【新教材新课标】人教版数学八年级上册13.2.1《三角形的边》 课件(共30张PPT)+教学设计

文档属性

名称 【新教材新课标】人教版数学八年级上册13.2.1《三角形的边》 课件(共30张PPT)+教学设计
格式 zip
文件大小 41.6MB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2025-07-13 11:27:26

文档简介

(共30张PPT)
13.2 与三角形有关的线段
第1课时 三角形的边
第13章 三角形
人教版(新教材)数学八年级上册
探索并掌握三角形的三边关系,能运用该关系判断三条线段能否组成三角形,或已知两边求第三边的取值范围.
通过实验操作,理解三角形稳定性的原理,能解释其在生活中的应用.
在探究过程中,经历观察、猜想、验证的数学活动,发展推理能力与几何直观,体会数学与生活的联系.






目录
CONTENT
情景引入
1
合作探究
2
典例分析
3
巩固练习
4
归纳总结
5
感受中考
6
小结梳理
7
布置作业
8
复习引入
1.填空 如右图:
线段 , , 是三角形的边;
点 , , 是三角形的顶点;
, , 是三角形的角.
AB
BC
CA
A
B
C
∠A
记作△ABC
∠B
∠C
复习引入
2.三角形的分类 如图:
锐角
三角形
直角
三角形
钝角
三角形
按角分
三边都不相等的三角形
等腰
三角形
等边
三角形
按边分
合作探究
探究 任意画一个△ABC,从点B出发,沿三角形的边到点C,有几条线路可以选择 各条线路的长有什么关系 这说明三角形的边之间有什么关系 能证明你的结论吗
三角形两边的和大于第三边.
合作探究
探究 任意画一个△ABC,从点B出发,沿三角形的边到点C,有几条线路可以选择 各条线路的长有什么关系 这说明三角形的边之间有什么关系 能证明你的结论吗
答:对于任意一个△ABC,如果把其中任意两个顶点(例如B,C)看成定点,由“两点之间,钱段最短”,可得
AB+AC>BC. ①
同理有 AC+BC>AB, ②
AB+BC>AC. ③
这样,我们就证明了,三角形两边的和大于第三边.
进一步,由不等式②③,移项可得
BC>AB-AC, BC>AC-AB.
这就是说,三角形两边的差小于第三边.
合作探究
思考 上面的结论表明了三角形三边之间的关系.反过来,对于三条线段,当它们满足什么条件时,这三条线段能组成三角形
一般地,如果三条线段中任意两条线段的和大于第三条线段,那么这三条线段能组成三角形;如果三条线段中有两条线段的和小于或等于第三条线段,那么这三条线段不能组成三角形.
信息技术验证
典例分析
例 用一条长为18 cm的细绳围成一个等腰三角形.
(1)如果腰长是底边长的2倍,那么各边的长是多少?
解:(1)设底边长为x cm,则腰长为2x cm,则
x+2x+2x=18.
解得 x=3.6.
所以,三角形三边的长分别为3.6 cm,7.2 cm,7.2 cm.
x
2x
2x
典例分析
例 用一条长为18 cm的细绳围成一个等腰三角形.
(2)能围成有一边的长是4 cm的等腰三角形吗?为什么?
解:(2)因为长为4 cm的边可能是腰,也可能是底边,
所以需要分情况讨论.
①如果4 cm长的边为底边,设腰长为x cm,则
4+2x=18.
解得 x=7.
4
x
x
典例分析
例 用一条长为18 cm的细绳围成一个等腰三角形.
(2)能围成有一边的长是4 cm的等腰三角形吗?为什么?
②如果4 cm长的边为腰,设底边长为y cm,则
2×4+y=18.
解得 y=10.
因为4+4<10,不符合“三角形两边的和大于第三边”,
所以不能围成腰长是4 cm的等腰三角形.
由以上讨论可知,可以围成底边长是4 cm的等腰三角形.
y
4
4
巩固练习
1.下列长度的三条线段能否组成三角形 为什么
(1)3,4,8; (2)5,6,11; (3)5,6,10.
答:(1)不能.因为3 + 4<8,不符合三角形两边的和大于第三边.
(2)不能.因为5 + 6 =11,不符合三角形两边的和大于第三边.
(3)能.因为5 + 6>10,10 + 6>5,10 + 5>6,符合三角形两边的和大
于第三边.
巩固练习
2.一根4 dm长的木条和两根1 dm长的木条,能否组成一个等腰三角形?两根4 dm长的木条和一根1 dm长的木条呢
解:一根4 dm长的木条和两根1 dm长的木条,不能组成一个等腰三角形.
