名称 | 【学案导学与随堂笔记】2016-2017学年高中数学(人教版A版必修三)配套课件+课时作业与单元检测:第三章 概率 (22份打包) | | |
格式 | zip | ||
文件大小 | 10.6MB | ||
资源类型 | 教案 | ||
版本资源 | 人教新课标A版 | ||
科目 | 数学 | ||
更新时间 | 2016-07-11 22:07:53 |
C.P(A)=P(B) D.P(A)、P(B)大小不确定
10.如图所示,△ABC为圆O的内接三角形,AC=BC,AB为圆O的直径,向该圆内随机投一点,则该点落在△ABC内的概率是( )
A. B.
C. D.
11.若以连续两次掷骰子分别得到的点数m,n作为点P的坐标(m,n),则点P在圆x2+y2=25外的概率是( )
A. B.
C. D.
12.如图所示,两个圆盘都是六等分,在两个圆盘中,指针落在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是( )
A. B. C. D.
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
二、填空题(本大题共4小题,每小题5分,共20分)
13.已知半径为a的球内有一内接正方体,若球内任取一点,则该点在正方体内的概率为________.
14.在平面直角坐标系xOy中,设D是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E是到原点的距离不大于1的点构成的区域,向D中随机投一点,则落入E中的概率为________.
15.在半径为1的圆的一条直径上任取一点,过这个点作垂直于直径的弦,则弦长超过圆内接等边三角形边长的概率是________.
16.在体积为V的三棱锥S-ABC的棱AB上任取一点P,则三棱锥S-APC的体积大于的概率是________.
三、解答题(本大题共6小题,共70分)
17.(10分)已知函数f(x)=-x2+ax-b.
若a,b都是从0,1,2,3,4五个数中任取的一个数,求上述函数有零点的概率.
18.(12分)假设向三个相邻的军火库投掷一个炸弹,炸中第一个军火库的概率为0.025,其余两个各为0.1,只要炸中一个,另两个也发生爆炸,求军火库发生爆炸的概率.
19.(12分)如右图所示,OA=1,在以O为圆心,OA为半径的半圆弧上任取一点B,求使△AOB的面积大于等于的概率.
20.(12分)甲、乙二人用4张扑克牌(分别是红桃2、红桃3、红桃4、方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.
(1)设(i,j)分别表示甲、乙抽到的牌的牌面数字,写出甲、乙二人抽到的牌的所有情况;
(2)若甲抽到红桃3,则乙抽到的牌面数字比3大的概率是多少?
(3)甲、乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜,反之,则乙胜.你认为此游戏是否公平,说明你的理由.
21.(12分)现有8名奥运会志愿者,其中志愿者A1、A2、A3通晓日语,B1、B2、B3通晓俄语,C1、C2通晓韩语,从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.
(1)求A1被选中的概率;
(2)求B1和C1不全被选中的概率.
22.(12分)已知实数a,b∈{-2,-1,1,2}.
(1)求直线y=ax+b不经过第四象限的概率;
(2)求直线y=ax+b与圆x2+y2=1有公共点的概率.
第三章 概 率(B)
1.D 2.B
3.A [记“甲碰到同性同学”为事件A,“甲碰到异性同学”为事件B,则P(A)=,P(B)=,故P(A)
4.A [在区间[-,],0 C.P(A)=P(B) D.P(A)与P(B)大小不确定答案C12345?C答案规律与方法1.在求概率时,通常把全体基本事件列表或用平面直角坐标系中的点来表示,以方便更直接、准确地找出某个事件所包含的基本事件的个数,然后再根据古典概型的概率公式,求出相应的概率即可.
6.D [由于只有2本英语书,从中任意抽取3本,其中至少有一本是语文书.]
7.D [4枪命中3枪共有4种可能,其中有且只有2枪连中有2种可能,所以P==]
8.B [可能构成的两位数的总数为5×4=20(种),因为是“任取”两个数,所以每个数被取到的概率相同,可以采用古典概型公式求解,其中大于40的两位数有以4开头的:41,42,43,45共4种;以5开头的:51,52,53,54共4种,所以P==.]
9.C [横坐标与纵坐标为0的可能性是一样的.]
10.A [连接OC,设圆O的半径为R,记“所投点落在△ABC内”为事件A,则P(A)==.]
11.B [本题中涉及两个变量的平方和,类似于两个变量的和或积的情况,可以用列表法,使x2+y2>25的次数与总试验次数的比就近似为本题结果.即=.]
12.A [可求得同时落在奇数所在区域的情况有4×4=16(种),而总的情况有6×6=36(种),于是由古典概型概率公式,得P==.]
13.
解析 因为球半径为a,则正方体的对角线长为2a,设正方体的边长为x,则2a=x,∴x=,由几何概型知,所求的概率P===.
14.
解析 如图所示,区域D表示边长为4的正方形的内部(含边界),区域E表示单位圆及其内部,
因此P==.
15.
解析
记“弦长超过圆内接等边三角形的边长”为事件A,如图所示,不妨在过等边三角形BCD的顶点B的直径BE上任取一点F作垂直于直径的弦,当弦为CD时,就是等边三角形的边长,弦长大于CD的充要条件是圆心O到弦的距离小于OF,由几何概型的概率公式得
P(A)==.
16.
解析 由题意可知>,如图所示,三棱锥S-ABC与三棱锥S-APC的高相同,因此==>(PM,BN为其高线),又=,故>,故所求概率为(长度之比).
17.解 a,b都是从0,1,2,3,4五个数中任取的一个数的基本事件总数为N=5×5=25个.函数有零点的条件为Δ=a2-4b≥0,即a2≥4b.因为事件“a2≥4b”包含(0,0),(1,0),(2,0),(2,1),(3,0),(3,1),(3,2),(4,0),(4,1),(4,2),(4,3),(4,4),共12个.所以事件“a2≥4b”的概率为P=.
18.解 设A、B、C分别表示炸中第一、第二、第三军火库这三个事件.
则P(A)=0.025,P(B)=P(C)=0.1,
设D表示军火库爆炸这个事件,则有
D=A∪B∪C,其中A、B、C是互斥事件,
∴P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=0.025+0.1+0.1=0.225.
19.解 如下图所示,作OC⊥OA,C在半圆弧上,过OC中点D作OA的平行线交半圆弧于E、F,所以在上取一点B,则S△AOB≥.
连结OE、OF,因为OD=OC=OF,
OC⊥EF,所以∠DOF=60°,所以∠EOF=120°,所以l=π·1=π.
所以P===.
20.解 (1)甲、乙二人抽到的牌的所有情况(方片4用4′表示,其他用相应的数字表示)为(2,3),(2,4),(2,4′),(3,2),(3,4),(3,4′),(4,2),(4,3),(4,4′),(4′,2),(4′,3),(4′,4),共12种不同情况.
(2)甲抽到红桃3,乙抽到的牌的牌面数字只能是2,4,4′,因此乙抽到的牌的牌面数字比3大的概率为.
(3)甲抽到的牌的牌面数字比乙大的情况有(3,2),(4,2),(4,3),(4′,2),(4′,3),共5种,故甲胜的概率P1=,同理乙胜的概率P2=.因为P1=P2,所以此游戏公平.
21.解 (1)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件为
(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2),(A2,B1,C1),(A2,B1,C2),(A2,B2,C1),(A2,B2,C2),(A2,B3,C1),(A2,B3,C2),(A3,B1,C1),(A3,B1,C2),(A3,B2,C1),(A3,B2,C2),(A3,B3,C1),(A3,B3,C2),共18个基本事件.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的.
用M表示“A1恰被选中”这一事件,则
M={(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2)},
事件M由6个基本事件组成,因而P(M)==.
(2)用N表示“B1、C1不全被选中”这一事件,则其对立事件表示“B1、C1全被选中”这一事件,由于={(A1,B1,C1),(A2,B1,C1),(A3,B1,C1)},事件由3个基本事件组成,
所以P()==,由对立事件的概率公式得:P(N)=1-P()=1-=.
22.解 由于实数对(a,b)的所有取值为:(-2,-2),(-2,-1),(-2,1),(-2,2),(-1,-2),(-1,-1),(-1,1),(-1,2),(1,-2),(1,-1),(1,1),(1,2),(2,-2),(2,-1),(2,1),(2,2),共16种.
设“直线y=ax+b不经过第四象限”为事件A,“直线y=ax+b与圆x2+y2=1有公共点”为事件B.
(1)若直线y=ax+b不经过第四象限,则必须满足即满足条件的实数对(a,b)有(1,1),(1,2),(2,1),(2,2),共4种.∴P(A)==.故直线y=ax+b不经过第四象限的概率为.
(2)若直线y=ax+b与圆x2+y2=1有公共点,则必须满足≤1,即b2≤a2+1.
若a=-2,则b=-2,-1,1,2符合要求,此时实数对(a,b)有4种不同取值;
若a=-1,则b=-1,1符合要求,此时实数对(a,b)有2种不同取值;
若a=1,则b=-1,1符合要求,此时实数对(a,b)有2种不同取值,
若a=2,则b=-2,-1,1,2符合要求,此时实数对(a,b)有4种不同取值.
∴满足条件的实数对(a,b)共有12种不同取值.∴P(B)==.
故直线y=ax+b与圆x2+y2=1有公共点的概率为.
第三章 概 率
3.1.1 随机事件的概率
课时目标 在具体情境中,了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别.
1.事件的概念及分类
事
件
确定
事件
不可
能事
件
在条件S下,______________的事件,叫做相对于条件S的不可能事件
必然
事件
在条件S下,________的事件,叫做相对于条件S的必然事件
随机
事件
在条件S下______________________的事件,叫做相对于条件S的随机事件
2.频数与频率
在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中______________为事件A出现的频数,称______________________为事件A出现的频率.
3.概率
(1)含义:概率是度量随机事件发生的________的量.
(2)与频率联系:对于给定的随机事件A,事件A发生的频率fn(A)随着试验次数的增加稳定于________,因此可以用__________来估计概率P(A).
一、选择题
1.有下列事件:
①连续掷一枚硬币两次,两次都出现正面朝上;
②异性电荷相互吸引;
③在标准大气压下,水在1℃结冰;
④买了一注彩票就得了特等奖.
