子从OP中点A进入电场(不计粒子重力)。
(1)若粒子初速度为零,粒子从上边界垂直QN第二次离开电场后,垂直NP再次进入电场,求磁场的磁感应强度B的大小;
(2)若改变电场强度大小,粒子以一定的初速度从A点沿y轴正方向第一次进入电场、离开电场后从P点第二次进入电场,在电场的作用下从Q点离开。
(i)求改变后电场强度的大小和粒子的初速度;
(ii)通过计算判断粒子能否从P点第三次进入电场。

9.(2023·山东·高考真题)电磁炮灭火消防车(图甲)采用电磁弹射技术投射灭火弹进入高层建筑快速灭火。电容器储存的能量通过电磁感应转化成灭火弹的动能,设置储能电容器的工作电压可获得所需的灭火弹出膛速度。如图乙所示,若电磁炮正对高楼,与高楼之间的水平距离,灭火弹出膛速度,方向与水平面夹角,不计炮口离地面高度及空气阻力,取重力加速度大小,。
(1)求灭火弹击中高楼位置距地面的高度H;
(2)已知电容器储存的电能,转化为灭火弹动能的效率,灭火弹的质量为,电容,电容器工作电压U应设置为多少?

10.(2023·浙江·高考真题)利用磁场实现离子偏转是科学仪器中广泛应用的技术。如图所示,Oxy平面(纸面)的第一象限内有足够长且宽度均为L、边界均平行x轴的区域Ⅰ和Ⅱ,其中区域Ⅰ存在磁感应强度大小为B1的匀强磁场,区域Ⅱ存在磁感应强度大小为B2的磁场,方向均垂直纸面向里,区域Ⅱ的下边界与x轴重合。位于处的离子源能释放出质量为m、电荷量为q、速度方向与x轴夹角为60°的正离子束,沿纸面射向磁场区域。不计离子的重力及离子间的相互作用,并忽略磁场的边界效应。
(1)求离子不进入区域Ⅱ的最大速度v1及其在磁场中的运动时间t;
(2)若,求能到达处的离子的最小速度v2;
(3)若,且离子源射出的离子数按速度大小均匀地分布在范围,求进入第四象限的离子数与总离子数之比η。

11.(2023·浙江·高考真题)某兴趣小组设计了一种火箭落停装置,简化原理如图所示,它由两根竖直导轨、承载火箭装置(简化为与火箭绝缘的导电杆MN)和装置A组成,并形成闭合回路。装置A能自动调节其输出电压确保回路电流I恒定,方向如图所示。导轨长度远大于导轨间距,不论导电杆运动到什么位置,电流I在导电杆以上空间产生的磁场近似为零,在导电杆所在处产生的磁场近似为匀强磁场,大小(其中k为常量),方向垂直导轨平面向里;在导电杆以下的两导轨间产生的磁场近似为匀强磁场,大小,方向与B1相同。火箭无动力下降到导轨顶端时与导电杆粘接,以速度v0进入导轨,到达绝缘停靠平台时速度恰好为零,完成火箭落停。已知火箭与导电杆的总质量为M,导轨间距,导电杆电阻为R。导电杆与导轨保持良好接触滑行,不计空气阻力和摩擦力,不计导轨电阻和装置A的内阻。在火箭落停过程中,
(1)求导电杆所受安培力的大小F和运动的距离L;
(2)求回路感应电动势E与运动时间t的关系;
(3)求装置A输出电压U与运动时间t的关系和输出的能量W;
(4)若R的阻值视为0,装置A用于回收能量,给出装置A可回收能量的来源和大小。
12.(2023·湖北·高考真题)如图所示,空间存在磁感应强度大小为B、垂直于xOy平面向里的匀强磁场。t = 0时刻,一带正电粒子甲从点P(2a,0)沿y轴正方向射入,第一次到达点O时与运动到该点的带正电粒子乙发生正碰。碰撞后,粒子甲的速度方向反向、大小变为碰前的3倍,粒子甲运动一个圆周时,粒子乙刚好运动了两个圆周。已知粒子甲的质量为m,两粒子所带电荷量均为q。假设所有碰撞均为弹性正碰,碰撞时间忽略不计,碰撞过程中不发生电荷转移,不考虑重力和两粒子间库仑力的影响。求:
(1)第一次碰撞前粒子甲的速度大小;
(2)粒子乙的质量和第一次碰撞后粒子乙的速度大小;
(3)时刻粒子甲、乙的位置坐标,及从第一次碰撞到的过程中粒子乙运动的路程。(本小问不要求写出计算过程,只写出答案即可)

13.(2023·辽宁·高考真题)如图,水平放置的两平行金属板间存在匀强电场,板长是板间距离的倍。金属板外有一圆心为O的圆形区域,其内部存在磁感应强度大小为B、方向垂直于纸面向外的匀强磁场。质量为m、电荷量为q(q>0)的粒子沿中线以速度v0水平向右射入两板间,恰好从下板边缘P点飞出电场,并沿PO方向从图中O'点射入磁场。已知圆形磁场区域半径为,不计粒子重力。
(1)求金属板间电势差U;
(2)求粒子射出磁场时与射入磁场时运动方向间的夹角θ;
(3)仅改变圆形磁场区域的位置,使粒子仍从图中O'点射入磁场,且在磁场中的运动时间最长。定性画出粒子在磁场中的运动轨迹及相应的弦,标出改变后的圆形磁场区域的圆心M。
14.(2023·海南·高考真题)如图所示,U形金属杆上边长为,质量为,下端插入导电液体中,导电液体连接电源,金属杆所在空间有垂直纸面向里的匀强磁场。
(1)若插入导电液体部分深,闭合电键后,金属杆飞起后,其下端离液面高度,设杆中电流不变,求金属杆离开液面时的速度大小和金属杆中的电流有多大;
