首页
高中语文
高中数学
高中英语
高中物理
高中化学
高中历史
高中道德与法治(政治)
高中地理
高中生物
高中音乐
高中美术
高中体育
高中信息技术
高中通用技术
资源详情
高中数学
苏教版
必修1
第3章 指数函数、对数函数和幂函数
3.1 指数函数
3.1.2 指数函数
3.1.2 指数函数 同步练习 (含答案) (2)
文档属性
名称
3.1.2 指数函数 同步练习 (含答案) (2)
格式
zip
文件大小
35.1KB
资源类型
教案
版本资源
苏教版
科目
数学
更新时间
2016-07-06 21:55:37
点击下载
图片预览
1
2
文档简介
3.1.2 指数函数 同步练习
1.设P={y|y=x2,x∈R},Q={y|y=2x,x∈R},则P、Q的关系为________.
2.函数y=的值域是________.
3.函数y=ax在[0,1]上的最大值与最小值的和为3,则函数y=2ax-1在[0,1]上的最大值是________.
4.若函数f(x)=3x+3-x与g(x)=3x-3-x的定义域均为R,则下列命题正确的是________.(填序号)
①f(x)与g(x)均为偶函数;
②f(x)为偶函数,g(x)为奇函数;
③f(x)与g(x)均为奇函数;
④f(x)为奇函数,g(x)为偶函数.
5.函数y=f(x)的图象与函数g(x)=ex+2的图象关于原点对称,则f(x)的解析式为________.
6.已知a=,b=,c=,则a,b,c三个数的大小关系是________.
7.春天来了,某池塘中的荷花枝繁叶茂,已知每一天新长出荷叶覆盖水面面积是前一天的2倍,若荷叶20天可以完全长满池塘水面,当荷叶刚好覆盖水面面积一半时,荷叶已生长了________天.
8.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=1-2-x,则不等式f(x)<-的解集是________.
9.函数y=的单调递增区间是________.
10.(1)设f(x)=2u,u=g(x),g(x)是R上的单调增函数,试判断f(x)的单调性;
(2)求函数y=的单调区间.
11.函数f(x)=4x-2x+1+3的定义域为[-,].
(1)设t=2x,求t的取值范围;
(2)求函数f(x)的值域.
12.函数y=2x-x2的图象大致是________.(填序号)
13.已知函数f(x)=.
(1)求f[f(0)+4]的值;
(2)求证:f(x)在R上是增函数;
(3)解不等式:0
答案
1.QP
解析 因为P={y|y≥0},Q={y|y>0},所以QP.
2.[0,4)
解析 ∵4x>0,∴0≤16-4x<16,
∴∈[0,4).
3.3
解析 函数y=ax在[0,1]上是单调的,最大值与最小值都在端点处取到,故有a0+a1=3,解得a=2,因此函数y=2ax-1=4x-1在[0,1]上是单调递增函数,当x=1时,ymax=3.
4.②
解析 f(-x)=3-x+3x=f(x),
g(-x)=3-x-3x=-g(x).
5.f(x)=-e-x-2
解析 ∵y=f(x)的图象与g(x)=ex+2的图象关于原点对称,
∴f(x)=-g(-x)=-(e-x+2)=-e-x-2.
6.c
解析 ∵y=()x是减函数,->-,
∴b>a>1.又0
7.19
解析 假设第一天荷叶覆盖水面面积为1,则荷叶覆盖水面面积y与生长时间的函数关系为y=2x-1,当x=20时,长满水面,所以生长19天时,荷叶布满水面一半.
8.(-∞,-1)
解析 ∵f(x)是定义在R上的奇函数,
∴f(0)=0.
当x<0时,f(x)=-f(-x)=-(1-2x)=2x-1.
当x>0时,由1-2-x<-,()x>,得x∈?;
当x=0时,f(0)=0<-不成立;
当x<0时,由2x-1<-,2x<2-1,得x<-1.
综上可知x∈(-∞,-1).
9.[1,+∞)
解析 利用复合函数同增异减的判断方法去判断.
令u=-x2+2x,则y=()u在u∈R上为减函数,问题转化为求u=-x2+2x的单调递减区间,即为x∈[1,+∞).
10.解 (1)设x1
又由y=2u的增减性得<,即f(x1)
所以f(x)为R上的增函数.
(2)令u=x2-2x-1=(x-1)2-2,
则u在区间[1,+∞)上为增函数.
根据(1)可知y=在[1,+∞)上为增函数.
同理可得函数y在(-∞,1]上为单调减函数.
即函数y的增区间为[1,+∞),减区间为(-∞,1].
11.解 (1)∵t=2x在x∈[-,]上单调递增,
∴t∈[,].
(2)函数可化为:f(x)=g(t)=t2-2t+3,
g(t)在[,1]上递减,在[1,]上递增,
比较得g()
∴f(x)min=g(1)=2,
f(x)max=g()=5-2.
∴函数的值域为[2,5-2].
12.①
解析 当x→-∞时,2x→0,所以y=2x-x2→-∞,
所以排除③、④.
当x=3时,y=-1,所以排除②.
13.(1)解 ∵f(0)==0,
∴f[f(0)+4]=f(0+4)=f(4)==.
(2)证明 设x1,x2∈R且x1
则>>0,->0,
∴f(x2)-f(x1)=
=>0,
即f(x1)
(3)解 由0
又f(x)在R上是增函数,∴0
即2
点击下载
同课章节目录
第1章 集合
1.1 集合的含义及其表示
1.2 子集、全集、补集
1.3 交集、并集
第2章 函数
2.1 函数的概念
2.2 函数的简单性质
2.3 映射的概念
第3章 指数函数、对数函数和幂函数
3.1 指数函数
3.2 对数函数
3.3 幂函数
3.4 函数的应用
点击下载
VIP下载