其中是随机事件的有( )
A.①② B.①④
C.①③④ D.②④
2.下列事件中,不可能事件是( )
A.三角形的内角和为180°
B.三角形中大角对大边,小角对小边
C.锐角三角形中两内角和小于90°
D.三角形中任两边之和大于第三边
3.有下列现象:
①掷一枚硬币,出现反面;②实数的绝对值不小于零;③若a>b,则b
C.③ D.②③
4.先后抛掷一枚均匀硬币三次,至多有一次正面向上是( )
A.必然事件 B.不可能事件
C.确定事件 D.随机事件
5.下列说法正确的是( )
A.某厂一批产品的次品率为5%,则任意抽取其中20件产品一定会发现一件次品.
B.气象部门预报明天下雨的概率是90%,说明明天该地区90%的地方要下雨,其余10%的地方不会下雨.
C.某医院治疗一种疾病的治愈率为10%,那么前9个病人都没有治愈,第10个人就一定能治愈.
D.掷一枚均匀硬币,连续出现5次正面向上,第六次出现反面向上的概率与正面向上的概率仍然都为50%.
6.在进行n次重复试验中,事件A发生的频率为,当n很大时,事件A发生的概率P(A)与的关系是( )
A.P(A)≈ B.P(A)<
C.P(A)> D.P(A)=
题 号
1
2
3
4
5
6
答 案
二、填空题
7.将一根长为a的铁丝随意截成三段,构成一个三角形,此事件是________事件.
8.在200件产品中,有192件一级品,8件二级品,则下列事件:
①“在这200件产品中任意选9件,全部是一级品”;
②“在这200件产品中任意选9件,全部都是二级品”;
③“在这200件产品中任意选9件,不全是一级品”.
其中________是随机事件;________是不可能事件.(填上事件的编号)
9.在一篇英文短文中,共使用了6 000个英文字母(含重复使用),其中字母“e”共使用了900次,则字母“e”在这篇短文中的使用的频率为________.
三、解答题
10.判断下列事件是否是随机事件.
①在标准大气压下水加热到100℃,沸腾;
②在两个标准大气压下水加热到100℃,沸腾;
③水加热到100℃,沸腾.
11.某射手在同一条件下进行射击,结果如下表所示:
射击次数n
10
20
50
100
200
500
击中靶心的次数m
8
19
44
92
178
455
击中靶心的频率
(1)计算表中击中靶心的各个频率;
(2)这个射手射击一次击中靶心的概率约是多少?
能力提升
12.将一骰子抛掷1 200次,估计点数是6的次数大约是______次;估计点数大于3的次数大约是______次.
13.用一台自动机床加工一批螺母,从中抽出100个逐个进行直径检验,结果如下:
直径
个数
直径
个数
6.88
6.93
6.89
6.94
6.90
6.95
6.91
6.96
6.92
6.97
从这100个螺母中任意抽取一个,求
(1)事件A(6.92
(4)事件D(d≤6.89)的频率.
1.随机试验
如果一个试验满足以下条件:
(1)试验可以在相同的条件下重复进行;
(2)试验的所有结果是明确可知的,但不止一个;
(3)每次试验总是出现这些结果中的一个,但在试验之前却不能确定会出现哪一个结果.
则这样的试验叫做随机试验.
2.频数、频率和概率之间的关系:
(1)频数是指在n次重复试验中事件A出现的次数,频率是频数与试验总次数的比值,而概率是随机事件发生的可能性的规律体现.
(2)随机事件的频率在每次试验中都可能会有不同的结果,但它具有一定的稳定性,概率是频率的稳定值,是频率的科学抽象,不会随试验次数的变化而变化.
3.辩证地看待“确定事件”、“随机事件”和“概率”.一个随机事件的发生,既有随机性(对一次试验来说),又存在着统计规律性(对大量重复试验来说),这是偶然性和必然性的统一.就概率的统计定义而言,必然事件U的概率为1,P(U)=1;不可能事件V的概率为0,P(V)=0;而随机事件A的概率满足0≤P(A)≤1.从这个意义上讲,必然事件和不可能事件可以看作随机事件的两个极端情况.
答案:
3.1.1 随机事件的概率
知识梳理
1.一定不会发生 一定会发生 可能发生也可能不发生 2.事件A出现的次数nA 事件A出现的比例fn(A)= 3.(1)可能性 (2)概率P(A) 频率fn(A)
作业设计
1.B [①、④是随机事件,②为必然事件,③为不可能事件.]
2.C [锐角三角形中两内角和大于90°.]
3.B [①是随机现象;②③是必然现象.]
4.D 5.D 6.A
7.随机
8.①③ ②
解析 因为二级品只有8件,故9件产品不可能全是二级品,所以②是不可能事件.
9.0.15
解析 频率==0.15.
10.解 在①、②、③中“沸腾”是试验的结果,称为事件,但在①的条件下是必然事件,在②的条件下是不可能事件,在③的条件下则是随机事件.
11.解 (1)由公式可算得表中击中靶心的频率依次为0.8,0.95,0.88,0.92,0.89,0.91.
(2)由(1)可知,射手在同一条件下击中靶心的频率虽然各不相同,但都在常数0.9左右摆动,所以射手射击一次,击中靶心的概率约是0.9.
12.200 600
解析 一粒骰子上的6个点数在每次掷出时出现的可能性(即概率)都是,而掷出点数大于3包括点数为4,5,6三种.故掷出点数大于3的可能性为=,故N1=×1 200=200,N2=×1 200=600.
13.解 (1)事件A的频率f(A)==0.43.
(2)事件B的频率
f(B)==0.93.
(3)事件C的频率f(C)==0.04.
(4)事件D的频率f(D)==0.01.
3.1.2 概率的意义
课时目标 1.通过实例,进一步理解概率的意义.2.会用概率的意义解释生活中的实例.3.了解“极大似然法”和遗传机理中的统计规律.
1.对概率的正确理解
随机事件在一次试验中发生与否是随机的,但随机性中含有________,认识了这种随机性中的________,就能比较准确地预测随机事件发生的________.
2.游戏的公平性
(1)裁判员用抽签器决定谁先发球,不管哪一名运动员先猜,猜中并取得发球的概率均为______,所以这个规则是______的.
(2)在设计某种游戏规则时,一定要考虑这种规则对每个人都是______的这一重要原则.
3.决策中的概率思想
如果我们面临的是从多个可选答案中挑选正确答案的决策任务,那么“_____________”可以作为决策的准则,这种判断问题的方法称为极大似然法,极大似然法是统计中重要的统计思想方法之一.
4.天气预报的概率解释
天气预报的“降水”是一个________,“降水概率为90%”指明了“降水”这个随机事件发生的______为90%,在一次试验中,概率为90%的事件也________,因此,“昨天没有下雨”并不能说明“昨天的降水概率为90%”的天气预报是______的.
5.孟德尔与遗传机理中的统计规律
孟德尔在自己长达七、八年的试验中,观察到了遗传规律,这种规律是一种统计规律.
一、选择题
1.某气象局预报说,明天本地降雪的概率为90%,下列解释正确的是( )
A.明天本地有90%的区域下雪,10%的区域不下雪.
B.明天本地下雪的可能性是90%.
C.明天本地全天有90%的时间下雪,10%的时间不下雪.
D.明天本地一定下雪.
2.已知某厂的产品合格率为90%,现抽出10件产品检查,则下列说法正确的是( )
A.合格产品少于9件
B.合格产品多于9件
C.合格产品正好是9件
D.合格产品可能是9件
3.每道选择题有4个选择项,其中只有1个选择项是正确的,某次考试共有12道选择题,某人说:“每个选择项正确的概率是,我每题都选择第一个选择项,则一定有3道题选择结果正确”,这句话( )
A.正确 B.错误
C.不一定 D.无法解释
4.同时向上抛掷100个质量均匀的铜板,落地时这100个铜板全都正面向上,则这100个铜板更可能是下面哪种情况( )
A.这100个铜板两面是一样的
B.这100个铜板两面是不一样的
C.这100个铜板中有50个两面是一样的,另外50个两面是不一样的
D.这100个铜板中有20个两面是一样的,另外80个两面是不一样的
5.某市交警部门在调查一起车祸过程中,所有的目击证人都指证肇事车是一辆普通桑塔纳出租车,但由于天黑,均未看清该车的车牌号码及颜色,而该市有两家出租车公司,其中甲公司有100辆桑塔纳出租车,3 000辆帕萨特出租车,乙公司有3 000辆桑塔纳出租车,100辆帕萨特出租车,交警部门应先调查哪个公司的车辆较合理( )
A.甲公司 B.乙公司
C.甲与乙公司 D.以上都对
6.从12个同类产品(其中10个正品,2个次品),任意抽取6件产品,下列说法中正确的是( )
A.抽出的6件产品中必有5件正品,一件次品
B.抽出的6件产品中可能有5件正品,一件次品
C.抽取6件产品时逐个不放回抽取,前5件是正品,第6件必是次品
D.抽取6件产品时,不可能抽得5件正品,一件次品
题 号
1
2
3
4
5
6
答 案
二、填空题
7.盒中装有4只白球5只黑球,从中任意取出1只球.
(1)“取出的球是黄球”是________事件,它的概率是________;
(2)“取出的球是白球”是________事件,它的概率是________;
(3)“取出的球是白球或黑球”是________事件,它的概率是________.
8.管理人员从一池塘中捞出30条鱼做上标记,然后放回池塘,将带标记的鱼完全混合于鱼群中.10天后,再捕上50条,发现其中带标记的鱼有2条.根据以上数据可以估计该池塘约有________条鱼.
9.从某自动包装机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):
492 496 494 495 498
497 501 502 504 496
497 503 506 508 507
492 496 500 501 499
根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5 g~501.5 g之间的概率约为________.
三、解答题
10.解释下列概率的含义:
(1)某厂生产产品合格的概率为0.9;
(2)一次抽奖活动中,中奖的概率为0.2.