(2)若金属杆下端刚与导电液体接触,改变电动势的大小,通电后金属杆跳起高度,通电时间,求通过金属杆截面的电荷量。

15.(2023·江苏·高考真题)霍尔推进器某局部区域可抽象成如图所示的模型。Oxy平面内存在竖直向下的匀强电场和垂直坐标平面向里的匀强磁场,磁感应强度为B。质量为m、电荷量为e的电子从O点沿x轴正方向水平入射。入射速度为v0时,电子沿x轴做直线运动;入射速度小于v0时,电子的运动轨迹如图中的虚线所示,且在最高点与在最低点所受的合力大小相等。不计重力及电子间相互作用。
(1)求电场强度的大小E;
(2)若电子入射速度为,求运动到速度为时位置的纵坐标y1;
(3)若电子入射速度在0 < v < v0范围内均匀分布,求能到达纵坐标位置的电子数N占总电子数N0的百分比。

16.(2023·湖南·高考真题)如图,两根足够长的光滑金属直导轨平行放置,导轨间距为,两导轨及其所构成的平面均与水平面成角,整个装置处于垂直于导轨平面斜向上的匀强磁场中,磁感应强度大小为.现将质量均为的金属棒垂直导轨放置,每根金属棒接入导轨之间的电阻均为。运动过程中金属棒与导轨始终垂直且接触良好,金属棒始终未滑出导轨,导轨电阻忽略不计,重力加速度为。
(1)先保持棒静止,将棒由静止释放,求棒匀速运动时的速度大小;
(2)在(1)问中,当棒匀速运动时,再将棒由静止释放,求释放瞬间棒的加速度大小;
(3)在(2)问中,从棒释放瞬间开始计时,经过时间,两棒恰好达到相同的速度,求速度的大小,以及时间内棒相对于棒运动的距离。

17.(2023·浙江·高考真题)如图1所示,刚性导体线框由长为L、质量均为m的两根竖杆,与长为的两轻质横杆组成,且。线框通有恒定电流,可以绕其中心竖直轴转动。以线框中心O为原点、转轴为z轴建立直角坐标系,在y轴上距离O为a处,固定放置一半径远小于a,面积为S、电阻为R的小圆环,其平面垂直于y轴。在外力作用下,通电线框绕转轴以角速度匀速转动,当线框平面与平面重合时为计时零点,圆环处的磁感应强度的y分量与时间的近似关系如图2所示,图中已知。
(1)求0到时间内,流过圆环横截面的电荷量q;
(2)沿y轴正方向看以逆时针为电流正方向,在时间内,求圆环中的电流与时间的关系;
(3)求圆环中电流的有效值;
(4)当撤去外力,线框将缓慢减速,经时间角速度减小量为,设线框与圆环的能量转换效率为k,求的值(当,有)。
18.(2023·浙江·高考真题)探究离子源发射速度大小和方向分布的原理如图所示。x轴上方存在垂直平面向外、磁感应强度大小为B的匀强磁场。x轴下方的分析器由两块相距为d、长度足够的平行金属薄板M和N组成,其中位于x轴的M板中心有一小孔C(孔径忽略不计),N板连接电流表后接地。位于坐标原点O的离子源能发射质量为m、电荷量为q的正离子,其速度方向与y轴夹角最大值为;且各个方向均有速度大小连续分布在和之间的离子射出。已知速度大小为、沿y轴正方向射出的离子经磁场偏转后恰好垂直x轴射入孔C。未能射入孔C的其它离子被分析器的接地外罩屏蔽(图中没有画出)。不计离子的重力及相互作用,不考虑离子间的碰撞。
(1)求孔C所处位置的坐标;
(2)求离子打在N板上区域的长度L;
(3)若在N与M板之间加载电压,调节其大小,求电流表示数刚为0时的电压;
(4)若将分析器沿着x轴平移,调节加载在N与M板之间的电压,求电流表示数刚为0时的电压与孔C位置坐标x之间关系式。
1.(2022·天津·高考真题)直流电磁泵是利用安培力推动导电液体运动的一种设备,可用图1所示的模型讨论其原理,图2为图1的正视图。将两块相同的矩形导电平板竖直正对固定在长方体绝缘容器中,平板与容器等宽,两板间距为,容器中装有导电液体,平板底端与容器底部留有高度可忽略的空隙,导电液体仅能从空隙进入两板间。初始时两板间接有直流电源,电源极性如图所示。若想实现两板间液面上升,可在两板间加垂直于面的匀强磁场,磁感应强度的大小为,两板间液面上升时两板外的液面高度变化可忽略不计。已知导电液体的密度为、电阻率为,重力加速度为。
(1)试判断所加磁场的方向;
(2)求两板间液面稳定在初始液面高度2倍时的电压;
(3)假定平板与容器足够高,求电压满足什么条件时两板间液面能够持续上升。
2.(2022·天津·高考真题)如图所示,M和N为平行金属板,质量为m,电荷量为q的带电粒子从M由静止开始被两板间的电场加速后,从N上的小孔穿出,以速度v由C点射入圆形匀强磁场区域,经D点穿出磁场,CD为圆形区域的直径。已知磁场的磁感应强度大小为B、方向垂直于纸面向外,粒子速度方向与磁场方向垂直,重力略不计。
(1)判断粒子的电性,并求M、N间的电压U;
(2)求粒子在磁场中做圆周运动的轨道半径r;
(3)若粒子的轨道半径与磁场区域的直径相等,求粒子在磁场中运动的时间t。
