第二章 第2节 匀变速直线运动的速度与时间的关系(课件 学案)高中物理人教版(2019)必修 第一册

文档属性

名称 第二章 第2节 匀变速直线运动的速度与时间的关系(课件 学案)高中物理人教版(2019)必修 第一册
格式 zip
文件大小 3.0MB
资源类型 教案
版本资源 人教版(2019)
科目 物理
更新时间 2025-07-05 20:35:37

文档简介

第2节 匀变速直线运动的速度与时间的关系
(赋能课—精细培优科学思维)
课标要求 层级达标
理解匀变速直线运动的规律,能运用其解决实际问题,体会科学思维中的抽象方法和物理问题研究中的极限方法。 学考层级 1.了解匀变速直线运动的特点及其分类。2.知道公式v=v0+at的含义。
选考层级 1.根据实验得到的v-t图像是一条倾斜直线,建构匀变速直线运动的模型。2.能根据v-t图像得出匀变速直线运动的速度与时间的关系式v=v0+at。3.能应用匀变速直线运动的速度与时间的关系式或图像,分析和解决生产、生活中有关的实际问题。
一、匀变速直线运动
1.匀变速直线运动的定义与分类
定义 沿着一条直线,且    不变的运动
分类 匀加速直线运动:速度随时间均匀   
匀减速直线运动:速度随时间均匀   
2.直线运动的v t图像
(1)匀速直线运动的v t图像是一条平行于    的直线,如图甲所示。
 
(2)匀变速直线运动的v t图像是一条   的直线,如图乙所示,a表示       运动,b表示      运动。
(3)v t图线的倾斜程度,即图线斜率的数值等于物体的    的大小,斜率的正负表示    的方向。
(4)v t图线与纵轴的交点坐标,即纵截距等于物体的     。
[质疑辨析]
如图为列车在水平直线轨道上出站时的情境,请对以下结论作出判断:
(1)列车一定匀加速驶出车站。(  )
(2)列车的速度随时间增加,但不一定是匀加速直线运动。(  )
(3)可通过观察列车速度表的示数是否随时间均匀增大,判断列车是否做匀加速直线运动。(  )
二、速度与时间的关系
1.速度公式
2.物理意义:做匀变速直线运动的物体,在t时刻的速度v等于物体在开始时刻的速度v0加上在整个过程中        。
3.适用条件
(1)v=v0+at仅适用于       运动;
(2)a=适用于任何情形下求时间t内物体的平均加速度。
[情境思考] 
如图所示是国产C919大型客机某次起飞时的画面。
(1)如果将C919大型客机在地面上滑行起飞的过程看作是匀加速直线运动,其运动的速度与时间有什么关系?
(2)C919大型客机的起飞速度为315 km/h,其在跑道上滑行的时间还与哪个物理量有关?
强化点(一) 对v=v0+at的理解及应用
任务驱动 
上节课我们得到了小车在槽码拉力作用下的运动规律,如图所示的v t图像,现在我们取相等的时间间隔,看它们的速度变化量有什么特点?这样的特点说明什么?
[要点释解明]
1.对公式v=v0+at的理解及应用
矢量性 公式中的v0、v、a均为矢量,应用公式解题时,首先应选取正方向。一般以v0的方向为正方向。a与v0同向时,物体做匀加速直线运动;a与v0反向时,物体做匀减速直线运动
适用条件 仅适用于匀变速直线运动
特殊形式 (1)当v0=0时,v=at(表示由静止开始的匀加速直线运动)。(2)当a=0时,v=v0(表示匀速直线运动)
2.运用速度公式v=v0+at的解题步骤
(1)规定一个方向为正方向(一般以初速度的方向为正方向)。
(2)根据规定的正方向确定已知量的正、负,并用带有正、负号的数值表示。
(3)根据速度与时间的关系式列式、求解。
(4)根据计算结果说明所求物理量的大小和方向。
[题点全练清]
1.(2024·河南新乡高一检测)关于做匀变速直线运动的物体,下列说法不正确的是(  )
A.匀变速直线运动是加速度不变的运动
B.加速度方向可能与速度方向相同
C.加速度方向与速度变化量的方向相同
D.两个相等的时间间隔内速度的变化量相同的运动就是匀变速直线运动
2.物体做匀变速直线运动,加速度大小为2 m/s2,某时刻物体的速度是10 m/s,经过5 s后,该物体速度的可能值为(  )
A.10 m/s或20 m/s  B.5 m/s或20 m/s
C.0或20 m/s D.10 m/s或0
3.(选自教科版教材例题)一汽车从车站由静止开出沿直线行驶,5 s后速度增加到10 m/s,该汽车的加速度是多少?后来汽车在行驶中遇到情况开始制动,在2 s内速度由10 m/s减小到零,在此过程中加速度又是多少?
强化点(二) 匀变速直线运动的v t图像
[要点释解明]
1.匀变速直线运动的v t图像
匀变速直线运动的v t图像是一条倾斜的直线。
如图所示,直线a为匀加速直线运动的v t 图像;直线b为匀减速直线运动的v t图像;直线c表示0~t1时间内做匀减速直线运动,t1时刻后反向做匀加速直线运动,由于加速度不变,整个运动过程是匀变速直线运动。
2.由v t图像能获取的信息
图线上某点的纵坐标 正、负 表示瞬时速度的方向
绝对值 表示瞬时速度的大小
图线的斜率 正、负 表示加速度的方向
绝对值 表示加速度的大小
图线与坐标轴的交点 纵截距 表示初速度
横截距 表示开始运动或速度为0的时刻
图线的拐点 表示加速度改变
两图线的交点 表示对应时刻速度相等
[典例] (多选)甲、乙两物体从同一位置出发沿同一直线运动,甲、乙运动的v t 图像如图所示,下列判断正确的是(  )
A.甲做匀速直线运动,乙做匀变速直线运动
B.甲、乙两次速度相同的时刻分别在1 s末和4 s末
C.乙在前2 s内做匀加速直线运动,2 s后做匀减速直线运动
D.2 s后,甲、乙速度方向相反
听课记录:
(1)v t图像只能描述直线运动,无法描述曲线运动。
(2)v t图像描述的是物体的速度随时间的变化规律,并不表示物体的运动轨迹。
(3)加速与减速只取决于a与v0方向是否相同,与v0的方向无关,也与a的方向无关,如图所示。
  