11.在一个试验中,一种血清被注射到500只豚鼠体内,最初,这些豚鼠中150只有圆形细胞,250只有椭圆形细胞,100只有不规则形状细胞,被注射这种血清之后,没有一个具有圆形细胞的豚鼠被感染,50个具有椭圆形细胞的豚鼠被感染,具有不规则形状细胞的豚鼠全部被感染.根据试验结果,估计具有(1)圆形细胞;(2)椭圆形细胞;(3)不规则形状细胞的豚鼠分别被这种血清感染的概率.
能力提升
12.掷一枚骰子得到6点的概率是,是否意味着把它掷6次一定能得到一次6点?
13.某水产试验厂实行某种鱼的人工孵化,10 000个鱼卵能孵化8513尾鱼苗,根据概率的统计定义解答下列问题:
(1)这种鱼卵的孵化概率(孵化率)是多少?
(2)30 000个鱼卵大约能孵化多少尾鱼苗?
(3)要孵化5 000尾鱼苗,大概需备多少个鱼卵?(精确到百位)
1.事件A发生的概率P(A)=,在实际生活中并不意味着n次试验中,事件A一定发生m次,有可能多于m次,也有可能少于m次,甚至有可能不发生或发生n次.
2.大概率事件经常发生,小概率事件很少发生.反之,一次试验中已发生了的事件其概率也必然很大,利用这一点可以推断事情的发展趋势,做出正确的决策.
3.概率广泛应用于体育运动、管理决策、天气预报以及某些科学实验中,它在这些应用中起着极其重要的作用.
答案:
3.1.2 概率的意义
知识梳理
1.规律性 规律性 可能性 2.(1)0.5 公平
(2)公平 3.使得样本出现的可能性最大 4.随机事件 概率 可能不出现 错误
作业设计
1.B [概率的本质是从数量上反映一个事件发生的可能性的大小.]
2.D
3.B [解答一个选择题作为一次试验,每次试验选择的正确与否都是随机的,经过大量的试验其结果呈随机性,即选择正确的概率是.做12道选择题,即进行12次试验,每个结果都是随机的,不能保证每题的结果选择正确,但有3道题选择结果正确的可能性比较大.同时也有可能都选错,或有2道题,4道题,甚至12道题都选择正确.故这句话是错误的.]
4.A [一枚质量均匀的铜板,抛掷一次正面向上的概率为0.5,从题意中知抛掷100枚结果正面都向上,因此这100个铜板两面是一样的可能性最大.]
5.B [由于甲公司桑塔纳的比例为=,
乙公司桑塔纳的比例为=,根据极大似然法可知应选B.]
6.B
7.(1)不可能 0 (2)随机 (3)必然 1
8.750
解析 设池塘约有n条鱼,则含有标记的鱼的概率为,由题意得:×50=2,∴n=750.
9.0.25
解析 袋装食盐质量在497.5 g~501.5 g之间的共有5袋,所以其概率约为=0.25.
10.解 (1)说明该厂产品合格的可能性为90%.也就是说每100件该厂的产品中大约有90件是合格品.
(2)说明参加抽奖的人中有20%的人可能中奖,也就是说,若有100个人参加抽奖,约有20人中奖.
11.解 (1)记“圆形细胞的豚鼠被感染”为事件A,由题意知,A为不可能事件,∴P(A)=0.
(2)记“椭圆形细胞的豚鼠被感染”为事件B,
由题意知P(B)===0.2.
(3)记“不规则形状细胞的豚鼠被感染”为事件C,由题意知事件C为必然事件,所以P(C)=1.
12.解 抛掷一枚骰子得到6点的概率是,多次抛掷骰子,出现6点的情况大约占,并不意味着掷6次一定得到一次6点,实际上,掷6次作为抛掷骰子的6次试验,每一次结果都是随机的.
13.解 (1)这种鱼卵的孵化概率
P==0.851 3.
(2)30 000个鱼卵大约能孵化
30 000×=25 539(尾)鱼苗.
(3)设大概需备x个鱼卵,
由题意知=.
∴x==5 900(个).
∴大概需备5 900个鱼卵.
3.1.3 概率的基本性质
课时目标 1.了解事件间的相互关系.2.理解互斥事件、对立事件的概念.3.会用概率的加法公式求某些事件的概率.
1.事件的关系与运算
(1)包含关系
一般地,对于事件A与事件B,如果事件A________,则事件B________,这时称事件B包含事件A(或称事件A包含于事件B).记作________________.不可能事件记作?,任何事件都包含____________.一般地,如果B?A,且A?B,那么称事件A与事件B________,记作________.
(2)并事件
若某事件发生当且仅当______________________,则称此事件为事件A与事件B的并事件(或和事件),记作A∪B(或A+B).
(3)交事件
若某事件发生当且仅当______________________,则称此事件为事件A与事件B的交事件(或积事件),记作A∩B(或AB).
(4)互斥事件与对立事件
①互斥事件的定义
若A∩B为________________(A∩B=__________),则称事件A与事件B互斥.
②对立事件的含义
若A∩B为________________,A∪B是__________,则称事件A与事件B互为对立事件.
2.概率的几个基本性质
(1)概率的取值范围__________.
(2)________的概率为1,__________的概率为0.
(3)概率加法公式
如果事件A与B为互斥事件,则P(A∪B)=____________.
特殊地,若A与B为对立事件,则P(A)=1-P(B).
P(A∪B)=____,P(A∩B)=____.
一、选择题
1.给出事件A与B的关系示意图,如图所示,则( )
A.A?B B.A?B
C.A与B互斥 D.A与B互为对立事件
2.对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设A={两次都击中飞机},B={两次都没击中飞机},C={恰有一弹击中飞机},D={至少有一弹击中飞机},下列关系不正确的是( )
A.A?D B.B∩D=?
C.A∪C=D D.A∪B=B∪D
3.从1,2,…,9中任取两个数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个是奇数和两个都是奇数;③至少有一个奇数和两个都是偶数;④至少有一个奇数和至少有一个偶数.
在上述几对事件中是对立事件的是( )
A.① B.②④
C.③ D.①③
4.下列四种说法:
①对立事件一定是互斥事件;
②若A,B为两个事件,则P(A∪B)=P(A)+P(B);
③若事件A,B,C彼此互斥,则P(A)+P(B)+P(C)=1;
④若事件A,B满足P(A)+P(B)=1,则A,B是对立事件.
其中错误的个数是( )
A.0 B.1
C.2 D.3
5.从一批羽毛球产品中任取一个,其质量小于4.8 g的概率为0.3,质量小于4.85 g的概率为0.32,那么质量在[4.8,4.85]g范围内的概率是( )
A.0.62 B.0.38
C.0.02 D.0.68
6.现有语文、数学、英语、物理和化学共5本书,从中任取1本,取出的是理科书的概率为( )
A. B.
C. D.
题 号
1
2
3
4
5
6
答 案
二、填空题
7.口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,则摸出黑球的概率是________.
8.甲、乙两队进行足球比赛,若两队战平的概率是,乙队胜的概率是,则甲队胜的概率是________.
9.同时抛掷两枚骰子,没有5点或6点的概率为,则至少有一个5点或6点的概率是________.
三、解答题
10.某射手射击一次射中10环,9环,8环,7环的概率分别是0.24,0.28,0.19,0.16,计算这名射手射击一次.
(1)射中10环或9环的概率;
(2)至少射中7环的概率.
11.某家庭电话在家中有人时,打进的电话响第一声时被接的概率为0.1,响第二声时被接的概率为0.3,响第三声时被接的概率为0.4,响第四声时被接的概率为0.1,那么电话在响前四声内被接的概率是多少?
能力提升
12.某公务员去开会,他乘火车、轮船、汽车、飞机去的概率分别为0.3、0.2、0.1、0.4.
(1)求他乘火车或乘飞机去的概率;
(2)求他不乘轮船去的概率;
(3)如果他乘某种交通工具的概率为0.5,请问他有可能乘哪种交通工具?
13.在某一时期内,一条河流某处的年最高水位在各个范围内的概率如下表:
年最高水位
(单位:m)
[8,10)
[10,12)
[12,14)
[14,16)
[16,18)
概率
0.1
0.28
0.38
0.16
0.08
计算在同一时期内,河流这一处的年最高水位在下列范围内的概率:
(1)[10,16)(m);(2)[8,12)(m);(3)水位不低于12 m.
1.互斥事件与对立事件的判定
(1)利用基本概念:①互斥事件不可能同时发生;②对立事件首先是互斥事件,且必须有一个要发生.
(2)利用集合的观点来判断:设事件A与B所含的结果组成的集合分别是A、B.①事件A与B互斥,即集合A∩B=?;②事件A与B对立,即集合A∩B=?,且A∪B=I,也即A=?IB或B=?IA;③对互斥事件A与B的和A+B,可理解为集合A∪B.
2.运用互斥事件的概率加法公式解题时,首先要分清事件之间是否互斥,同时要学会把一个事件分拆为几个互斥事件,做到不重不漏,分别求出各个事件的概率然后用加法公式求出结果.
3.求复杂事件的概率通常有两种方法:一是将所求事件转化成彼此互斥的事件的和;二是先求其对立事件的概率,然后再运用公式求解.如果采用方法一,一定要将事件分拆成若干互斥的事件,不能重复和遗漏;如果采用方法二,一定要找准其对立事件,否则容易出现错误.
答案:
3.1.3 概率的基本性质
知识梳理
1.(1)发生 一定发生 B?A或A?B 不可能事件 相等 A=B (2)事件A发生或事件B发生
(3)事件A发生且事件B发生 (4)①不可能事件 ? ②不可能事件 必然事件 2.(1)0≤P(A)≤1
(2)必然事件 不可能事件 (3)P(A)+P(B) 1 0
作业设计
1.C
2.D [“恰有一弹击中飞机”指第一枚击中第二枚没中或第一枚没中第二枚击中,“至少有一弹击中”包含两种情况:一种是恰有一弹击中,一种是两弹都击中,∴A∪B≠B∪D.]