3.(2022·福建·高考真题)如图(a),一倾角为的绝缘光滑斜面固定在水平地面上,其顶端与两根相距为L的水平光滑平行金属导轨相连;导轨处于一竖直向下的匀强磁场中,其末端装有挡板M、N.两根平行金属棒G、H垂直导轨放置,G的中心用一不可伸长绝缘细绳通过轻质定滑轮与斜面底端的物块A相连;初始时刻绳子处于拉紧状态并与G垂直,滑轮左侧细绳与斜面平行,右侧与水平面平行.从开始,H在水平向右拉力作用下向右运动;时,H与挡板M、N相碰后立即被锁定.G在后的速度一时间图线如图(b)所示,其中段为直线.已知:磁感应强度大小,,G、H和A的质量均为,G、H的电阻均为;导轨电阻、细绳与滑轮的摩擦力均忽略不计;H与挡板碰撞时间极短;整个运动过程A未与滑轮相碰,两金属棒始终与导轨垂直且接触良好:,,重力加速度大小取,图(b)中e为自然常数,.求:
(1)在时间段内,棒G的加速度大小和细绳对A的拉力大小;
(2)时,棒H上拉力的瞬时功率;
(3)在时间段内,棒G滑行的距离.
4.(2022·重庆·高考真题)某同学以金属戒指为研究对象,探究金属物品在变化磁场中的热效应。如图所示,戒指可视为周长为L、横截面积为S、电阻率为的单匝圆形线圈,放置在匀强磁场中,磁感应强度方向垂直于戒指平面。若磁感应强度大小在时间内从0均匀增加到,求:
(1)戒指中的感应电动势和电流;
(2)戒指中电流的热功率。
5.(2022·北京·高考真题)指南针是利用地磁场指示方向的装置,它的广泛使用促进了人们对地磁场的认识。现代科技可以实现对地磁场的精确测量。
(1)如图1所示,两同学把一根长约10m的电线两端用其他导线连接一个电压表,迅速摇动这根电线。若电线中间位置的速度约10m/s,电压表的最大示数约2mV。粗略估算该处地磁场磁感应强度的大小B地;
(2)如图2所示,一矩形金属薄片,其长为a,宽为b,厚为c。大小为I的恒定电流从电极P流入、从电极Q流出,当外加与薄片垂直的匀强磁场时,M、N两电极间产生的电压为U。已知薄片单位体积中导电的电子数为n,电子的电荷量为e。求磁感应强度的大小B;
(3)假定(2)中的装置足够灵敏,可用来测量北京地区地磁场磁感应强度的大小和方向,请说明测量的思路。
6.(2022·北京·高考真题)如图所示,真空中平行金属板M、N之间距离为d,两板所加的电压为U。一质量为m、电荷量为q的带正电粒子从M板由静止释放。不计带电粒子的重力。
(1)求带电粒子所受的静电力的大小F;
(2)求带电粒子到达N板时的速度大小v;
(3)若在带电粒子运动距离时撤去所加电压,求该粒子从M板运动到N板经历的时间t。
7.(2022·江苏·高考真题)某装置用电场控制带电粒子运动,工作原理如图所示,矩形区域内存在多层紧邻的匀强电场,每层的高度均为d,电场强度大小均为E,方向沿竖直方向交替变化,边长为,边长为,质量为m、电荷量为的粒子流从装置左端中点射入电场,粒子初动能为,入射角为,在纸面内运动,不计重力及粒子间的相互作用力。
(1)当时,若粒子能从边射出,求该粒子通过电场的时间t;
(2)当时,若粒子从边射出电场时与轴线的距离小于d,求入射角的范围;
(3)当,粒子在为范围内均匀射入电场,求从边出射的粒子与入射粒子的数量之比。
8.(2022·江苏·高考真题)利用云室可以知道带电粒子的性质,如图所示,云室中存在磁感应强度大小为B的匀强磁场,一个质量为m、速度为v的电中性粒子在A点分裂成带等量异号电荷的粒子a和b,a、b在磁场中的径迹是两条相切的圆弧,相同时间内的径迹长度之比,半径之比,不计重力及粒子间的相互作用力,求:
(1)粒子a、b的质量之比;
(2)粒子a的动量大小。
9.(2022·海南·高考真题)光滑的水平长直轨道放在匀强磁场中,轨道宽,一导体棒长也为,质量,电阻静止在导轨上,它与导轨接触良好。当开关与a接通时,电源可提供恒定的电流,电流方向可根据需要进行改变,开关与b接通时,电阻,若开关的切换与电流的换向均可在瞬间完成,求:
①当棒中电流由M流向N时,棒的加速度的大小和方向是怎样的;
②当开关始终接a,要想在最短时间内使棒向左移动而静止,则棒的最大速度是多少;
③要想棒在最短时间内向左移动而静止,则棒中产生的焦耳热是多少。
10.(2022·辽宁·高考真题)如图所示,两平行光滑长直金属导轨水平放置,间距为L。区域有匀强磁场,磁感应强度大小为B,方向竖直向上。初始时刻,磁场外的细金属杆M以初速度向右运动,磁场内的细金属杆N处于静止状态。两金属杆与导轨接触良好且运动过程中始终与导轨垂直。两杆的质量均为m,在导轨间的电阻均为R,感应电流产生的磁场及导轨的电阻忽略不计。
(1)求M刚进入磁场时受到的安培力F的大小和方向;
(2)若两杆在磁场内未相撞且N出磁场时的速度为,求:①N在磁场内运动过程中通过回路的电荷量q;②初始时刻N到的最小距离x;