[题点全练清]
1.如图,一名小朋友用力沿着箭头方向将推拉门的一扇门从贴近右门框的地方拉到图示位置后放手,这扇门与左右门框各撞击一次后,又几乎回到了图示位置。则从小朋友拉门开始到最终门停止,这扇门运动的v t图像符合实际的是(  )
2.一个做直线运动物体的v t 图像如图所示,则关于该运动在1 s末、3 s末、5 s 末三个时刻的速度和加速度,下列说法正确的是(  )
A.1 s末速度最大,5 s末速度最小
B.1 s末加速度最大,5 s末加速度最小
C.3 s末加速度最大,5 s末速度最大
D.3 s末速度最大,5 s末加速度最大
强化点(三) 刹车类问题模型(Ⅰ)
刹车类问题模型属于重要的匀变速直线运动模型,也是较容易出错的题型,为便于掌握该类运动模型,特在本节及下节中分别讲解,根据不同的运动学公式分层次突破。
[典例] (选自鲁科版教材例题)一辆汽车以54 km/h的速度在平直公路上行驶,司机看见前方路口红灯亮时立即刹车。若汽车刹车时的加速度大小为3 m/s2,则刹车后4 s末的速度是多少?
尝试解答:
[变式拓展] 对应[典例]中,若求汽车刹车后6 s末的速度,结果又如何?请算一算,并说明理由。
“刹车问题”模型的解题关键
解决此类问题的关键在于判断“给定时间是否大于刹车时间”:
(1)当给定时间小于刹车时间时,直接套用公式v=v0+at,所求结果即为所求值。
(2)当给定时间大于刹车时间时,直接套用公式v=v0+at,所求结果带负号,表示汽车向反方向运动,与事实不符,表示汽车在给定时间之前就已经停止了运动。  
                