因为1 + 1<4,不符合三角形两边的和大于第三边.
两根4 dm长的木条和一根1 dm长的木条能组成一个等腰三角形.
因为4 + 4>1,4+ 1>4,符合三角形两边的和大于第三边.
巩固练习
3.三角形的三边长分别为2,7,a,则a的取值范围是 .
解:因为三角形两边的和大于第三边,
所以 2+7>a且2+a>7且7+a>2,
所以 55巩固练习
4.如图,为了估计池塘两岸A,B的距离,琪琪在池塘的一侧选取一点O,测得OA=9米,OB=6米,则A,B间的距离不可能是(  )
A.3米 B.14米 C.5米 D.9米
A
巩固练习
5.如图是折叠凳及其侧面示意图.若AC=BC=19 cm,则折叠凳的宽AB可能
是(  )
A.27 cm B.38 cm C.55 cm D.73 cm
A
巩固练习
6.若实数a,b,c分别表示△ABC的三条边,且a,b满足 ,则△ABC的第三条边c的取值范围是(  )
A.c>4 B.c<12
C.4<c<12 D.4≤c≤12
C
合作探究
探究 如图,将三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗
可以发现,三角形木架的形状不会改变,这就是说,
三角形是具有稳定性的图形.
合作探究
在日常生活中,三角形的形状随处可见,并且工程建筑中经常采用三角形的结构,如屋顶钢架结构,起重机的起重臂,钢架桥结构等,你能再举一些例子吗
巩固练习
7.在日常生活中,我们通常采用如图的方法(斜钉上一块木条)来修理一张摇晃的椅子,请用数学知识说明这样做的依据是:    .
三角形具有稳定性
归纳总结
三角形的边 三角形的边 三角形两边的和 第三边.
三角形两边的差 第三边.
三角形的存在性 如果三条线段中 ,那么这三条线段能组成三角形;如果三条线段中 ,
,那么这三条线段不能组成三角形.
三角形的稳定性 三角形是具有 的图形.
大于
小于
任意两条线段的和大于第三条线段
有两条线段的和小于或
等于第三条线段
稳定性
感受中考
1.(2024 淮安)用一根小木棒与两根长度分别为3 cm、5 cm的小木棒组成三角形,则这根小木棒的长度可以是(  )
A.9 cm B.7 cm
C.2 cm D.1 cm
B
感受中考
2.(2023 衡阳)下列长度的各组线段能组成一个三角形的是(  )
A.1cm,2cm,3cm B.3cm,8cm,5cm
C.4cm,5cm,10cm D.4cm,5cm,6cm
D
感受中考
3.(2022 西藏)如图,数轴上A,B两点到原点的距离是三角形两边的长,则该三角形第三边长可能是(  )
A.﹣5 B.4 C.7 D.8
B
感受中考
4.(2022 广东)下列图形中有稳定性的是(  )
A.三角形 B.平行四边形
C.长方形 D.正方形
A
感受中考
5.(2022 益阳)如图1所示,将长为6的矩形纸片沿虚线折成3个矩形,其中左右两侧矩形的宽相等,若要将其围成如图2所示的三棱柱形物体,则图中a的值可以是
(  )
A.1 B.2 C.3 D.4
B
两边之和大于第三边.
两边之差小于第三边.
小结梳理
与三角形
有关的线段
三角形的边

三角形具有稳定性.
布置作业
必做题:习题13.2 第5题,第6题.
1
探究性作业:
①用不同长度的小棒(或吸管)尝试拼三角形,记录哪些能拼成,哪些不能,验证“三角形两边之和大于第三边”.
②找一找生活中体现“三角形具有稳定性”的例子,拍照或画下来,下节课分享!
2
人教版八年级上册
谢谢观看!/ 让教学更有效 高效备课 | 数学学科
13.2.1 三角形的边 教学设计
一、内容和内容解析
1. 内容
本节课围绕三角形三边的关系与稳定性展开:探索并理解“三角形两边之和大于第三边”“两边之差小于第三边”的性质;掌握判断三条线段能否构成三角形的方法,以及已知两边求第三边取值范围;通过实验操作认识三角形的稳定性,并对比四边形的不稳定性,分析其在实际生活中的应用.