3.C [从1,2,…,9中任取两个数,有以下三种情况:
(1)两个奇数;(2)两个偶数;(3)一个奇数和一个偶数.①中“恰有一个偶数”和“恰有一个奇数”是同一个事件,因此不互斥也不对立;②中“至少有一个奇数”包括“两个都是奇数”这个事件,可以同时发生,因此不互斥也不对立;④中“至少有一个奇数”和“至少有一个偶数”,可以同时发生,因此不互斥也不对立;③中是对立事件,故应选C.]
4.D [对立事件一定是互斥事件,故①对;
只有A、B为互斥事件时才有P(A∪B)=P(A)+P(B),故②错;
因A,B,C并不是随机试验中的全部基本事件,
故P(A)+P(B)+P(C)并不一定等于1,故③错;
若A、B不互斥,尽管P(A)+P(B)=1,
但A,B不是对立事件,故④错.]
5.C [设“质量小于4.8 g”为事件A,“质量小于4.85 g”为事件B,“质量在[4.8,4.85]g”为事件C,则A∪C=B,且A、C为互斥事件,所以P(B)=P(A∪C)=P(A)+P(C),则P(C)=P(B)-P(A)=0.32-0.3=0.02.]
6.C [记录取到语文、数学、英语、物理、化学书分别为事件A、B、C、D、E,则A、B、C、D、E互斥,取到理科书的概率为事件B、D、E概率的和.
∴P(B∪D∪E)=P(B)+P(D)+P(E)
=++=.]
7.0.30
解析 P=1-0.42-0.28=0.30.
8.
解析 设甲队胜为事件A,
则P(A)=1--=.
9.
解析 没有5点或6点的事件为A,则P(A)=,至少有一个5点或6点的事件为B.
因A∩B=?,A∪B为必然事件,所以A与B是对立事件,则P(B)=1-P(A)=1-=.
故至少有一个5点或6点的概率为.
10.解 设“射中10环”,“射中9环”,“射中8环”,“射中7环”的事件分别为A、B、C、D,则A、B、C、D是互斥事件,
(1)P(A∪B)=P(A)+P(B)
=0.24+0.28=0.52;
(2)P(A∪B∪C∪D)
=P(A)+P(B)+P(C)+P(D)
=0.24+0.28+0.19+0.16=0.87.
答 射中10环或9环的概率是0.52,至少射中7环的概率为0.87.
11.解 记“响第1声时被接”为事件A,“响第2声时被接”为事件B,“响第3声时被接”为事件C,“响第4声时被接”为事件D.“响前4声内被接”为事件E,则易知A、 B、C、D互斥,且E=A∪B∪C∪D,所以由互斥事件的概率的加法公式得
P(E)=P(A∪B∪C∪D)
=P(A)+P(B)+P(C)+P(D)
=0.1+0.3+0.4+0.1=0.9.
12.解 (1)记“他乘火车去”为事件A1,“他乘轮船去”为事件A2,“他乘汽车去”为事件A3,“他乘飞机去”为事件A4,这四个事件不可能同时发生,故它们彼此互斥.
故P(A1∪A4)=P(A1)+P(A4)=0.3+0.4=0.7.
所以他乘火车或乘飞机去的概率为0.7.
(2)设他不乘轮船去的概率为P,
则P=1-P(A2)=1-0.2=0.8,
所以他不乘轮船去的概率为0.8.
(3)由于P(A)+P(B)=0.3+0.2=0.5,
P(C)+P(D)=0.1+0.4=0.5,
故他可能乘火车或乘轮船去,也有可能乘汽车或乘飞机去.
13.解 设水位在[a,b)范围的概率为P([a,b)).
由于水位在各范围内对应的事件是互斥的,由概率加法公式得:
(1)P([10,16))=P([10,12))+P([12,14))+P([14,16))
=0.28+0.38+0.16=0.82.
(2)P([8,12))=P([8,10))+P([10,12))
=0.1+0.28=0.38.
(3)记“水位不低于12 m”为事件A,
P(A)=1-P([8,12))=1-0.38=0.62.
3.2.1 古典概型
课时目标 1.了解基本事件的特点.2.理解古典概型的定义.3.会应用古典概型的概率公式解决实际问题.
1.基本事件
(1)基本事件的定义:
一次试验中可能出现的试验结果称为一个基本事件.基本事件是试验中不能再分的最简单的随机事件.
(2)基本事件的特点:
①任何两个基本事件是__________;
②任何事件(除不可能事件)都可以表示成________的和.
2.古典概型
如果某类概率模型具有以下两个特点:
(1)试验中所有可能出现的基本事件__________.
(2)每个基本事件出现的__________.
将具有这两个特点的概率模型称为古典概率模型.
3.古典概型的概率公式
对于任何事件A,P(A)=________________________________.
一、选择题
1.某校高一年级要组建数学、计算机、航空模型三个兴趣小组,某学生只选报其中的2个,则基本事件共有( )
A.1个 B.2个
C.3个 D.4个
2.下列是古典概型的是( )
(1)从6名同学中,选出4人参加数学竞赛,每人被选中的可能性的大小;
(2)同时掷两颗骰子,点数和为7的概率;
(3)近三天中有一天降雨的概率;
(4)10个人站成一排,其中甲、乙相邻的概率.
A.(1)、(2)、(3)、(4) B.(1)、(2)、(4)
C.(2)、(3)、(4) D.(1)、(3)、(4)
3.下列是古典概型的是( )
A.任意抛掷两枚骰子,所得点数之和作为基本事件时
B.求任意的一个正整数平方的个位数字是1的概率,将取出的正整数作为基本事件时
C.从甲地到乙地共n条路线,求某人正好选中最短路线的概率
D.抛掷一枚均匀硬币至首次出现正面为止
4.甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是( )
A. B.
C. D.
5.一袋中装有大小相同的八个球,编号分别为1,2,3,4,5,6,7,8,现从中有放回地每次取一个球,共取2次,记“取得两个球的编号和大于或等于14”为事件A,则P(A)等于( )
A. B.
C. D.
6.有五根细木棒,长度分别为1,3,5,7,9 (cm),从中任取三根,能搭成三角形的概率是( )
A. B. C. D.
题 号
1
2
3
4
5
6
答 案
二、填空题
7.在1,2,3,4四个数中,可重复地选取两个数,其中一个数是另一个数的2倍的概率是________.
8.甲,乙两人随意入住三间空房,则甲、乙两人各住一间房的概率是________.
9.从1,2,3,4,5这5个数字中,不放回地任取两数,两数都是奇数的概率是________.
三、解答题
10.袋中有6个球,其中4个白球,2个红球,从袋中任意取出两球,求下列事件的概率:
(1)A:取出的两球都是白球;
(2)B:取出的两球1个是白球,另1个是红球.
11.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.
(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;
(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n
12.盒中有1个黑球和9个白球,它们除颜色不同外,其他方面没有什么差别.现由10人依次摸出1个球,设第1个人摸出的1个球是黑球的概率为P1,第10个人摸出黑球的概率是P10,则( )
A.P10=P1 B.P10=P1
C.P10=0 D.P10=P1
13.田忌和齐王赛马是历史上有名的故事,设齐王的三匹马分别为A、B、C,田忌的三匹马分别为a、b、c;三匹马各比赛一次,胜两场者为获胜.若这六匹马比赛优、劣程度可以用以下不等式表示:A>a>B>b>C>c.
(1)正常情况下,求田忌获胜的概率;
(2)为了得到更大的获胜机会,田忌预先派出探子到齐王处打探实情,得知齐王第一场必出上等马A,于是田忌采用了最恰当的应对策略,求这时田忌获胜的概率.
1.判断一个概率问题是否为古典概型,关键看它是否同时满足古典概型的两个特征——有限性和等可能性.
2.古典概型的概率公式:如果随机事件A包含m个基本事件,则
P(A)=++…+=,
即P(A)=.
3.应用公式P(A)=求古典概型的概率时,应先判断它是否是古典概型,再列举、计算基本事件数代入公式计算,列举时注意要不重不漏,按一定顺序进行,或采用图表法、树图法进行.
答案:
3.2.1 古典概型
知识梳理
1.(2)①互斥的 ②基本事件 2.(1)只有有限个 (2)可能性相等 3.
作业设计
1.C [该生选报的所有可能情况是:{数学和计算机},{数学和航空模型},{计算机和航空模型},所以基本事件有3个.]
2.B [(1)(2)(4)为古典概型,因为都适合古典概型的两个特征:有限性和等可能性,而(3)不适合等可能性,故不为古典概型.]
3.C [A项中由于点数的和出现的可能性不相等,故A不是;B中的基本事件是无限的,故B不是;C项满足古典概型的有限性和等可能性,故C是;D项中基本事件既不是有限个也不具有等可能性.]
4.C [正方形四个顶点可以确定6条直线,甲乙各自任选一条共有36个基本事件,两条直线相互垂直的情况有5种(4组邻边和对角线)包括10个基本事件,所以概率等于.]
5.C [事件A包括(6,8),(7,7),(7,8),(8,6),(8,7),(8,8)这6个基本事件,由于是有放回地取,基本事件总数为8×8=64(个),∴P(A)==.]
6.D [任取三根共有10种情况,构成三角形的只有3、5、7,5、7、9,3、7、9三种情况,故概率为.]
7.
解析 可重复地选取两个数共有4×4=16(种)可能,
其中一个数是另一个数的2倍的有1,2;2,1;2,4;4,2共4种,故所求的概率为=.
8.
解析 设房间的编号分别为A、B、C,事件甲、乙两人各住一间房包含的基本事件为:甲A乙B,甲B乙A,甲B乙C,甲C乙B,甲A乙C,甲C乙A共6个,基本事件总数为3×3=9,所以所求的概率为=.
9.
解析 基本事件(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),而两数都是奇数的有3种,
故所求概率P=.
10.解 设4个白球的编号为1,2,3,4,2个红球的编号为5,6.从袋中的6个小球中任取2个的方法为(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15种.
(1)从袋中的6个球中任取两个,所取的两球全是白球的方法总数,即是从4个白球中任取两个的方法总数,共有6个,即为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).
∴取出的两个球全是白球的概率为
P(A)==.
(2)从袋中的6个球中任取两个,其中一个是红球,而另一个是白球,其取法包括(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),共8种.
∴取出的两个球一个是白球,另一个是红球的概率为P(B)=.