(3)初始时刻,若N到的距离与第(2)问初始时刻的相同、到的距离为,求M出磁场后不与N相撞条件下k的取值范围。
11.(2022·辽宁·高考真题)如图所示,光滑水平面和竖直面内的光滑圆弧导轨在B点平滑连接,导轨半径为R。质量为m的带正电小球将轻质弹簧压缩至A点后由静止释放,脱离弹簧后经过B点时的速度大小为,之后沿轨道运动。以O为坐标原点建立直角坐标系,在区域有方向与x轴夹角为的匀强电场,进入电场后小球受到的电场力大小为。小球在运动过程中电荷量保持不变,重力加速度为g。求:
(1)弹簧压缩至A点时的弹性势能;
(2)小球经过O点时的速度大小;
(3)小球过O点后运动的轨迹方程。
12.(2022·湖北·高考真题)如图所示,高度足够的匀强磁场区域下边界水平、左右边界竖直,磁场方向垂直于纸面向里。正方形单匝线框abcd的边长L = 0.2m、回路电阻R = 1.6 × 10 - 3Ω、质量m = 0.2kg。线框平面与磁场方向垂直,线框的ad边与磁场左边界平齐,ab边与磁场下边界的距离也为L。现对线框施加与水平向右方向成θ = 45°角、大小为的恒力F,使其在图示竖直平面内由静止开始运动。从ab边进入磁场开始,在竖直方向线框做匀速运动;dc边进入磁场时,bc边恰好到达磁场右边界。重力加速度大小取g = 10m/s2,求:
(1)ab边进入磁场前,线框在水平方向和竖直方向的加速度大小;
(2)磁场的磁感应强度大小和线框进入磁场的整个过程中回路产生的焦耳热;
(3)磁场区域的水平宽度。
13.(2022·浙江·高考真题)离子速度分析器截面图如图所示。半径为R的空心转筒P,可绕过O点、垂直xOy平面(纸面)的中心轴逆时针匀速转动(角速度大小可调),其上有一小孔S。整个转筒内部存在方向垂直纸面向里的匀强磁场。转筒下方有一与其共轴的半圆柱面探测板Q,板Q与y轴交于A点。离子源M能沿着x轴射出质量为m、电荷量为 – q(q > 0)、速度大小不同的离子,其中速度大小为v0的离子进入转筒,经磁场偏转后恰好沿y轴负方向离开磁场。落在接地的筒壁或探测板上的离子被吸收且失去所带电荷,不计离子的重力和离子间的相互作用。
(1)①求磁感应强度B的大小;
②若速度大小为v0的离子能打在板Q的A处,求转筒P角速度ω的大小;
(2)较长时间后,转筒P每转一周有N个离子打在板Q的C处,OC与x轴负方向的夹角为θ,求转筒转动一周的时间内,C处受到平均冲力F的大小;
(3)若转筒P的角速度小于,且A处探测到离子,求板Q上能探测到离子的其他θ′的值(θ′为探测点位置和O点连线与x轴负方向的夹角)。
14.(2022·浙江·高考真题)舰载机电磁弹射是现在航母最先进的弹射技术,我国在这一领域已达到世界先进水平。某兴趣小组开展电磁弹射系统的设计研究,如图1所示,用于推动模型飞机的动子(图中未画出)与线圈绝缘并固定,线圈带动动子,可在水平导轨上无摩擦滑动。线圈位于导轨间的辐向磁场中,其所在处的磁感应强度大小均为B。开关S与1接通,恒流源与线圈连接,动子从静止开始推动飞机加速,飞机达到起飞速度时与动子脱离;此时S掷向2接通定值电阻R0,同时施加回撤力F,在F和磁场力作用下,动子恰好返回初始位置停下。若动子从静止开始至返回过程的v-t图如图2所示,在t1至t3时间内F=(800-10v)N,t3时撤去F。已知起飞速度v1=80m/s,t1=1.5s,线圈匝数n=100匝,每匝周长l=1m,飞机的质量M=10kg,动子和线圈的总质量m=5kg,R0=9.5Ω,B=0.1T,不计空气阻力和飞机起飞对动子运动速度的影响,求
(1)恒流源的电流I;
(2)线圈电阻R;
(3)时刻t3。
15.(2022·广东·高考真题)密立根通过观测油滴的运动规律证明了电荷的量子性,因此获得了1923年的诺贝尔奖。图是密立根油滴实验的原理示意图,两个水平放置、相距为d的足够大金属极板,上极板中央有一小孔。通过小孔喷入一些小油滴,由于碰撞或摩擦,部分油滴带上了电荷。有两个质量均为、位于同一竖直线上的球形小油滴A和B,在时间t内都匀速下落了距离。此时给两极板加上电压U(上极板接正极),A继续以原速度下落,B经过一段时间后向上匀速运动。B在匀速运动时间t内上升了距离,随后与A合并,形成一个球形新油滴,继续在两极板间运动直至匀速。已知球形油滴受到的空气阻力大小为,其中k为比例系数,m为油滴质量,v为油滴运动速率,不计空气浮力,重力加速度为g。求:
(1)比例系数k;
(2)油滴A、B的带电量和电性;B上升距离电势能的变化量;
(3)新油滴匀速运动速度的大小和方向。
16.(2022·河北·高考真题)两块面积和间距均足够大的金属板水平放置,如图1所示,金属板与可调电源相连形成电场,方向沿y轴正方向。在两板之间施加磁场,方向垂直平面向外。电场强度和磁感应强度随时间的变化规律如图2所示。板间O点放置一粒子源,可连续释放质量为m、电荷量为、初速度为零的粒子,不计重力及粒子间的相互作用,图中物理量均为已知量。求:
