课件64张PPT。先知底数、指数,求幂。先知幂、指数,求底数。( )2 = 9
( )2 =
( )2 = 0
( )2 =-4先填空再探索:
3 2 = ( )
(-3 )2= ( )
( )2= ( )
( )2 =( )
02 =( )990±30不存在乘方运算乘方的逆运算开平方运算∵ (±1.2)2=1.44 ∴ ±1.2叫做1.44的平方根
∵ (±2)2=4 ∴ ±2叫做4的平方根
∵ x2 = a ∴ x叫做a的平方根 如果一个数的平方等于a,那么这个数叫做a的平方根,也叫做a的二次方根。解:∵(±7)2=49 ∴ ±7叫做49的平方根∵ 02 = 0 ∴ 0的平方根是01.定义:概念引入请分清楚:X就是a的平方根。X2 底数指数幂= a 如果一个数的平方等于a,那么这个数叫做a的平方根。49 的平方根是±7 的平方根是 0 的平方根是0 -4 没有平方根(1)一个正数有 个平方根,它们 .
(2) 0的平方根是 .
(3)负数 平方根.互为相反数两0没有2. 平方根的性质判断填空1. 判断下列说法是否正确:
(1)-9的平方根是-3;
(2)49的平方根是7;
(3)(-2)2的平方根是±2;
(4)1 的平方根是1;
(5)-1是1的平方根;
(6)7的平方根是±49.
(7)若X2 = 16 ,则X = 4××√×√××2.问:3有没有平方根?若有怎样表示运算?求一个数的平方根的运算叫做开平方。根指数被开方数请熟悉:读作:
二次根号m简写为:
读作:
根号m(m≥0)根号任意一个数ɑ(ɑ≥0)的平方根表示为:读作正、负根号ɑ如:25的平方根可表示为:______3的平方根3、平方根的表示方法新知概念, 读作:根号a a 称为被开方数. 注:1. 被开方数应为非负数的条件. 把 一个正数,正的平方根叫做这个正数的算术平方根。如: a的算平方根算术平方根的意义:(a≥0)算术平方根具有双重非负性≥0 1. 一个正数正的平方根,叫做这个正数的算术平方根。2. 0的算术平方根是0 算术平方根的定义读作:“正、负根号a”11的平方根是:正数a的算术平方根正数a的算术平方根的相反数
(即:正数a的负的平方根)正数a的平方根例如:
9 的平方根是:表示的意义请你区别(a≥0)分别表示什么意义?例2 先说出下列各式的意义,再计算。 的平方根 的算术平方根 的负平方根平方根与算术平方根有什么区别和联系?联系(1) 平方根包含算术平方根(2) 被开方数都为非负数 (3) 0的平方根和算术平方根都是0(4)平方根和算术平方根都是开平方运算定 义个 数表 示结 果 如一个数的平方等于a,这个数就叫做a的平方根 非负数a的非负平方根叫a的算术平方根一个两 个 正数的平方根一正一负,互为相反数。 正数的算术平方根只有一个正数。区别你知道算术平方根、平方根、立方根联系和区别吗?表示方法性
质开
方正数0负数正数(1个)0没有互为相反数(2个)0没有正数(1个)0负数(一个)求一个数的平方根的运算叫开平方求一个数的立方根的运算叫开立方≠是本身0,100,1,-1第16章 二次根式16.1 二次根式谈谈上节课的收获a的平方根底数幂被开方数 互为
逆运算根号2指数根指数⑵什么是一个数的算术平方根?如何表示?正数的正的平方根叫做它的算术平方根。 回忆⑴什么叫做一个数的平方根?如何表示?一般地,如果一个正数x的平方等于a,那么这个正数x叫做a的平方根。0的算术平方根平方根是0 ? 正数有两个平方根且互为相反数;
? 0有一个平方根就是0;
? 负数没有平方根。1、平方根的性质:2.试一试 :说出下列各式的意义;观察:上面几个式子中,被开方数的特点?被开方数是非负数表示非负数a的算术平方根复习1、如果 ,那么 ;2、如果 ,那么 ;3、如果 ,那么 。±2b-32.要修建一个面积为6.28m2的圆形喷水池,
它的半径为 m( 取3.14);3、关系式中 ,用含有h的式子
表示t,则t为 。导入 表示一些正数的算术平方根.你认为所得的各代数式有哪些共同特点?被开方数二次根号新授:2. a可以是数,也可以是式.3. 形式上含有二次根号4. a≥0, ≥0 5.既可表示开方运算,也可表示运算的结果.1.表示a的算术平方根( 双重非负性)本课学习目标:(1)二次根式的概念( 双重非负性)
(2)根号内字母的取值范围
(3)二次根式的性质(1,2)
请你凭着自己已有的知识,说说对二次根式 的认识!