11.解 (1)从袋中随机取两个球,其一切可能的结果组成的基本事件有:1和2,1和3,1和4,2和3,2和4,3和4,共6个.
从袋中取出的两个球的编号之和不大于4的事件有:1和2,1和3,共2个.因此所求事件的概率为P==.
(2)先从袋中随机取一个球,记下编号为m,放回后,再从袋中随机取一个球,记下编号为n,其一切可能的结果(m,n)有:
(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.
又满足条件n≥m+2的事件有:(1,3),(1,4),(2,4),共3个.
所以满足条件n≥m+2的事件的概率为P1=.
故满足条件n
12.D [摸球与抽签是一样的,虽然摸球的顺序有先后,但只需不让后人知道先抽的人抽出的结果,那么各个抽签者中签的概率是相等的,并不因抽签的顺序不同而影响到其公平性.所以P10=P1.]
13.解 比赛配对的基本事件共有6个,它们是:(Aa,Bb,Cc),(Aa,Bc,Cb),(Ab,Ba,Cc),(Ab,Bc,Ca),(Ac,Ba,Cb),(Ac,Bb,Ca).
(1)经分析:仅有配对为(Ac,Ba,Cb)时,田忌获胜,且获胜的概率为.
(2)田忌的策略是首场安排劣马c出赛,基本事件有2个:(Ac,Ba,Cb),(Ac,Bb,Ca),配对为(Ac,Ba,Cb)时,田忌获胜且获胜的概率为.
答 正常情况下,田忌获胜的概率为,获得信息后,田忌获胜的概率为.
3.2.2 (整数值)随机数(random numbers)的产生
课时目标 1.了解随机数的意义.2.会用模拟方法(包括计算器产生随机数进行模拟)估计概率.3.理解用模拟方法估计概率的实质.
1.随机数
要产生1~n(n∈N*)之间的随机整数,把n个____________相同的小球分别标上1,2,3,…,n,放入一个袋中,把它们__________,然后从中摸出一个,这个球上的数就称为随机数.
2.伪随机数
计算机或计算器产生的随机数是依照__________产生的数,具有________(________很长),它们具有类似________的性质.因此,计算机或计算器产生的并不是______,我们称它们为伪随机数.
3.利用计算器产生随机数的操作方法:
用计算器的随机函数RANDI(a,b)或计算机的随机函数RANDBETWEEN(a,b)可以产生从整数a到整数b的取整数值的随机数.
4.利用计算机产生随机数的操作程序
每个具有统计功能的软件都有随机函数,以Excel软件为例,打开Excel软件,执行下面的步骤:
(1)选定A1格,键入“=RANDBETWEEN(0,1)”,按Enter键,则在此格中的数是随机产生的0或1.
(2)选定A1格,按Ctrl+C快捷键,然后选定要随机产生0,1的格,比如A2至A100,按Ctrl+V快捷键,则在A2至A100的数均为随机产生的0或1,这样相当于做了100次随机试验.
(3)选定C1格,键入频数函数“=FREQUENCY(A1∶A100,0.5)”,按Enter键,则此格中的数是统计A1至A100中,比0.5小的数的个数,即0出现的频数.
(4)选定D1格,键入“=1-C1/100”按Enter键,在此格中的数是这100次试验中出现1的频率.
一、选择题
1.从含有3个元素的集合的所有子集中任取一个,所取的子集是含有2个元素的集合的概率是( )
A. B.
C. D.
2.用计算机随机模拟掷骰子的试验,估计出现2点的概率,下列步骤中不正确的是( )
A.用计算器的随机函数RANDI(1,7)或计算机的随机函数RANDBETWEEN(1,7)产生6个不同的1到6之间的取整数值的随机数x,如果x=2,我们认为出现2点
B.我们通常用计算器n记录做了多少次掷骰子试验,用计数器m记录其中有多少次出现2点,置n=0,m=0
C.出现2点,则m的值加1,即m=m+1;否则m的值保持不变
D.程序结束,出现2点的频率作为概率的近似值
3.假定某运动员每次投掷飞镖正中靶心的概率为40%,现采用随机模拟的方法估计该运动员两次投掷飞镖恰有一次命中靶心的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中靶心,5,6,7,8,9,0表示未命中靶心;再以每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:
93 28 12 45 85 69 68 34 31 25
73 93 02 75 56 48 87 30 11 35
据此估计,该运动员两次掷镖恰有一次正中靶心的概率为( )
A.0.50 B.0.45
C.0.40 D.0.35
4.从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则b>a的概率是( )
A. B.
C. D.
5.从1,2,3,…,30这30个数中任意选一个数,则事件“是偶数或能被5整除的数”的概率是( )
A. B.
C. D.
6.任取一个三位正整数N,对数log2N是一个正整数的概率为( )
A. B. C. D.
题 号
1
2
3
4
5
6
答 案
二、填空题
7.对一部四卷文集,按任意顺序排放在书架的同一层上,则各卷自左到右或由右到左卷号恰为1,2,3,4顺序的概率等于________.
8.盒子里共有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,则它们颜色不同的概率是________.
9.通过模拟试验,产生了20组随机数:
6830 3013 7055 7430 7740 4422 7884 2604 3346 0952
6807 9706 5774 5725 6576 5929 9768 6071 9138 6754
如果恰有三个数在1,2,3,4,5,6中,则表示恰有三次击中目标,问四次射击中恰有三次击中目标的概率约为________.
三、解答题
10.掷三枚骰子,利用Excel软件进行随机模拟,试验20次,计算出现点数之和是9的概率.
11.某篮球爱好者做投篮练习,假设其每次投篮命中的概率是60%,那么在连续三次投篮中,三次都投中的概率是多少?
能力提升
12.从4名同学中选出3人参加物理竞赛,其中甲被选中的概率为( )
A. B.
C. D.以上都不对
13.甲、乙两支篮球队进行一局比赛,甲获胜的概率为0.6,若采用三局两胜制举行一次比赛,试用随机模拟的方法求乙获胜的概率.
1.(1)常用的随机数的产生方法主要有抽签法,利用计算器或计算机.
(2)利用摸球或抽签得到的数是真正意义上的随机数,用计算器或计算机得到的是伪随机数.
2.用整数随机模拟试验时,首先要确定随机数的范围,利用哪个数字代表哪个试验结果:
(1)试验的基本结果等可能时,基本事件总数即为产生随机数的范围,每个随机数代表一个基本事件;
(2)研究等可能事件的概率时,用按比例分配的方法确定表示各个结果的数字个数及范围.
答案:
3.2.2 (整数值)随机数(random numbers)的产生
知识梳理
1.大小、形状 充分搅拌 2.确定算法 周期性 周期 随机数 真正的随机数
作业设计
1.D [所有子集共8个,?,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c},含两个元素的子集共3个,故所求概率为.]
2.A [计算器的随机函数RANDI(1,7)或计算机的随机函数RANDBETWEEN(1,7)产生的是1到7之间的整数,包括7,共7个整数.]
3.A [两次掷镖恰有一次正中靶心表示随机数中有且只有一个数为1,2,3,4中的之一.它们分别是93,28,45,25,73,93,02,48,30,35共10个,因此所求的概率为=0.5.]
4.D [由题意知基本事件为从两个集合中各取一个数,因此基本事件总数为5×3=15.
满足b>a的基本事件有(1,2),(1,3),(2,3)共3个,
∴所求概率P==.]
5.B
6.C [N取[100,999]中任意一个共900种可能,当N=27,28,29时,log2N为正整数,∴P
=.]
7.
解析 用树形图可以列举基本事件的总数.
①②③④ ②①③④ ③①②④ ④①②③
①②④③ ②①④③ ③①④② ④①③②
①③②④ ②③①④ ③②①④ ④②③①
①③④② ②③④① ③②④① ④②①③
①④②③ ②④①③ ③④①② ④③①②
①④③② ②④③① ③④②① ④③②①
总共有24种基本事件,故其概率为P==.
8.
解析 给3只白球分别编号为a,b,c,1只黑球编号为d,基本事件为ab,ac,ad,bc,bd,cd共6个,颜色不同包括事件ad,bd,cd共3个,因此所求概率为=.
9.
解析 由题意四次射击中恰有三次击中对应的随机数有3个数字在1,2,3,4,5,6中,这样的随机数有3013,2604,5725,6576,6754共5个,所求的概率约为=.
10.解 操作步骤:
(1)打开Excel软件,在表格中选择一格比如A1,在菜单下的“=”后键入“=RANDBETWEEN(1,6)”,按Enter键,则在此格中的数是随机产生的1~6中的数.
(2)选定A1这个格,按Ctrl+C快捷键,然后选定要随机产生1~6的格,如A1∶T3,按Ctrl+V快捷键,则在A1∶T3的数均为随机产生的1~6的数.
(3)对产生随机数的各列求和,填入A4∶T4中.
(4)统计和为9的个数S;最后,计算概率S/20.
11.解 我们通过设计模拟试验的方法来解决问题,利用计算机或计算器可以产生0到9之间的取整数值的随机数.
我们用1,2,3,4,5,6表示投中,用7,8,9,0表示未投中,这样可以体现投中的概率是60%.因为是投篮三次,所以每三个随机数作为一组.
例如,产生20组随机数:
812 932 569 683 271 989 730 537 925
834 907 113 966 191 432 256 393 027
556 755
这就相当于做了20次试验,在这组数中,如果3个数均在1,2,3,4,5,6中,则表示三次都投中,它们分别是113,432,256,556,即共有4个数,我们得到了三次投篮都投中的概率近似为=20%.
12.C [4名同学选3名的事件数等价于4名同学淘汰1名的事件数,即4种情况,
甲被选中的情况共3种,∴P=.]
13.解 利用计算器或计算机生成0到9之间取整数值的随机数,用0,1,2,3,4,5表示甲获胜;6,7,8,9表示乙获胜,这样能体现甲获胜的概率为0.6.因为采用三局两胜制,所以每3个随机数作为一组.例如,产生30组随机数(可借助教材103页的随机数表).