(1)时刻释放的粒子,在时刻的位置坐标;
(2)在时间内,静电力对时刻释放的粒子所做的功;
(3)在点放置一粒接收器,在时间内什么时刻释放的粒子在电场存在期间被捕获。
17.(2022·湖南·高考真题)如图,两个定值电阻的阻值分别为和,直流电源的内阻不计,平行板电容器两极板水平放置,板间距离为,板长为,极板间存在方向水平向里的匀强磁场。质量为、带电量为的小球以初速度沿水平方向从电容器下板左侧边缘点进入电容器,做匀速圆周运动,恰从电容器上板右侧边缘离开电容器。此过程中,小球未与极板发生碰撞,重力加速度大小为,忽略空气阻力。
(1)求直流电源的电动势;
(2)求两极板间磁场的磁感应强度;
(3)在图中虚线的右侧设计一匀强电场,使小球离开电容器后沿直线运动,求电场强度的最小值。
18.(2022·山东·高考真题)中国“人造太阳”在核聚变实验方面取得新突破,该装置中用电磁场约束和加速高能离子,其部分电磁场简化模型如图所示,在三维坐标系中,空间内充满匀强磁场I,磁感应强度大小为B,方向沿x轴正方向;,的空间内充满匀强磁场II,磁感应强度大小为,方向平行于平面,与x轴正方向夹角为;,的空间内充满沿y轴负方向的匀强电场。质量为m、带电量为的离子甲,从平面第三象限内距轴为的点以一定速度出射,速度方向与轴正方向夹角为,在平面内运动一段时间后,经坐标原点沿轴正方向进入磁场I。不计离子重力。
(1)当离子甲从点出射速度为时,求电场强度的大小;
(2)若使离子甲进入磁场后始终在磁场中运动,求进入磁场时的最大速度;
(3)离子甲以的速度从点沿轴正方向第一次穿过面进入磁场I,求第四次穿过平面的位置坐标(用d表示);
(4)当离子甲以的速度从点进入磁场I时,质量为、带电量为的离子乙,也从点沿轴正方向以相同的动能同时进入磁场I,求两离子进入磁场后,到达它们运动轨迹第一个交点的时间差(忽略离子间相互作用)。
19.(2022·浙江·高考真题)如图为研究光电效应的装置示意图,该装置可用于分析光子的信息。在xOy平面(纸面)内,垂直纸面的金属薄板M、N与y轴平行放置,板N中间有一小孔O。有一由x轴、y轴和以O为圆心、圆心角为90°的半径不同的两条圆弧所围的区域Ⅰ,整个区域Ⅰ内存在大小可调、方向垂直纸面向里的匀强电场和磁感应强度大小恒为B1、磁感线与圆弧平行且逆时针方向的磁场。区域Ⅰ右侧还有一左边界与y轴平行且相距为l、下边界与x轴重合的匀强磁场区域Ⅱ,其宽度为a,长度足够长,其中的磁场方向垂直纸面向里,磁感应强度大小可调。光电子从板M逸出后经极板间电压U加速(板间电场视为匀强电场),调节区域Ⅰ的电场强度和区域Ⅱ的磁感应强度,使电子恰好打在坐标为(a+2l,0)的点上,被置于该处的探测器接收。已知电子质量为m、电荷量为e,板M的逸出功为W0,普朗克常量为h。忽略电子的重力及电子间的作用力。当频率为ν的光照射板M时有光电子逸出,
(1)求逸出光电子的最大初动能Ekm,并求光电子从O点射入区域Ⅰ时的速度v0的大小范围;
(2)若区域Ⅰ的电场强度大小,区域Ⅱ的磁感应强度大小,求被探测到的电子刚从板M逸出时速度vM的大小及与x轴的夹角;
(3)为了使从O点以各种大小和方向的速度射向区域Ⅰ的电子都能被探测到,需要调节区域Ⅰ的电场强度E和区域Ⅱ的磁感应强度B2,求E的最大值和B2的最大值。
20.(2022·浙江·高考真题)如图所示,水平固定一半径r=0.2m的金属圆环,长均为r,电阻均为R0的两金属棒沿直径放置,其中一端与圆环接触良好,另一端固定在过圆心的导电竖直转轴OO′上,并随轴以角速度=600rad/s匀速转动,圆环内左半圆均存在磁感应强度大小为B1的匀强磁场。圆环边缘、与转轴良好接触的电刷分别与间距l1的水平放置的平行金属轨道相连,轨道间接有电容C=0.09F的电容器,通过单刀双掷开关S可分别与接线柱1、2相连。电容器左侧宽度也为l1、长度为l2、磁感应强度大小为B2的匀强磁场区域。在磁场区域内靠近左侧边缘处垂直轨道放置金属棒ab,磁场区域外有间距也为l1的绝缘轨道与金属轨道平滑连接,在绝缘轨道的水平段上放置“[”形金属框fcde。棒ab长度和“[”形框的宽度也均为l1、质量均为m=0.01kg,de与cf长度均为l3=0.08m,已知l1=0.25m,l2=0.068m,B1=B2=1T、方向均为竖直向上;棒ab和“[”形框的cd边的电阻均为R=0.1,除已给电阻外其他电阻不计,轨道均光滑,棒ab与轨道接触良好且运动过程中始终与轨道垂直。开始时开关S和接线柱1接通,待电容器充电完毕后,将S从1拨到2,电容器放电,棒ab被弹出磁场后与“[”形框粘在一起形成闭合框abcd,此时将S与2断开,已知框abcd在倾斜轨道上重心上升0.2m后返回进入磁场。
(1)求电容器充电完毕后所带的电荷量Q,哪个极板(M或N)带正电?