[题点全练清]
1.纯电动汽车不排放污染空气的有害气体,具有较好的发展前景。某辆电动汽车在一次刹车测试中,初速度为21 m/s,经过3 s汽车停止运动。若将该过程视为匀减速直线运动,则这段时间内电动汽车加速度的大小为(  )
A.3 m/s2 B.7 m/s2
C.14 m/s2 D.21 m/s2
2.一辆汽车从静止开始启动,做匀加速直线运动,用了10 s的时间达到72 km/h的速度,然后以这个速度在平直公路上匀速行驶,突然司机发现前方公路上有一只小鹿,于是立即刹车,刹车过程中做匀减速直线运动,加速度大小为4 m/s2,求:
(1)汽车在启动加速时的加速度;
(2)开始刹车后2 s末的速度大小和6 s末的速度大小。
第2节 匀变速直线运动的速度与时间的关系
一、1.加速度 增加 减小 2.(1)时间轴 (2)倾斜 匀加速直线 匀减速直线 (3)加速度 加速度 (4)初速度 
[质疑辨析]
(1)× (2)√ (3)√
二、2.速度的变化量at 3.(1)匀变速直线 
[情境思考]
提示:(1)运动的速度v=v0+at。
(2)加速度。
强化点(一) 
[任务驱动] 提示:物体做匀加速直线运动,无论Δt选在什么区间,对应的速度v的变化量Δv都相等(如题图所示);这说明在任意一段Δt上都一样,即物体运动的加速度保持不变。
[题点全练清]
1.选D 匀变速直线运动是加速度不变的直线运动,故A正确;物体做匀变速直线运动,根据a=可知,加速度方向与速度变化量方向相同,与速度方向不一定相同,故B、C正确;任意两个相等的时间间隔内速度的变化量都相同的运动才是匀变速直线运动,选项中无“任意”两个字,所以不能确定是匀变速直线运动,故D错误。
2.选C 取物体初速度方向为正方向,物体做匀变速直线运动,加速度大小为2 m/s2,若加速度方向为正,物体做匀加速直线运动,5 s后速度v=v0+at=10 m/s+2×5 m/s=20 m/s,若加速度方向为负,物体做匀减速直线运动,5 s后速度v=v0-at=10 m/s-2×5 m/s=0,故选C。
3.解析:如图是汽车运动过程的示意图。沿运动路线建立直线坐标系,取车站为坐标原点,汽车的运动方向为x轴正方向。
汽车在加速过程中,已知v0=0,v=10 m/s,t=5 s
由速度与时间的关系式v=v0+at有
a===2 m/s2
汽车在制动过程中,已知v0′=10 m/s,v′=0,t′=2 s
可得a′===-5 m/s2
a′为负值,表示加速度方向与x轴的正方向相反,即加速度方向与初速度方向相反,汽车做匀减速运动。
答案:2 m/s2,方向与汽车运动方向相同 5 m/s2,方向与汽车运动方向相反
强化点(二) 
[典例] 选BC 由题图知,甲以2 m/s的速度做匀速直线运动,乙在0~2 s内做匀加速直线运动,加速度a1=2 m/s2,2 s~6 s内做匀减速直线运动,加速度a2=-1 m/s2,A错误,C正确;t1=1 s和 t2=4 s时甲、乙速度相同,B正确;0~6 s内甲、乙的速度方向都沿正方向,D错误。
[题点全练清]
1.选A 小朋友用力沿着箭头方向将推拉门的一扇门向左拉动,门开始加速一段时间,拉力消失后,门减速,与左门框撞击一次后,以原速率反弹,速度反向,向右做减速运动,碰到右门框后,以原速率反弹,速度反向,门向左减速直至停下,符合该运动过程的v t图像的是A项。
2.选D 由题图可知,1 s末的加速度大小为a1== m/s2=1 m/s2,1 s末的速度为v1=v0+aΔt=(1+1×1)m/s=2 m/s;3 s末的加速度为零,速度为3 m/s;5 s末的加速度大小为a5== m/s2=-1.5 m/s2,5 s末的速度为v5=v4+aΔt=(3-1.5×1)m/s=1.5 m/s,故选D。
强化点(三) 
[典例] 解析:选定初速度方向为正方向,由题意可知,
v0=54 km/h=15 m/s,t=4 s,a=-3 m/s2。
根据匀变速直线运动的速度公式得
vt=v0+at=15 m/s+(-3 m/s2)×4 s=3 m/s
所以,汽车刹车后4 s末的速度是3 m/s。
答案:3 m/s
[变式拓展] 提示:由v=v0+at,可求得汽车刹车后6 s末的速度v=15 m/s+(-3 m/s2)×6 s=-3 m/s。
汽车刹车过程的最小速度为0,不可能为负值,计算结果为负值,说明汽车在刹车后6 s末前已停止运动。
由0=15 m/s+(-3 m/s2)×t′,可求得t′=5 s,
即汽车刹车后5 s末即停止运动,刹车后6 s末汽车的速度为0。
[题点全练清]
1.选B 电动汽车的加速度a===-7 m/s2,大小为7 m/s2,B正确。
2.解析:(1)汽车在启动加速时,v0=0,加速后v1=72 km/h=20 m/s,所用时间t1=10 s,由速度时间公式可得加速度为a1== m/s2=2 m/s2
启动加速时的加速度大小为2 m/s2,方向与汽车运动方向相同。
(2)汽车刹车过程中做匀减速直线运动,到停下所用时间t0= s=5 s
刹车后2 s末的速度大小为v2=v1+a2t2=20 m/s-(4×2) m/s=12 m/s
汽车做匀减速直线运动到停下所用时间是5 s,因此汽车在6 s末的速度大小是0。
答案:(1)2 m/s2,方向与汽车运动方向相同 (2)12 m/s 0
1 / 7(共82张PPT)
匀变速直线运动的速度与时间的关系
(赋能课—精细培优科学思维)
第 2 节
课标要求
理解匀变速直线运动的规律,能运用其解决实际问题,体会科学思维中的抽象方法和物理问题研究中的极限方法。
层级达标
学考层级 1.了解匀变速直线运动的特点及其分类。
2.知道公式v=v0+at的含义。
选考层级 1.根据实验得到的v-t图像是一条倾斜直线,建构匀变速直线运动的模型。
2.能根据v-t图像得出匀变速直线运动的速度与时间的关系式v=v0+at。
3.能应用匀变速直线运动的速度与时间的关系式或图像,分析和解决生产、生活中有关的实际问题。
1
课前预知教材
2
课堂精析重难
3
课时跟踪检测
CONTENTS
目录
课前预知教材
1.匀变速直线运动的定义与分类
一、匀变速直线运动
定义 沿着一条直线,且________不变的运动
分类 匀加速直线运动:速度随时间均匀______
匀减速直线运动:速度随时间均匀______
加速度
增加
减小
2.直线运动的v-t图像
(1)匀速直线运动的v-t图像是一条平行于________的直线,如图甲所示。
时间轴
(2)匀变速直线运动的v-t图像是一条_____的直线,如图乙
所示,a表示___________运动,b表示____________运动。
(3)v-t图线的倾斜程度,即图线斜率的数值等于物体的
_______的大小,斜率的正负表示________的方向。
(4)v-t图线与纵轴的交点坐标,即纵截距等于物体的________。
倾斜
匀加速直线
匀减速直线
加速度
加速度
初速度
[质疑辨析] 
如图为列车在水平直线轨道上出站时的情境,请对以下结论作出判断:
(1)列车一定匀加速驶出车站。 ( )
(2)列车的速度随时间增加,但不一定是匀加速直线运动。 ( )
(3)可通过观察列车速度表的示数是否随时间均匀增大,判断列车是否做匀加速直线运动。 ( )
×