2. 内容解析
三角形三边关系是从数量角度对三角形的本质刻画,是几何图形与代数不等式的首次结合,体现数形结合思想.三边关系不仅是判断三角形存在性的依据,更为后续学习三角形全等、三角形中线段取值范围等内容奠定基础.三角形的稳定性源于三边关系的约束,是数学知识与现实应用的重要纽带,通过对比四边形的不稳定性,可深化学生对几何图形性质的理解.这部分内容的学习,有助于培养学生从实际问题抽象出数学模型、运用数学知识解决实际问题的能力.
基于以上分析,确定本节课的教学重点为:探索并掌握三角形的三边关系.
二、目标和目标解析
1. 目标
(1)探索并掌握三角形的三边关系,能运用该关系判断三条线段能否组成三角形,或已知两边求第三边的取值范围.
(2)通过实验操作,理解三角形稳定性的原理,能解释其在生活中的应用.
(3)在探究过程中,经历观察、猜想、验证的数学活动,发展推理能力与几何直观,体会数学与生活的联系.
2. 目标解析
(1)学生能通过测量、计算、比较等活动,自主归纳三边关系的数学表达,并能在不同情境下准确运用三边关系:如判断给定线段能否构成三角形(代数验证),或根据两边长度确定第三边的取值范围(不等式应用),体现知识的迁移与应用能力.
(2)学生能通过搭建三角形和四边形框架的实验,直观感受三角形稳定性的特点,从三边关系角度解释稳定性的数学原理,并能举例说明其在建筑、机械结构等领域的应用,同时明确四边形不稳定性的特性与用途.
(3)在探究活动中,学生能主动参与猜想与验证过程,有条理地表达推理过程,理解数学结论的严谨性;通过分析生活实例,增强用数学眼光观察世界的意识.
三、教学问题诊断分析
1. 三边关系归纳困难:学生在实验操作中,可能因测量误差或样本局限性,难以准确归纳三边关系;对“任意两边”的理解存在偏差,误认为只需验证部分边的和差关系.
2. 应用规则时逻辑混乱:在判断三条线段能否构成三角形时,学生可能遗漏验证“较小两边之和大于第三边”,或采用逐一验证三边和差关系的繁琐方法;在已知两边求第三边取值范围时,易忽略“两边之差小于第三边”,导致结果不完整.
3. 数学与生活联系薄弱:学生在分析生活实例时,可能无法准确识别三角形稳定性的应用场景,或对四边形不稳定性的合理利用(如伸缩门设计)缺乏理解,未能建立数学模型与实际问题的有效关联.
基于以上分析,确定本节课的教学难点为:能运用三角形的三边关系判断三条线段能否组成三角形,或已知两边求第三边的取值范围.
四、教学过程设计
(一)复习引入
1.填空 如右图:
线段 AB , BC , CA 是三角形的边;
点 A , B , C 是三角形的顶点;
∠A , ∠B , ∠C 是三角形的角.
2.三角形的分类 如图:
(二)合作探究
探究 任意画一个△ABC,从点B出发,沿三角形的边到点C,有几条线路可以选择 各条线路的长有什么关系 这说明三角形的边之间有什么关系 能证明你的结论吗
答:三角形两边的和大于第三边.
理由如下 对于任意一个△ABC,如果把其中任意两个顶点
(例如B,C)看成定点,由“两点之间,钱段最短”,
可得 AB+AC>BC. ①
同理有 AC+BC>AB, ②
AB+BC>AC. ③
这样,我们就证明了,三角形两边的和大于第三边.
进一步,由不等式②③,移项可得 BC>AB-AC, BC>AC-AB.
这就是说,三角形两边的差小于第三边.
思考 上面的结论表明了三角形三边之间的关系.反过来,对于三条线段,当它们满足什么条件时,这三条线段能组成三角形
答 一般地,如果三条线段中任意两条线段的和大于第三条线段,那么这三条线段能组成三角形;如果三条线段中有两条线段的和小于或等于第三条线段,那么这三条线段不能组成三角形.
信息技术验证 几何画板.
探究 如图,将三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗
可以发现,三角形木架的形状不会改变,这就是说,三角形是具有稳定性的图形.
追问 在日常生活中,三角形的形状随处可见,并且工程建筑中经常采用三角形的结构,如屋顶钢架结构,起重机的起重臂,钢架桥结构等,你能再举一些例子吗
(三)典例分析
例 用一条长为18 cm的细绳围成一个等腰三角形.
(1)如果腰长是底边长的2倍,那么各边的长是多少?
(2)能围成有一边的长是4 cm的等腰三角形吗?为什么?
解:(1)设底边长为x cm,则腰长为2x cm,则
x+2x+2x=18.
解得 x=3.6.