(2)求电容器释放的电荷量;
(3)求框abcd进入磁场后,ab边与磁场区域左边界的最大距离x。
1.(2021·重庆·高考真题)如图1所示的竖直平面内,在原点O有一粒子源,可沿x轴正方向发射速度不同、比荷均为的带正电的粒子。在的区域仅有垂直于平面向内的匀强磁场;的区域仅有如图2所示的电场,时间内和时刻后的匀强电场大小相等,方向相反(时间内电场方向竖直向下),时间内电场强度为零。在磁场左边界直线上的某点,固定一粒子收集器(图中未画出)。0时刻发射的A粒子在时刻经过左边界进入磁场,最终被收集器收集;B粒子在时刻以与A粒子相同的发射速度发射,第一次经过磁场左边界的位置坐标为;C粒子在时刻发射,其发射速度是A粒子发射速度的,不经过磁场能被收集器收集。忽略粒子间相互作用力和粒子重力,不考虑边界效应。
(1)求电场强度E的大小;
(2)求磁感应强度B的大小;
(3)设时刻发射的粒子能被收集器收集,求其有可能的发射速度大小。
2.(2021·福建·高考真题)如图(a),同一竖直平面内A、B、M、N四点距O点的距离均为,O为水平连线的中点,M、N在连线的中垂线上。A、B两点分别固定有一点电荷,电荷量均为Q()。以O为原点,竖直向下为正方向建立x轴。若取无穷远处为电势零点,则上的电势随位置x的变化关系如图(b)所示。一电荷量为Q()的小球以一定初动能从M点竖直下落,一段时间后经过N点,其在段运动的加速度大小a随位置x的变化关系如图(c)所示。图中g为重力加速度大小,k为静电力常量。
(1)求小球在M点所受电场力大小。
(2)当小球运动到N点时,恰与一沿x轴负方向运动的不带电绝缘小球发生弹性碰撞。已知与的质量相等,碰撞前、后的动能均为,碰撞时间极短。求碰撞前的动量大小。
(3)现将固定在N点,为保证能运动到N点与之相碰,从M点下落时的初动能须满足什么条件?
3.(2021·江苏·高考真题)如图1所示,回旋加速器的圆形匀强磁场区域以O点为圆心,磁感应强度大小为B,加速电压的大小为U、质量为m、电荷量为q的粒子从O附近飘入加速电场,多次加速后粒子经过P点绕O做圆周运动,半径为R,粒子在电场中的加速时间可以忽略。为将粒子引出磁场,在P位置安装一个“静电偏转器”,如图2所示,偏转器的两极板M和N厚度均匀,构成的圆弧形狭缝圆心为Q、圆心角为,当M、N间加有电压时,狭缝中产生电场强度大小为E的电场,使粒子恰能通过狭缝,粒子在再次被加速前射出磁场,不计M、N间的距离。求:
(1)粒子加速到P点所需要的时间t;
(2)极板N的最大厚度;
(3)磁场区域的最大半径。
4.(2021·江苏·高考真题)贯彻新发展理念,我国风力发电发展迅猛,2020年我国风力发电量高达4000亿千瓦时。某种风力发电机的原理如图所示,发电机的线圈固定,磁体在叶片驱动下绕线圈对称轴转动,已知磁体间的磁场为匀强磁场,磁感应强度的大小为,线圈的匝数为100、面积为,电阻为,若磁体转动的角速度为,线圈中产生的感应电流为。求:
(1)线圈中感应电动势的有效值E;
(2)线圈的输出功率P。
5.(2021·海南·高考真题)如图,间距为l的光滑平行金属导轨,水平放置在方向竖直向下的匀强磁场中,磁场的磁感应强度大小为B,导轨左端接有阻值为R的定值电阻,一质量为m的金属杆放在导轨上。金属杆在水平外力作用下以速度v0向右做匀速直线运动,此时金属杆内自由电子沿杆定向移动的速率为u0。设金属杆内做定向移动的自由电子总量保持不变,金属杆始终与导轨垂直且接触良好,除了电阻R以外不计其它电阻。
(1)求金属杆中的电流和水平外力的功率;
(2)某时刻撤去外力,经过一段时间,自由电子沿金属杆定向移动的速率变为,求:
(i)这段时间内电阻R上产生的焦耳热;
(ii)这段时间内一直在金属杆内的自由电子沿杆定向移动的距离。
6.(2021·湖北·高考真题)如图(a)所示,两根不计电阻、间距为L的足够长平行光滑金属导轨,竖直固定在匀强磁场中,磁场方向垂直于导轨平面向里,磁感应强度大小为B。导轨上端串联非线性电子元件Z和阻值为R的电阻。元件Z的图像如图(b)所示,当流过元件Z的电流大于或等于时,电压稳定为Um。质量为m、不计电阻的金属棒可沿导轨运动,运动中金属棒始终水平且与导轨保持良好接触。忽略空气阻力及回路中的电流对原磁场的影响,重力加速度大小为g。为了方便计算,取,。以下计算结果只能选用m、g、B、L、R表示。