1.速度公式
2.物理意义:做匀变速直线运动的物体,在t时刻的速度v等于物体在开始时刻的速度v0加上在整个过程中_________________。
二、速度与时间的关系
速度的变化量at
匀变速直线
[情境思考]
如图所示是国产C919大型客机某次起飞时的画面。
(1)如果将C919大型客机在地面上滑行起飞的过程看作是匀加速直线运动,其运动的速度与时间有什么关系?
提示:运动的速度v=v0+at。
(2)C919大型客机的起飞速度为315 km/h,其在跑道上滑行的时间还与哪个物理量有关?
提示:加速度。
课堂精析重难
任务驱动 
上节课我们得到了小车在槽码拉力作用下的运动规律,如图所示的v-t图像,现在我们取相等的时间间隔,看它们的速度变化量有什么特点?这样的特点说明什么?
强化点(一) 对v=v0+at 的理解及应用
1.对公式v=v0+at的理解及应用
要点释解明
矢量性 公式中的v0、v、a均为矢量,应用公式解题时,首先应选取正方向。一般以v0的方向为正方向。
a与v0同向时,物体做匀加速直线运动;
a与v0反向时,物体做匀减速直线运动
适用条件 仅适用于匀变速直线运动
特殊形式 (1)当v0=0时,v=at(表示由静止开始的匀加速直线运动)。
(2)当a=0时,v=v0(表示匀速直线运动)
续表
2.运用速度公式v=v0+at的解题步骤
(1)规定一个方向为正方向(一般以初速度的方向为正方向)。
(2)根据规定的正方向确定已知量的正、负,并用带有正、负号的数值表示。
(3)根据速度与时间的关系式列式、求解。
(4)根据计算结果说明所求物理量的大小和方向。
1.(2024·河南新乡高一检测)关于做匀变速直线运动的物体,下列说法不正确的是(  )
A.匀变速直线运动是加速度不变的运动
B.加速度方向可能与速度方向相同
C.加速度方向与速度变化量的方向相同
D.两个相等的时间间隔内速度的变化量相同的运动就是匀变速直线运动
题点全练清