所以,三角形三边的长分别为3.6 cm,7.2 cm,7.2 cm.
(2)因为长为4 cm的边可能是腰,也可能是底边,
所以需要分情况讨论.
①如果4 cm长的边为底边,设腰长为x cm,则
4+2x=18.
解得 x=7.
②如果4 cm长的边为腰,设底边长为y cm,则
2×4+y=18.
解得 y=10.
因为4+4<10,不符合“三角形两边的和大于第三边”,
所以不能围成腰长是4 cm的等腰三角形.
由以上讨论可知,可以围成底边长是4 cm的等腰三角形.
(1)图 (2)①图 (2)②图
(四)巩固练习
1. 下列长度的三条线段能否组成三角形 为什么
(1)3,4,8; (2)5,6,11; (3)5,6,10.
答:(1)不能.因为3 + 4<8,不符合三角形两边的和大于第三边.
(2)不能.因为5 + 6 =11,不符合三角形两边的和大于第三边.
(3)能.因为5 + 6>10,10 + 6>5,10 + 5>6,符合三角形两边的和大于第三边.
2.一根4 dm长的木条和两根1 dm长的木条,能否组成一个等腰三角形?两根4 dm长的木条和一根1 dm长的木条呢
解:一根4 dm长的木条和两根1 dm长的木条,不能组成一个等腰三角形.
因为1 + 1<4,不符合三角形两边的和大于第三边.
两根4 dm长的木条和一根1 dm长的木条能组成一个等腰三角形.
因为4 + 4>1,4+ 1>4,符合三角形两边的和大于第三边.
3.三角形的三边长分别为2,7,a,则a的取值范围是 5解:因为三角形两边的和大于第三边,
所以 2+7>a且2+a>7且7+a>2,
所以 54.如图,为了估计池塘两岸A,B的距离,琪琪在池塘的一侧选取一点O,测得OA=9米,OB=6米,则A,B间的距离不可能是( A )
A.3米 B.14米 C.5米 D.9米
5.如图是折叠凳及其侧面示意图.若AC=BC=19cm,则折叠凳的宽AB可能( A )
A.27cm B.38cm C.55cm D.73cm
第4题图 第5题图 第7题图
6.若实数a,b,c分别表示△ABC的三条边,且a,b满足,则△ABC的第三条边c的取值范围是( C )
A.c>4 B.c<12 C.4<c<12 D.4≤c≤12
7.在日常生活中,我们通常采用如图的方法(斜钉上一块木条)来修理一张摇晃的椅子,请用数学知识说明这样做的依据是: 三角形具有稳定性  .
设计意图:学完新知识后及时进行课堂巩固练习,不仅可以强化学生对新知的记忆,加深学生对新知的理解,还可以及时反馈学习情况,帮助学生查漏补缺,帮助教师及时调整教学策略.
归纳总结
感受中考
1.(2024 淮安)用一根小木棒与两根长度分别为3 cm、5 cm的小木棒组成三角形,则这根小木棒的长度可以是( B )
A.9 cm B.7 cm C.2 cm D.1 cm
2.(2023 衡阳)下列长度的各组线段能组成一个三角形的是( D )
A.1 cm,2 cm,3 cm B.3 cm,8 cm,5 cm
C.4 cm,5 cm,10 cm D.4 cm,5 cm,6 cm
3.(2022 西藏)如图,数轴上A,B两点到原点的距离是三角形两边的长,则该三角形第三边长可能是( B )
A.﹣5 B.4 C.7 D.8
4.(2022 广东)下列图形中有稳定性的是( A )
A.三角形 B.平行四边形
C.长方形 D.正方形
5.(2022 益阳)如图1所示,将长为6的矩形纸片沿虚线折成3个矩形,其中左右两侧矩形的宽相等,若要将其围成如图2所示的三棱柱形物体,则图中a的值可以是( B )
A.1 B.2 C.3 D.4
设计意图:在学习完知识后加入中考真题练习,不仅可以帮助学生明确考试方向,熟悉考试题型,检验学习成果,提升应考能力,还可以提升学生的学习兴趣和动力.
(七)小结梳理
(八)布置作业
1.必做题:习题13.2 第5题,第6题.
2.探究性作业:
①用不同长度的小棒(或吸管)尝试拼三角形,记录哪些能拼成,哪些不能,验证“三角形两边之和大于第三边”.
②找一找生活中体现“三角形具有稳定性”的例子,拍照或画下来,下节课分享!.
五、教学反思
21世纪教育网(www.21cnjy.com)
同课章节目录