(1)闭合开关S,由静止释放金属棒,求金属棒下落的最大速度v1;
(2)断开开关S,由静止释放金属棒,求金属棒下落的最大速度v2;
(3)先闭合开关S,由静止释放金属棒,金属棒达到最大速度后,再断开开关S。忽略回路中电流突变的时间,求S断开瞬间金属棒的加速度大小a。
7.(2021·辽宁·高考真题)如图所示,在x>0区域内存在垂直纸面向里、磁感应强度大小为B的匀强磁场;在x<0区域内存在沿x轴正方向的匀强电场。质量为m、电荷量为q(q>0)的粒子甲从点S(-a,0)由静止释放,进入磁场区域后,与静止在点P(a,a)、质量为的中性粒子乙发生弹性正碰,且有一半电量转移给粒子乙。(不计粒子重力及碰撞后粒子间的相互作用,忽略电场、磁场变化引起的效应)
(1)求电场强度的大小E;
(2)若两粒子碰撞后,立即撤去电场,同时在x≤0区域内加上与x>0区域内相同的磁场,求从两粒子碰撞到下次相遇的时间△t;
(3)若两粒子碰撞后,粒子乙首次离开第一象限时,撤去电场和磁场,经一段时间后,在全部区域内加上与原x>0区域相同的磁场,此后两粒子的轨迹恰好不相交,求这段时间内粒子甲运动的距离L。
8.(2021·天津·高考真题)霍尔元件是一种重要的磁传感器,可用在多种自动控制系统中。长方体半导体材料厚为a、宽为b、长为c,以长方体三边为坐标轴建立坐标系,如图所示。半导体中有电荷量均为e的自由电子与空穴两种载流子,空穴可看作带正电荷的自由移动粒子,单位体积内自由电子和空穴的数目分别为n和p。当半导体材料通有沿方向的恒定电流后,某时刻在半导体所在空间加一匀强磁场,磁感应强度的大小为B,沿方向,于是在z方向上很快建立稳定电场,称其为霍尔电场,已知电场强度大小为E,沿方向。
(1)判断刚加磁场瞬间自由电子受到的洛伦兹力方向;
(2)若自由电子定向移动在沿方向上形成的电流为,求单个自由电子由于定向移动在z方向上受到洛伦兹力和霍尔电场力的合力大小;
(3)霍尔电场建立后,自由电子与空穴在z方向定向移动的速率分别为、,求时间内运动到半导体z方向的上表面的自由电子数与空穴数,并说明两种载流子在z方向上形成的电流应满足的条件。
9.(2021·天津·高考真题)如图所示,两根足够长的平行光滑金属导轨、间距,其电阻不计,两导轨及其构成的平面均与水平面成角,N、Q两端接有的电阻。一金属棒垂直导轨放置,两端与导轨始终有良好接触,已知的质量,电阻,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度大小。在平行于导轨向上的拉力作用下,以初速度沿导轨向上开始运动,可达到最大速度。运动过程中拉力的功率恒定不变,重力加速度。
(1)求拉力的功率P;
(2)开始运动后,经速度达到,此过程中克服安培力做功,求该过程中沿导轨的位移大小x。
10.(2021·北京·高考真题)类比是研究问题的常用方法。
(1)情境1:物体从静止开始下落,除受到重力作用外,还受到一个与运动方向相反的空气阻力(k为常量)的作用。其速率v随时间t的变化规律可用方程(①式)描述,其中m为物体质量,G为其重力。求物体下落的最大速率。
(2)情境2:如图1所示,电源电动势为E,线圈自感系数为L,电路中的总电阻为R。闭合开关S,发现电路中电流I随时间t的变化规律与情境1中物体速率v随时间t的变化规律类似。类比①式,写出电流I随时间t变化的方程;并在图2中定性画出I - t图线。
(3)类比情境1和情境2中的能量转化情况,完成下表。
情境1 情境2
物体重力势能的减少量
物体动能的增加量
电阻R上消耗的电能
11.(2021·北京·高考真题)如图所示,M为粒子加速器;N为速度选择器,两平行导体板之间有方向相互垂直的匀强电场和匀强磁场,磁场的方向垂直纸面向里,磁感应强度为B。从S点释放一初速度为0、质量为m、电荷量为q的带正电粒子,经M加速后恰能以速度v沿直线(图中平行于导体板的虚线)通过N。不计重力。
(1)求粒子加速器M的加速电压U;
(2)求速度选择器N两板间的电场强度E的大小和方向;
(3)仍从S点释放另一初速度为0、质量为2m、电荷量为q的带正电粒子,离开N时粒子偏离图中虚线的距离为d,求该粒子离开N时的动能。