2.物体做匀变速直线运动,加速度大小为2 m/s2,某时刻物体的速度是10 m/s,经过5 s后,该物体速度的可能值为(  )
A.10 m/s或20 m/s    B.5 m/s或20 m/s
C.0或20 m/s D.10 m/s或0

解析:取物体初速度方向为正方向,物体做匀变速直线运动,加速度大小为2 m/s2,若加速度方向为正,物体做匀加速直线运动,5 s后速度v=v0+at=10 m/s+2×5 m/s=20 m/s,若加速度方向为负,物体做匀减速直线运动,5 s后速度v=v0-at=10 m/s-2×5 m/s=0,故选C。
3.(选自教科版教材例题)一汽车从车站由静止开出沿直线行驶,5 s后速度增加到10 m/s,该汽车的加速度是多少?后来汽车在行驶中遇到情况开始制动,在2 s内速度由10 m/s减小到零,在此过程中加速度又是多少?
答案:2 m/s2,方向与汽车运动方向相同 5 m/s2,方向与汽车运动方向相反
解析:如图是汽车运动过程的示意图。沿运动路线建立直线坐标系,取车站为坐标原点,汽车的运动方向为x轴正方向。
1.匀变速直线运动的v-t图像
匀变速直线运动的v-t图像是一条倾斜的直线。如
图所示,直线a为匀加速直线运动的v-t 图像;直线b
为匀减速直线运动的v-t图像;直线c表示0~t1时间内
做匀减速直线运动,t1时刻后反向做匀加速直线运动,
由于加速度不变,整个运动过程是匀变速直线运动。
强化点(二) 匀变速直线运动的v-t 图像
要点释解明
2.由v-t图像能获取的信息
图线上某点 的纵坐标 正、负 表示瞬时速度的方向
绝对值 表示瞬时速度的大小
图线的斜率 正、负 表示加速度的方向
绝对值 表示加速度的大小
图线与坐标 轴的交点 纵截距 表示初速度
横截距 表示开始运动或速度为0的时刻
图线的拐点 表示加速度改变
两图线的交点 表示对应时刻速度相等
续表
[典例] (多选)甲、乙两物体从同一位置
出发沿同一直线运动,甲、乙运动的v-t 图像
如图所示,下列判断正确的是(  )
A.甲做匀速直线运动,乙做匀变速直线运动
B.甲、乙两次速度相同的时刻分别在1 s末和4 s末
C.乙在前2 s内做匀加速直线运动,2 s后做匀减速直线运动
D.2 s后,甲、乙速度方向相反


[解析] 由题图知,甲以2 m/s的速度做匀速直线运动,乙在0~2 s内做匀加速直线运动,加速度a1=2 m/s2,2 s~6 s内做匀减速直线运动,加速度a2=-1 m/s2,A错误,C正确;t1=1 s和t2=4 s时甲、乙速度相同,B正确;0~6 s内甲、乙的速度方向都沿正方向,D错误。
[思维建模]
(1)v-t图像只能描述直线运动,无法描述曲线运动。
(2)v-t图像描述的是物体的速度随时间的变化规律,并不表示物体的运动轨迹。
(3)加速与减速只取决于a与v0方向是否相同,与v0的方向无关,也与a的方向无关,如图所示。
1.如图,一名小朋友用力沿着箭头方向将推拉门的一扇门从贴近右门框的地方拉到图示位置后放手,这扇门与左右门框各撞击一次后,又几乎回到了图示位置。则从小朋友拉门开始到最终门停止,这扇门运动的v-t图像符合实际的是(  )
题点全练清