034 743 738 636 964 736 614 698 637
162 332 616 804 560 111 410 959 774
246 762 428 114 572 042 533 237 322
707 360 751
就相当于做了30次试验.如果恰有2个或3个数在6,7,8,9中,就表示乙获胜,它们分别是738,636,964,736,698,637,616,959,774,762,707.共11个.所以采用三局两胜制,乙获胜的概率约为≈0.367.
3.3.1 几何概型
课时目标 1.通过实例体会几何概型的含义,会区分古典概型和几何概型.2.掌握几何概型的概率计算公式,会求一些事件的概率.
1.几何概型的定义
如果每个事件发生的概率只与____________________________________,则称这样的概率模型为几何概率模型,简称几何概型.
根据定义,向半径为r的圆内投针,落在圆心上的概率为0,因为点的面积为0,但此事件不一定不发生.
2.几何概型的特点
(1)试验中所有可能出现的结果(基本事件总数)有____________个.
(2)每个基本事件出现的可能性________.
3.几何概型的概率公式
P(A)=
一、选择题
1.用力将一个长为三米的米尺拉断,假设该米尺在任何一个部位被拉断是等可能的,则米尺的断裂处恰在米尺的1米到2米刻度处的概率为( )
A. B.
C. D.
2.如图,边长为2的正方形内有一内切圆.在图形上随机撒一粒黄豆,则黄豆落到圆内的概率是( )
A. B.
C. D.
3.在1 L高产小麦种子中混入了一粒带麦锈病的种子,从中随机取出10 mL,则含有麦锈病种子的概率是( )
A. B.
C. D.
4.ABCD为长方形,AB=2,BC=1,O为AB的中点,在长方形ABCD内随机取一点,取到的点到O的距离大于1的概率为( )
A. B.1-
C. D.1-
5.在区间[-1,1]上任取两数x和y,组成有序实数对(x,y),记事件A为“x2+y2<1”,则P(A)为( )
A. B.
C.π D.2π
6.有四个游戏盘,如下图所示,如果撒一粒黄豆落在阴影部分,则可中奖,小明希望中奖机会大,他应当选择的游戏盘为( )
题 号
1
2
3
4
5
6
答 案
二、填空题
7.一个路口的红绿灯,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为40秒,当你到达路口时看到的是绿灯的概率是________.
8.在区间[-1,2]上随机取一个数x,则x∈[0,1]的概率为________.
9.有一个圆面,圆面内有一个内接正三角形,若随机向圆面上投一镖都中圆面,则镖落在三角形内的概率为________.
三、解答题
10.过等腰Rt△ABC的直角顶点C在∠ACB内部随机作一条射线,设射线与AB相交于点D,求AD
(1)投中大圆内的概率是多少?
(2)投中小圆与中圆形成的圆环的概率是多少?
(3)投中大圆之外的概率是多少?
能力提升
12.函数f(x)=x2-x-2,x∈[-5,5],那么任取一点x0∈[-5,5],使f(x0)≤0的概率为( )
A.1 B.
C. D.
13.在转盘游戏中,假设有三种颜色红、绿、蓝.在转盘停止时,如果指针指向红色为赢,绿色为平,蓝色为输,问若每种颜色被平均分成四块,不同颜色相间排列,要使赢的概率为,输的概率为,则每个绿色扇形的圆心角为多少度?(假设转盘停止位置都是等可能的)
处理几何概型问题就要先计算基本事件总体与事件A包含的基本事件对应的区域的长度(角度、面积或体积),而这往往会遇到计算困难,这是本节难点之一.实际上本节的重点不在于计算,而在于如何利用几何概型把问题转化为各种几何概率问题.为此可参考如下办法:
(1)选择适当的观察角度;
(2)把基本事件转化为与之对应的几何区域;
(3)把随机事件A转化为与之对应的几何区域;
(4)利用概率公式计算;
(5)如果事件A对应的区域不好处理,可以用对立事件概率公式逆向思维.
同时要注意判断基本事件的等可能性,这需要严谨的思维,切忌想当然,需要从问题的实际背景出发去判断.
答案:
3.3.1 几何概型
知识梳理
1.构成该事件区域的长度(面积或体积)成比例
2.(1)无限多 (2)相等
作业设计
1.B [P==.]
2.A [由题意,P===.]
3.D [取出10 mL麦种,其中“含有病种子”这一事件记为A,则P(A)===.]
4.B [当以O为圆心,1为半径作圆,则圆与长方形的公共区域内的点满足到点O的距离小于或等于1,
故所求事件的概率为P(A)==1-.]
5.A [如图,集合S={(x,y)|-1≤x≤1,-1≤y≤1},则S中每个元素与随机事件的结果一一对应,而事件A所对应的事件(x,y)与圆面x2+y2<1内的点一一对应,
∴P(A)=.]
6.A [A中P1=,B中P2==,
C中设正方形边长2,则P3==,
D中设圆直径为2,则P4==.
在P1,P2,P3,P4中,P1最大.]
7.
解析 P(A)==.
8.
解析 由几何概型知所求的P==.
9.
解析 设圆面半径为R,如图所示△ABC的面积S△ABC=3·S△AOC=3·AC·OD=3·CD·OD
=3·Rsin 60°·Rcos 60°
=,
∴P===.
10. 解 在AB上取一点E,使AE=AC,连接CE(如图),则当射线CD落在∠ACE内部时,AD
由几何概型的概率公式,得(1)P(A)==π;(2)P(B)==π;(3)P(C)==1-π.
12.C [令x2-x-2=0,得x1=-1,x2=2,f(x)的图象是开口向上的抛物线,与x轴的交点为(-1,0),(2,0),图象在x轴下方,即f(x0)≤0的x0的取值范围为x0∈[-1,2],∴P==.]
13.解 由于转盘旋转停止位置都是等可能的,并且位置是无限多的,所以符合几何概型的特点,问题转化为求圆盘角度或周长问题.因为赢的概率为,
所以红色所占角度为周角的,
即α1==72°.
同理,蓝色占周角的,
即α2==120°,
所以绿色所占角度α3=360°-120°-72°=168°.
将α3分成四等份,
得α3÷4=168°÷4=42°.
即每个绿色扇形的圆心角为42°.
3.3.2 均匀随机数的产生
课时目标 1.了解均匀随机数的产生方法与意义.2.会用模拟实验求几何概型的概率.3.能利用模拟实验估计不规则图形的面积.
1.均匀随机数的产生
(1)计算器上产生[0,1]的均匀随机数的函数是______________函数.
(2)Excel软件产生[0,1]区间上均匀随机数的函数为“rand()”.
2.用模拟的方法近似计算某事件概率的方法
(1)____________的方法:制作两个转盘模型,进行模拟试验,并统计试验结果.
(2)____________的方法:用Excel软件产生[0,1]区间上均匀随机数进行模拟.注意操作步骤.
3.[a,b]上均匀随机数的产生.
利用计算器或计算机产生[0,1]上的均匀随机数x=RAND,然后利用伸缩和平移交换,x=x1*(b-a)+a就可以得到[a,b]内的均匀随机数,试验的结果是[a,b]上的任何一个实数,并且任何一个实数都是等可能的.
一、选择题
1.将[0,1]内的均匀随机数转化为[-3,4]内的均匀随机数,需要实施的变换为( )
2.在线段AB上任取三个点x1,x2,x3,则x2位于x1与x3之间的概率是( )
A. B.
C. D.1
3.与均匀随机数特点不符的是( )
A.它是[0,1]内的任何一个实数
B.它是一个随机数
C.出现的每一个实数都是等可能的
D.是随机数的平均数
4.如图,边长为2的正方形中有一封闭曲线围成的阴影区域,在正方形中随机撒一粒豆子,它落在阴影区域内的概率为,则阴影区域的面积为( )
A. B.
C. D.无法计算
5.在长为12 cm的线段AB上任取一点M,并以线段AM为边作正方形.这个正方形的面积介于36 cm2与81 cm2之间的概率为( )
A. B. C. D.
6.将一个长与宽不等的长方形,沿对角线分成四个区域,如图所示涂上四种颜色,中间装个指针,使其可以自由转动,对指针停留的可能性下列说法正确的是( )
A.一样大 B.蓝白区域大
C.红黄区域大 D.由指针转动圈数决定
题 号
1
2
3
4
5
6
答 案
二、填空题
7.在圆心角为90°的扇形中,以圆心O为起点作射线OC,使得∠AOC和∠BOC都不小于30°的概率为______.
8.在区间[-1,2]上随机取一个数x,则|x|≤1的概率为________.
9.在边长为2的正三角形ABC内任取一点P,则使点P到三个顶点的距离至少有一个小于1的概率是________.
三、解答题
10.利用随机模拟法近似计算图中阴影部分(曲线y=log3x与x=3及x轴围成的图形)的面积.
11.假设小军、小燕和小明所在的班级共有50名学生,并且这50名学生早上到校先后的可能性是相同的.设计模拟方法估计下列事件的概率:
(1)小燕比小明先到校;
(2)小燕比小明先到校,小明比小军先到校.
能力提升
12.如图所示,曲线y=x2与y轴、直线y=1围成一个区域A(图中的阴影部分),用模拟的方法求图中阴影部分的面积(用两种方法).
13.甲、乙两人约定在6时到7时之间在某处会面,并约定先到者应等候另一人一刻钟,过时即可离去.求两人能会面的概率(用两种方法).
1.[0,1]或[a,b]上均匀随机数的产生
利用计算器的RAND函数可以产生[0,1]的均匀随机数,试验的结果是区间[0,1]内的任何一个实数,而且出现任何一个实数是等可能的,因此,可以用计算器产生的0到1之间的均匀随机数进行随机模拟.
计算器不能直接产生[a,b]区间上的随机数,但可利用伸缩和平移变换得到:如果Z是[0,1]区间上的均匀随机数,则a+(b-a)Z就是[a,b]区间上的均匀随机数.
2.随机模拟试验是研究随机事件概率的重要方法.用计算机或计算器模拟试验,首先把实际问题转化为可以用随机数来模拟试验结果的概率模型,也就是怎样用随机数刻画影响随机事件结果的量.我们可以从以下几个方面考虑:
(1)由影响随机事件结果的量的个数确定需要产生的随机数的组数.如长度、角度型只用一组,面积型需要两组.