12.(2021·山东·高考真题)某离子实验装置的基本原理如图甲所示。Ⅰ区宽度为d,左边界与x轴垂直交于坐标原点O,其内充满垂直于平面向里的匀强磁场,磁感应强度大小为;Ⅱ区宽度为L,左边界与x轴垂直交于点,右边界与x轴垂直交于点,其内充满沿y轴负方向的匀强电场。测试板垂直x轴置于Ⅱ区右边界,其中心C与点重合。从离子源不断飘出电荷量为q、质量为m的正离子,加速后沿x轴正方向过O点,依次经Ⅰ区、Ⅱ区,恰好到达测试板中心C。已知离子刚进入Ⅱ区时速度方向与x轴正方向的夹角为。忽略离子间的相互作用,不计重力。
(1)求离子在Ⅰ区中运动时速度的大小v;
(2)求Ⅱ区内电场强度的大小E;
(3)保持上述条件不变,将Ⅱ区分为左右两部分,分别填充磁感应强度大小均为B(数值未知)方向相反且平行y轴的匀强磁场,如图乙所示。为使离子的运动轨迹与测试板相切于C点,需沿x轴移动测试板,求移动后C到的距离S。
13.(2021·浙江·高考真题)如图甲所示,空间站上某种离子推进器由离子源、间距为d的中间有小孔的两平行金属板M、N和边长为L的立方体构成,其后端面P为喷口。以金属板N的中心O为坐标原点,垂直立方体侧面和金属板建立x、y和z坐标轴。M、N板之间存在场强为E、方向沿z轴正方向的匀强电场;立方体内存在磁场,其磁感应强度沿z方向的分量始终为零,沿x和y方向的分量和随时间周期性变化规律如图乙所示,图中可调。氙离子()束从离子源小孔S射出,沿z方向匀速运动到M板,经电场加速进入磁场区域,最后从端面P射出,测得离子经电场加速后在金属板N中心点O处相对推进器的速度为v0。已知单个离子的质量为m、电荷量为,忽略离子间的相互作用,且射出的离子总质量远小于推进器的质量。
(1)求离子从小孔S射出时相对推进器的速度大小vS;
(2)不考虑在磁场突变时运动的离子,调节的值,使得从小孔S射出的离子均能从喷口后端面P射出,求的取值范围;
(3)设离子在磁场中的运动时间远小于磁场变化周期T,单位时间从端面P射出的离子数为n,且。求图乙中时刻离子束对推进器作用力沿z轴方向的分力。
14.(2021·浙江·高考真题)一种探测气体放电过程的装置如图甲所示,充满氖气()的电离室中有两电极与长直导线连接,并通过两水平长导线与高压电源相连。在与长直导线垂直的平面内,以导线为对称轴安装一个用阻值的细导线绕制、匝数的圆环形螺线管,细导线的始末两端c、d与阻值的电阻连接。螺线管的横截面是半径的圆,其中心与长直导线的距离。气体被电离后在长直导线回路中产生顺时针方向的电流I,其图像如图乙所示。为便于计算,螺线管内各处的磁感应强度大小均可视为,其中。
(1)求内通过长直导线横截面的电荷量Q;
(2)求时,通过螺线管某一匝线圈的磁通量;
(3)若规定为电流的正方向,在不考虑线圈自感的情况下,通过计算,画出通过电阻R的图像;
(4)若规定为电流的正方向,考虑线圈自感,定性画出通过电阻R的图像。
15.(2021·广东·高考真题)图是一种花瓣形电子加速器简化示意图,空间有三个同心圆a、b、c围成的区域,圆a内为无场区,圆a与圆b之间存在辐射状电场,圆b与圆c之间有三个圆心角均略小于90°的扇环形匀强磁场区Ⅰ、Ⅱ和Ⅲ。各区磁感应强度恒定,大小不同,方向均垂直纸面向外。电子以初动能从圆b上P点沿径向进入电场,电场可以反向,保证电子每次进入电场即被全程加速,已知圆a与圆b之间电势差为U,圆b半径为R,圆c半径为,电子质量为m,电荷量为e,忽略相对论效应,取。
(1)当时,电子加速后均沿各磁场区边缘进入磁场,且在电场内相邻运动轨迹的夹角均为45°,最终从Q点出射,运动轨迹如图中带箭头实线所示,求Ⅰ区的磁感应强度大小、电子在Ⅰ区磁场中的运动时间及在Q点出射时的动能;
(2)已知电子只要不与Ⅰ区磁场外边界相碰,就能从出射区域出射。当时,要保证电子从出射区域出射,求k的最大值。
16.(2021·河北·高考真题)如图,一对长平行栅极板水平放置,极板外存在方向垂直纸面向外、磁感应强度大小为B的匀强磁场,极板与可调电源相连,正极板上O点处的粒子源垂直极板向上发射速度为、带正电的粒子束,单个粒子的质量为m、电荷量为q,一足够长的挡板与正极板成倾斜放置,用于吸收打在其上的粒子,C、P是负极板上的两点,C点位于O点的正上方,P点处放置一粒子靶(忽略靶的大小),用于接收从上方打入的粒子,长度为,忽略栅极的电场边缘效应、粒子间的相互作用及粒子所受重力。。
(1)若粒子经电场一次加速后正好打在P点处的粒子靶上,求可调电
同课章节目录