解析:小朋友用力沿着箭头方向将推拉门的一扇门向左拉动,门开始加速一段时间,拉力消失后,门减速,与左门框撞击一次后,以原速率反弹,速度反向,向右做减速运动,碰到右门框后,以原速率反弹,速度反向,门向左减速直至停下,符合该运动过程的v-t图像的是A项。
2.一个做直线运动物体的v-t 图像如图所示,则关于该运动在1 s末、3 s末、5 s 末三个时刻的速度和加速度,下列说法正确的是(  )
A.1 s末速度最大,5 s末速度最小
B.1 s末加速度最大,5 s末加速度最小
C.3 s末加速度最大,5 s末速度最大
D.3 s末速度最大,5 s末加速度最大

刹车类问题模型属于重要的匀变速直线运动模型,也是较容易出错的题型,为便于掌握该类运动模型,特在本节及下节中分别讲解,根据不同的运动学公式分层次突破。
强化点(三) 刹车类问题模型(Ⅰ)
[典例] (选自鲁科版教材例题)一辆汽车以54 km/h的速度在平直公路上行驶,司机看见前方路口红灯亮时立即刹车。若汽车刹车时的加速度大小为3 m/s2,则刹车后4 s末的速度是多少?
[答案] 3 m/s
[解析] 选定初速度方向为正方向,由题意可知,
v0=54 km/h=15 m/s,t=4 s,a=-3 m/s2。
根据匀变速直线运动的速度公式得
vt=v0+at=15 m/s+(-3 m/s2)×4 s=3 m/s
所以,汽车刹车后4 s末的速度是3 m/s。
[变式拓展] 对应[典例]中,若求汽车刹车后6 s末的速度,结果又如何?请算一算,并说明理由。
提示:由v=v0+at,可求得汽车刹车后6 s末的速度v=15 m/s+(-3 m/s2)×6 s=-3 m/s。
汽车刹车过程的最小速度为0,不可能为负值,计算结果为负值,说明汽车在刹车后6 s末前已停止运动。
由0=15 m/s+(-3 m/s2)×t′,可求得t′=5 s,
即汽车刹车后5 s末即停止运动,刹车后6 s末汽车的速度为0。
[思维建模]
“刹车问题”模型的解题关键
解决此类问题的关键在于判断“给定时间是否大于刹车时间”:
(1)当给定时间小于刹车时间时,直接套用公式v=v0+at,所求结果即为所求值。
(2)当给定时间大于刹车时间时,直接套用公式v=v0+at,所求结果带负号,表示汽车向反方向运动,与事实不符,表示汽车在给定时间之前就已经停止了运动。  
1.纯电动汽车不排放污染空气的有害气体,具有较好的发展前景。某辆电动汽车在一次刹车测试中,初速度为21 m/s,经过3 s汽车停止运动。若将该过程视为匀减速直线运动,则这段时间内电动汽车加速度的大小为(  )
A.3 m/s2 B.7 m/s2
C.14 m/s2 D.21 m/s2
题点全练清

2.一辆汽车从静止开始启动,做匀加速直线运动,用了10 s的时间达到72 km/h的速度,然后以这个速度在平直公路上匀速行驶,突然司机发现前方公路上有一只小鹿,于是立即刹车,刹车过程中做匀减速直线运动,加速度大小为4 m/s2,求:
(1)汽车在启动加速时的加速度;
答案:2 m/s2,方向与汽车运动方向相同
(2)开始刹车后2 s末的速度大小和6 s末的速度大小。
答案:12 m/s 0
课时跟踪检测
1
2
3
4
5
6
7
8
9
10
11
12
13
(选择题1~7小题,每小题4分;9~11小题,每小题6分。本检测卷满分80分)
A级——学考达标
1.关于匀变速直线运动,下列说法正确的是(  )
A.任意时刻速度的变化率相同
B.匀变速直线运动就是加速度和速度均匀变化的直线运动
C.相等时间内加速度的变化量相等且不为零
D.匀加速直线运动的加速度是不断增大的

6
7
8
9
10
11
12
13
解析:匀变速直线运动的加速度保持不变,加速度又称速度的变化率,加速度不变就是速度变化率不变,加速度的变化量为零,速度均匀变化,故A正确,B、C、D错误。
1
2
3
4
5
1
5
6
7
8
9
10
11
12
13
2
3
4