(2)由所有基本事件总体对应区域确定产生随机数的范围.
(3)由事件A发生的条件确定随机数所应满足的关系式.
答案:
3.3.2 均匀随机数的产生
知识梳理
1.(1)RAND 2.(1)试验模拟 (2)计算机模拟
作业设计
1.C [根据伸缩、平移变换a=a1*[4-(-3)]+(-3)=a1*7-3.]
2.B [因为x1,x2,x3是线段AB上任意的三个点,任何一个数在中间的概率相等且都是.]
3.D [A、B、C是均匀随机数的定义,均匀随机数的均匀是“等可能”的意思,并不是“随机数的平均数”.]
4.B [∵=,∴S阴影=S正方形=.]
5.D [由题意知,6
7.
解析 作∠AOE=∠BOD=30°,如图所示,随机试验中,射线OC可能落在扇面AOB内任意一条射线上,而要使∠AOC和∠BOC都不小于30°,则OC落在扇面DOE内,
∴P(A)=.
8.
解析 由|x|≤1,得-1≤x≤1.
由几何概型的概率求法知,所求的概率P==.
9.
解析 以A、B、C为圆心,以1为半径作圆,与△ABC交出三个扇形,
当P落在其内时符合要求.
∴P==.
10.解 设事件A:“随机向正方形内投点,所投的点落在阴影部分”.
(1)利用计算器或计算机产生两组[0,1]上的均匀随机数,x1=RAND,y1=RAND.
(2)经过伸缩变换x=x1*3,y=y?1*3,得到两组[0,3]上的均匀随机数.
(3)统计出试验总次数N和满足条件y
设阴影部分的面积为S,正方形的面积为9,由几何概率公式得P(A)=,所以≈.
所以S≈即为阴影部分面积的近似值.
11.解 记事件A“小燕比小明先到校”;记事件B“小燕比小明先到校且小明比小军先到校”.
①利用计算器或计算机产生三组0到1区间的均匀随机数,a=RAND,b=RAND,c=RAND分别表示小军、小燕和小明三人早上到校的时间;
②统计出试验总次数N及其中满足b
12.解 方法一 我们可以向正方形区域内随机地撒一把豆子,数出落在区域A内的豆子数与落在正方形内的豆子数,根据
,即可求区域A面积的近似值.例如,假设撒1 000粒豆子,落在区域A内的豆子数为700,则区域A的面积S≈=0.7.
方法二 对于上述问题,我们可以用计算机模拟上述过程,步骤如下:
第一步,产生两组0~1内的均匀随机数,它们表示随机点(x,y)的坐标.如果一个点的坐标满足y≥x2,就表示这个点落在区域A内.
第二步,统计出落在区域A内的随机点的个数M与落在正方形内的随机点的个数N,可求得区域A的面积S≈.
13. 解 方法一 以x轴和y轴分别表示甲、乙两人到达约定地点的时间,则两人能够会面的充要条件是|x-y|≤15.在如图所示平面直角坐标系下,(x,y)的所有可能结果是边长为60的正方形区域,而事件A“两人能够会面”的可能结果由图中的阴影部分表示.
由几何概型的概率公式得:
P(A)====.
所以两人能会面的概率是.
方法二 设事件A={两人能会面}.
(1)利用计算器或计算机产生两组0到1区间的均匀随机数,x1=RAND,y1=RAND;
(2)经过伸缩变换,x=x1*60,y=y1*60,得到两组[0,60]上的均匀随机数;
(3)统计出试验总次数N和满足条件|x-y|≤15的点(x,y)的个数N1;
(4)计算频率fn(A)= ,即为概率P(A)的近似值.
§3.1 习题课
课时目标 1.进一步理解随机事件的有关概念;理解频率与概率的关系及概率的意义.2.会解决简单的有关概率的实际问题.
1.下面的事件:①掷一枚硬币,出现反面;②对顶角相等;③3+5>10,是随机事件的有( )
A.② B.③ C.① D.②③
2.下面的事件:
①袋中有2个红球,4个白球,从中任取3个球,至少取到1个白球;
②某人买彩票中奖;
③实系数一次方程必有一实根;
④明天会下雨.
其中是必然事件的有( )
A.① B.④ C.①③ D.①④
3.从某班学生中任意找出一人,如果该同学的身高小于160 cm的概率为0.2,该同学的身高在[160,175]之间的概率为0.5,那么该同学的身高超过175 cm的概率为( )
A.0.2 B.0.3 C.0.7 D.0.8
4.若P(A+B)=P(A)+P(B)=1,则事件A与B的关系是( )
A.互斥不对立 B.对立不互斥
C.对立且互斥 D.以上均不对
5.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽验一只产品是正品(甲级品)的概率为________.
6.某射击运动员进行双向飞蝶射击训练,七次训练的成绩记录如下:
射击次数n
100
120
150
100
150
160
150
击中飞碟数nA
81
95
123
82
119
127
121
(1)求各次击中飞碟的频率;
(2)该射击运动员击中飞碟的概率约为多少?(保留3位小数)
一、选择题
1.下列说法正确的是( )
A.任何事件的概率总是在(0,1)之间
B.频率是客观存在的,与试验次数无关
C.随着试验次数的增加,频率一般会越来越接近概率
D.概率是随机的,在试验前不能确定
2.下列事件中,随机事件是( )
A.向区间(0,1)内投点,点落在(0,1)区间
B.向区间(0,1)内投点,点落在(1,2)区间
C.向区间(0,2)内投点,点落在(0,1)区间
D.向区间(0,2)内投点,点落在(-1,0)区间
3.给出下列三个命题,其中正确的有( )
①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;
②做7次抛硬币的试验,结果3次出现正面向上,因此正面出现的概率是;
③随机事件发生的频率就是这个随机事件发生的概率.
A.0个 B.1个 C.2个 D.3个
4.如果事件A、B互斥,、分别为A、B的对立事件,则有( )
A.A+B是必然事件
B.+是必然事件
C.与一定互斥
D.与不互斥
5.关于互斥事件的理解,错误的是( )
A.若A发生,则B不发生;若B发生,则A不发生
B.若A发生,则B不发生,若B发生,则A不发生,二者必具其一
C.A发生,B不发生;B发生,A不发生;A、B都不发生
D.若A、B又是对立事件,则A、B中有且只有一个发生
6.考察正方体6个面的中心,从中任意选3个点连成三角形,再把剩下的3个点也连成三角形,则所得的两个三角形全等的概率等于( )
A.1 B. C. D.0
题 号
1
2
3
4
5
6
答 案
二、填空题
7.下列说法:
①频率是反映事件发生的频繁程度,概率反映事件发生的可能性大小;
②做n次随机试验,事件A发生m次,则事件A发生的频率就是事件的概率;
③频率是不能脱离n次试验的试验值,而概率是具有确定性的不依赖于试验次数的理论值;
④频率是概率的近似值,概率是频率的稳定值.
其中正确的是________.
8.某人在一次射击中,命中9环的概率为0.28,命中8环的概率为0.19,不够8环的概率为0.29,则这人在一次射击中命中9环或10环的概率为________.
9.从一副混合后的扑克牌(52张)中随机抽取1张,事件A为“抽得红桃K”,事件B为“抽得为黑桃”,则概率P(A∪B)的值是________.(结果用最简分数表示)
三、解答题
10.袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是,得到黑球或黄球的概率是,得到黄球或绿球的概率也是,试求得到黑球、得到黄球、得到绿球的概率各是多少?
11.我国已经正式加入WTO,包括汽车在内的进口商品将最多五年内把关税全部降到世贸组织所要求的水平,其中有21%的进口商品恰好5年关税达到要求,18%的进口商品恰好4年达到要求,其余的进口商品将在3年或3年内达到要求,求进口汽车在不超过4年的时间内关税达到要求的概率.
能力提升
12.甲、乙两人下棋,和棋的概率为,乙获胜的概率为,求(1)甲获胜的概率;(2)甲不输的概率.
13.下表为某班英语及数学成绩的分布,学生共有50人,成绩分1~5五个档次,例如表中所示英语成绩为4分、数学成绩为2分的学生为5人,将全班学生的姓名卡片混在一起,任取一张,该张卡片对应学生的英语成绩为x,数学成绩为y,设x,y为随机变量.(注:没有重名学生)
(1)x=1的概率为多少?x≥3且y=3的概率为多少?
(2)a+b等于多少?
1.随机事件在一次试验中发生与否是随机的,但随机中含有规律性,概率是大次数地重复试验中频率的稳定值.
2.概率可看作频率理论上的期望值,它从数量上反映了随机事件发生的可能性的大小,频率在大量重复试验的前提下可近似地作为这个事件的概率.
3.复杂事件求概率时常用的两种转化方法:一是转化为彼此互斥的事件的概率;二是转化为求其对立事件发生的概率.
答案:
§3.1 习题课
双基演练
1.C 2.C
3.B [该同学身高超过175 cm(事件A)与该同学身高不超过175 cm是对立事件,而不超过175 cm的事件为小于160 cm(事件B)和[160,175](事件C)两事件的和事件,即
P(A)=1-P()
=1-[P(B)+P(C)]
=1-(0.2+0.5)
=0.3.]
4.C [∵P(A+B)=1,∴A+B为必然事件.
又∵P(A+B)=P(A)+P(B),∴A与B为互斥事件,因此有A∩B为不可能事件.A∪B为必然事件,所以A与B也是对立事件.]
5.92%
解析 记抽验的产品是甲级品为事件A,是乙级品为事件B,是丙级品为事件C,这三个事件彼此互斥,因而抽验产品是正品(甲级品)的概率为P(A)=1-P(B)-P(C)=1-5%-3%=92%.
6.解 (1)计算得各次击中飞碟的频率依次为0.810,0.792,0.820,0.820,0.793,0.794,
0.807.
(2)由于这些频率非常接近0.810,在它附近摆动,所以运动员击中飞碟的概率约为0.810.
作业设计
1.C 2.C
3.A [由频率和概率的定义及频率与概率的关系可知①②③都不正确.]