开动你的脑筋,你一定行!概念透析二次根式是属于有特殊条件的代数式.答:是的,二次根式的被开方数可以是整式或分式.而
这类代数式,应把 这些二次根式看做系数或常数项,整个代数式仍看做整式。如: 这类代数式只能称为含有二次根式的代数式,不能称之为二次根式;注意说一说:
下列代数式中哪些是二次根式?火眼金睛
⑴ ⑵ ⑶⑷⑸⑹????例1 x为何值时,下列各式在实数范围内有意义。例题吧(1) 由x-5 ≥ 0,得x ≥ 5解:解:由题意得 2、 x取何值时,下列二次根式有意义?求二次根式中字母的取值范围的基本依据:①被开方数不小于零;②分母中有字母时,要保证分母不为零。 1、 x取何值时,下列二次根式有意义?快速口答(7)(8)24170(a≥0)即:非负数的算术平方根的平方等于它的本身.参考图1-2,完成以下填空:27性质1:一般地,二次根式有下面的性质:大家抢答53性质1:一般地,二次根式有下面的性质: 快速判断53a94161517合作学习一般地,二次根式有下面的性质: 225500性质2:2:从运算顺序来看:先开方,后平方先平方,后开方=a=∣a∣辨析总结1.从读法来看:3.从取值范围来看:a取任何实数a≥0根号a的平方根号下a平方4.从运算结果来看:区别二次根式的性质及它们的应用: 平方在外面直接去根号平方在里面夹上绝对值分类来讨论口诀(1)(2)大
家
一
起
来
分
辨2 2 -2 |-2| =2 |2|=2 -|-2|=-2 例题例2 求下列二次根式的值:解:所以,当 时,原式= =(x﹤y)跟踪练习将下列各式化简:小结:1.怎样的式子叫二次根式?2.怎样判断一个式子是不是二次根式?3.如何确定二次根式中字母的取值范围?(2).被开方数a为非负数,分母不为0被开方数大于等于0结合数轴,写出解集来4.真正理解:这两个性质的概念,我们才能灵活地去解决有关二次根式的问题。解决二次根式类问题时特别注意条件,有时还得挖掘隐含条件。1、求下列二次根式中字母的取值范围:
基础练习(1) (2) (3) (a<0,b>0)
其中a=
(5)解:由题意得,综合提高1. 求下列各式有意义时的X取值范围:=|x-3|+|x+1|∵-10
∴原式 = (3-x) + (x+1) = 4引申—提高A 3.实数a、b、c在数轴上的位置如图所示,化简 2.下列式子一定是二次根式的是( )C4.已知a,b,c为△ABC的三边长,化简:+-这一类问题注意把二次根式的运算搭载在三角形三边之间的关系这个知识点上,特别要应用好。
5.化简 6.把下列各式写成平方差的形式, 再在实数范围内分解因式;解:-13(-5)×2×(-2)=203.根据非负数的性质,就可以确定字母的值.2.如果几个非负数的和为零,那么每一个非负数都为零.到现在为止,我们已学过哪些数非负数形式?思考:非负数
的性质:1.几个非负数的和、积、商、乘方及
算术平方根仍是非负数6.化简:-分析:本题是化简,说明题中的每一个二次根式均在有意义的范围内,本题有一个隐条件,即2-x≥0,x≤2.7.设等式在实数范围内成立,其中a, x, y 是两两不等的实数,求的值。解:∵巩固提高1:1.分别求下列二次根式中的字母的取值范围(1)(2)(3)2.当x_____时, 有意义.=03.化简:=______2a-3b4.要使式子 有意义,那么x的取值范围是( )
A、x>0 B、x<0 C、x=0 D、x≠0C5.已知,求的值。6.已知,化简:7.已知:,求的值。2.已知a,b为实数,且满足
,你能求出a及a+b 的值吗?
若=0,则=_____。3.已知 有意义,那A(a, )在 象限.
二∵由题意知a<0∴点A(-,+)巩固提高2:4..计算:+++…+5.如果+│b-2│=0,求以a、b为边长的等腰 三角形的周长。-13(-5)×2×(-2)=20注意:1)几个非负数的和为0时,这几个非负数必须同时为0.
2)三个具有非负性的式子:讲解例题=|4x|∵x<0 , ∴4x<0,
∴原式 = - 4x 试一试
1.计算下列各题:(1)(2)切入点:从字母的取值范围入手。3.已知 ,你能求出 a 的取值范围吗?切入点:从代数式的非负性入手。切入点:分类讨论思想。探索交流