1
5
6
7
8
9
10
11
12
13
2
3
4
1
5
6
7
8
9
10
11
12
13
3.(2024年1月·江西高考适应性演练)某兴趣小组做发射水火箭实验。假设水火箭竖直上升至最高点开始匀加速竖直下落,一段时间后,其降落伞打开,再匀减速竖直下降。若从最高点开始计时,下列关于水火箭v-t图像可能正确的是(  )
2
3
4

1
5
6
7
8
9
10
11
12
13
解析:从最高点开始计时,先做匀加速直线运动,加速度不变,一段时间后,速度达到最大,此时降落伞打开,再做匀减速直线运动,加速度不变。又因为v-t图像的斜率表示加速度,经分析可得图B可能正确。
2
3
4
1
5
6
7
8
9
10
11
12
13
4.(多选)一物体做加速度不变的直线运动,某时刻速度大小为2 m/s,2 s后速度的大小变为8 m/s,在这2 s内该物体的(  )
A.加速度可能为3 m/s2,方向与初速度的方向相同
B.加速度可能为3 m/s2,方向与初速度的方向相反
C.加速度可能为5 m/s2,方向与初速度的方向相同
D.加速度可能为5 m/s2,方向与初速度的方向相反
2
3
4


1
5
6
7
8
9
10
11
12
13
2
3
4
1
5
6
7
8
9
10
11
12
13
5.如图,某型号车尾部标有“55TFSI”字样,其中“55”就是从静止加速到100公里每小时的最大加速度乘以10,再四舍五入算出来的,称为G值。G值越大,加速越快。由此推算,则该车百公里的加速时间约为(  )
A.3 s B.5 s C.7 s D.9 s
2
3
4

1
5
6
7
8
9
10
11
12
13
2
3
4
1
5
6
7
8
9
10
11
12
13
6.(2024·宁德高一模拟)一学生在玩遥控直升机,通过遥控器控制直升机从地面开始做竖直向上的匀加速直线运动,加速6 s时直升机的速度达到30 m/s,此时撤去控制,直升机随即做向上的匀减速直线运动,加速度大小为10 m/s2,下列说法正确的是(  )
A.加速上升时直升机的加速度大小为2.5 m/s2
B.加速上升时直升机的加速度方向竖直向下
C.减速上升时直升机的加速度方向竖直向上
D.直升机减速上升的时间为3 s
2
3
4

1
5
6
7
8
9
10
11
12
13
2
3
4
7.(2024·重庆高一调研)如图所示,一汽车装
备了具有“全力自动刹车”功能的城市安全系统,
系统以50 Hz 的频率监视前方的交通状况。当车速
v≤10 m/s且与前方静止的障碍物之间的距离接近安全距离时,如果司机未采取制动措施,系统就会立即启动“全力自动刹车”,使汽车避免与障碍物相撞。在上述条件下,若该车在不同路况下的“全力自动刹车”系统产生的加速度取4~6 m/s2之间的某一值,则“全力自动刹车”系统作用的最长时间为(  )
1
5
6
7
8
9
10
11
12
13
2
3
4
1
5
6
7
8
9
10
11
12
13
2
3
4

1
5
6
7
8
9
10
11
12
13
8.(8分)一辆汽车关闭发动机后做初速度大小v0=
36 m/s的匀减速直线运动,直到速度减为零,其v-t图
像如图所示。已知汽车在t1=9 s时刻的速度大小v1=
9 m/s。求:
(1)汽车加速度的大小和方向;
2
3
4
1
5
6
7
8
9
10
11
12
13
答案:3 m/s2,加速度方向与速度方向相反
2
3
4
1
5
6
7
8
9
10
11
12
13
(2)汽车速度减为零的时刻t2。
答案:12 s
2
3
4
1
5
6
7
8
9
10
11
12
13
B级——选考进阶
9.(多选)质点在某段时间内运动的v-t图像是一段抛物线,如图所示,关于0~t1和t1~t2两段时间内的运动,下列说法正确的是(  )
A.两段时间内的速度方向相同
B.t1时刻质点运动方向改变
C.两段时间内的加速度方向相同
D.0~t1内加速度逐渐减小,t1~t2内加速度逐渐增大
2
3
4


1
5
6
7
8
9
10
11
12
13
解析:v-t图像中v的正负表示运动方向,由题图可知,0~t1时间内v>0,质点沿正向运动,t1~t2时间内v<0,质点沿负向运动,故两段时间内的速度方向不同,故A错误;由A项分析知t1时刻质点运动方向改变,故B正确;v-t图像的切线斜率表示加速度,由题图可知,两段时间图像上各点的切线斜率均为负,故加速度方向一直是负向,加速度方向相同,故C正确;由图线斜率表示加速度知,在0~t1内、t1~t2内加速度均逐渐增大,故D错误。
2
3
4
1
5
6
7
8
9
10
11
12
13
10.(多选)汽车刹车过程可视为做匀减速直线运动,若已知汽车刹车时第1 s末的速度是8 m/s,第2 s末的速度是6 m/s,则下面结论中正确的是(  )
A.汽车的加速度大小是2 m/s2
B.汽车的初速度大小是10 m/s
C.汽车第3 s末的速度大小为4 m/s
D.汽车第6 s末的速度大小为2 m/s
2
3
4



1
5
6
7
8
9
10
11
12
13
2
3
4
1
5
6
7
8
9
10
11
12
13
11.(2024·长沙高一检测)小球A、B分别在两个倾角不同的斜面上自静止滚下后,进入光滑的水平面。从静止释放时开始,每隔相同的时间间隔记录一次小球的位置,结果如图所示。则关于A、B的运动判断正确的是(  )
2
3
4
1
5
6
7
8
9
10
11
12
13
A.球B在斜面上的加速时间更长,所以到达斜面底端时球B的速度更大
B.球A从倾角更大的斜面上滑下,加速度更大,所以到达斜面底端时球A的速度更大
C.球B在斜面上的加速时间更长,可判断球B在斜面上的加速度更小
D.球B在斜面上的加速度与球A在斜面上的加速度之比为4∶3
2
3
4

1
5
6
7
8
9
10
11
12
13
2
3
4
1
5
6
7
8
9
10
11
12
13
12.(13分)文明交通始于心,平安交通始于行。礼让行人、文明出行,对于每位机动车驾驶员来说是美德,更是责任。有一人行横道在正常的情况下,和平时看到的一模一样,一旦有行人踏上人行横道,人行横道两边会迅速亮起一排白色的地灯,而且会不停地闪烁,形成两条醒目的光带,护送行人过马路,等行人全部通过后,光带又会缓缓熄灭,车辆恢复通行。某天晚上,驾驶员小张准备以36 km/h 速度行驶通过此人行横道,远远看到光带亮起,于是立即减速。已知行人若想通过此人行横道需行走15米,行人通过人行横道的平均速度为1 m/s,一直沿直线行走。
2
3
4
1
5
6
7
8
9
10
11
12
13
(1)求行人通过此人行横道所需的时间。
答案:15 s
解析:行人做匀速运动,由位移公式得x=vt
解得t=15 s。
2
3
4
1
5
6
7
8
9
10
11
12
13
(2)汽车需要在灯带熄灭前速度减为0,则汽车的加速度大小至少为多少?
2
3
4
1
5
6
7
8
9
10
11
12
13
(3)行人通过人行横道后,小张立即以5 m/s2的加速度启动汽车,当汽车恢复原速时,行人离开人行横道有多远?
答案:2 m
解析:汽车在启动过程中做匀加速运动,由速度—时间公式得v0=a′t′
解得t′=2 s
行人离开人行横道的距离为x′=vt′=2 m。
2
3
4
1
5
6
7
8
9
10
11
12
13
13.(13分)汽车以45 km/h的初速度匀速直线行驶。
(1)若汽车以0.6 m/s2的加速度加速,则10 s后速度大小能达到多少?
答案:18.5 m/s
解析:根据v=v0+at
已知45 km/h=12.5 m/s,可得v10=(12.5+0.6×10)m/s=18.5 m/s。
2
3
4
1
5
6
7
8
9
10
11
12
13
(2)若汽车刹车以0.6 m/s2的加速度减速,则10 s后速度大小能达到多少?
答案:6.5 m/s
2
3
4
1
5
6
7
8
9
10
11
12
13
(3)若汽车刹车以3 m/s2的加速度减速,则10 s后速度大小为多少?
答案:0
2
3
4