4.B [A、B互斥,A、B可以不同时发生,即A∩B=?,所以A∩B的对立事件=∪是必然事件,即+是必然事件.]
5.B [A、B互斥,A、B可以不同时发生,A、B也可以同时不发生,但只要一个发生,另一个一定不发生.对立事件是必定有一个发生的互斥事件,故只有B错.]
6.A [由正方体的对称性知其六个面的中心构成同底的两个四棱锥,且四棱锥的各个侧面是全等的三角形,底面四个顶点构成一个正方形,从这6个点中任选3个点构成的三角形可分为以下两类:第一类是选中相对面中心两点及被这两个平面所夹的四个面中的任意一个面的中心,构成的是等腰直角三角形,此时剩下的三个点也连成一个与其全等的三角形.第二类是所选三个点均为多面体的侧面三角形的三个点(即所选3个点所在的平面彼此相邻)此时构成的是正三角形,同时剩下的三个点也构成与其全等的三角形,故所求概率为1.]
7.①③④
8.0.52
解析 P=1-P(x≤8)=1-P(x<8)-P(x=8)
=1-0.29-0.19=0.52.
9.
解析 一副扑克中有1张红桃K,13张黑桃,事件A与事件B为互斥事件,∴P(A∪B)=P(A)+P(B)=+=.
10.解 设事件A、B、C、D分别表示“任取一球,得到红球”,“任取一球,得到黑球”,“任取一球,得到黄球”,“任取一球,得到绿球”,
则由已知得P(A)=,
P(B∪C)=P(B)+P(C)=,
P(C∪D)=P(C)+P(D)=,
P(B∪C∪D)=1-P(A)=P(B)+P(C)+P(D)
=1-=.
解得P(B)=,P(C)=,P(D)=.
故得到黑球,得到黄球,得到绿球的概率分别为,,.
11.解 方法一 设“进口汽车恰好4年关税达到要求”为事件A,“不到4年达到要求”为事件B,则“进口汽车不超过4年的时间内关税达到要求”就是事件A+B,显然A与B是互斥事件,所以P(A∪B)=P(A)+P(B)=0.18+(1-0.21-0.18)=0.79.
方法二 设“进口汽车在不超过4年的时间内关税达到要求”为事件M,则N为“进口汽车5年关税达到要求”,所以P(M)=1-P(N)=1-0.21=0.79.
12.解 (1)“甲获胜”是“和棋或乙胜”的对立事件,所以“甲获胜”的概率为P=1--=.
(2)方法一 设事件A为“甲不输”,看作是“甲胜”“和棋”这两个互斥事件的并事件,所以P(A)=+=.
方法二 设事件A为“甲不输”,看作是“乙胜”的对立事件.所以P(A)=1-=.
所以甲不输的概率是.
13.解 (1)P(x=1)==,
P(x≥3,y=3)==.
(2)P(x=2)=1-P(x=1)-P(x≥3)
=1--
==,
∴a+b=3.
§3.2 习题课
课时目标 进一步理解古典概型的概念,学会判断古典概型.并会运用古典概型解决有关的生活实际问题.
1.集合A={1,2,3,4,5},B={0,1,2,3,4},点P的坐标为(m,n),m∈A,n∈B,则点P在直线x+y=6上方的概率为( )
A. B.
C. D.
2.下列试验中,是古典概型的是( )
A.放飞一只信鸽观察它是否能够飞回
B.从奇数中抽取小于10的正奇数
C.抛掷一枚骰子,出现1点或2点
D.某人开车路过十字路口,恰遇红灯
3.袋中有2个白球,2个黑球,从中任意摸出2个,则至少摸出1个黑球的概率是( )
A. B. C. D.
4.有一对酷爱运动的年轻夫妇给他们12个月大的婴儿拼排3块分别写有“20”,“08”和“北京”的字块,如果婴儿能够排成“2008北京”或者“北京2008”,则他们就给婴儿奖励,假设婴儿能将字块横着正排,那么这个婴儿能得到奖励的概率是( )
A. B.
C. D.
5.下列试验中,是古典概型的有( )
A.种下一粒种子观察它是否发芽
B.连续抛一枚骰子,直到上面出现6点
C.抛一枚硬币,观察其出现正面或反面
D.某人射击中靶或不中靶
6.从长度分别为2、3、4、5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是________.
一、选择题
1.用1、2、3组成无重复数字的三位数,这些数能被2整除的概率是( )
A. B.
C. D.
2.某城市有相连接的8个商场A、B、C、D、E、F、G、H和市中心O排成如图所示的格局,其中每个小方格为正方形,某人从网格中随机地选择一条最短路径,欲从商场A前往H,则他经过市中心O的概率为( )
A. B. C. D.
3.袋中有红、黄、绿色球各一个,每次任取一个有放回的抽取三次,球的颜色全相同的概率是( )
A. B. C. D.
4.某汽车站每天均有3辆开往省城的分为上、中、下等级的客车,某天某人准备在该汽车站乘车前往省城办事,但他不知道客车的发车情况.为了尽可能乘上上等车,他采用如下策略:先放过第一辆,如果第二辆比第一辆好,则上第二辆,否则上第三辆.那么他乘上上等车的概率是( )
A. B. C. D.
5.2010年世博会在中国举行,建馆工程有6家企业参与竞标,其中A企业来自陕西省,B,C两家企业来自天津市,D、E、F三家企业来自北京市,现有一个工程需要两家企业联合建设,假设每家企业中标的概率相同,则在中标企业中,至少有1家来自北京市的概率是( )
A. B.
C. D.
6.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是( )
A. B. C. D.
题 号
1
2
3
4
5
6
答 案
二、填空题
7.在一次教师联欢会上,到会的女教师比男教师多12人,从这些教师中随机挑选一人表演节目.若选到男教师的概率为,则参加联欢会的教师共有________人.
8.在集合{x|x=1,2,3,…,10}中任取一个元素,所取元素恰好满足log2x为整数的概率是________.
9.现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3 m的概率为________.
三、解答题
10.把一个骰子抛1次,设正面出现的点数为x.
(1)求出x的可能取值情况(即全体基本事件);
(2)下列事件由哪些基本事件组成(用x的取值回答)?
①x的取值是2的倍数(记为事件A).
②x的取值大于3(记为事件B).
③x的取值不超过2(记为事件C).
(3)判断上述事件是否为古典概型,并求其概率.
11.某商场举行抽奖活动,从装有编号0,1,2,3四个小球的抽奖箱中,每次取出后放回,连续取两次,取出的两个小球号码相加之和等于5中一等奖,等于4中二等奖,等于3中三等奖.
(1)求中三等奖的概率;
(2)求中奖的概率.
能力提升
12.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.从袋中随机抽取一个球,将其编号记为a,然后从袋中余下的三个球中再随机抽取一个球,将其编号记为b.求关于x的一元二次方程x2+2ax+b2=0有实根的概率.
13.班级联欢时,主持人拟出如下一些节目:跳双人舞、独唱、朗诵等,指定3个男生和2个女生来参与,把5个人分别编号为1,2,3,4,5,其中1,2,3号是男生,4,5号是女生,将每个人的号分别写在5张相同的卡片上,并放入一个箱子中充分混合,每次从中随机地取出一张卡片,取出谁的编号谁就参与表演节目.
(1)为了选出2人来表演双人舞,连续抽取2张卡片,求取出的2人不全是男生的概率;
(2)为了选出2人分别表演独唱和朗诵,抽取并观察第一张卡片后,又放回箱子中,充分混合后再从中抽取第二张卡片,求:独唱和朗诵由同一个人表演的概率.
在建立概率模型时,把什么看作一个基本事件(即一个试验结果)是人为规定的.因此,我们必须选择恰当的观察角度,把问题转化为不同的古典概型(基本事件满足有限性和等可能性)来解决,而所得到的古典概型的所有可能结果越少,问题的解决就变得越简单.
答案:
§3.2 习题课
双基演练
1.D [点P在直线x+y=6上方,即指点P的坐标中的点满足m+n>6,(m,n)的坐标可以是(3,4),(4,3),(4,4),(5,2),(5,3),(5,4)共6种情况,所以点P在直线x+y=6上方的概率为=.]
2.C [由于试验次数为一次,并且出现1点或2点的概率是等可能的,故选C.]
3.B [该试验中会出现(白1,白2),(白1,黑1),(白1,黑2),(白2,黑1),(白2,黑2)和(黑1,黑2)共6种等可能的结果,所以属于古典概型.事件“至少摸出1个黑球”所含有的基本事件为(白1,黑1),(白1,黑2),(白2,黑1),(白2,黑2)和(黑1,黑2)共5种,据古典概型概率公式,得事件“至少摸出1个黑球”的概率是.]
4.C [3块字块共能拼排成以下6种情形:
2008北京,20北京08,北京2008,北京0820,08北京20,0820北京,即共有6个基本事件.其中这个婴儿能得到奖励的基本事件有2个:
2008北京,北京2008,故婴儿能得到奖励的概率为P==.]
5.C [判断一个试验是否为古典概型的关键为:①对每次试验来说,只可能出现有限个试验结果;②对于试验中所有的不同试验结果而言,它们出现的可能性相等.]
6.
解析 从四条线段中任取三条的所有可能结果有4种,其中任取三条能构成三角形的可能有2,3,4;2,4,5;3,4,5三种,因此所求概率为.
作业设计
1.C
2.A [此人从小区B前往H的所有最短路径有
A→B→C→E→H,A→B→O→E→H,
A→B→O→G→H,A→D→O→E→H,
A→D→O→G→H,A→D→F→G→H,共6条,其中经过市中心O的有4条路径,所以其概率为.]
3.B [有放回地取球三次,假设第一次取红球共有如下所示9种取法.
同理,第一次取黄球,绿球分别也有9种情况,共计27种.而三次颜色全相同,共有3 种情况,故颜色全相同的概率为=.]
4.A [基本事件空间中包括以下六个基本事件:
第一辆为上等车,若第二辆为中等车,则乘上下等车;若第二辆为下等车,则乘上中等车.
第一辆为中等车,若第二辆为上等车,则乘上上等车,若第二辆为下等车,则乘第三辆车,亦乘上上等车.
第一辆为下等车,若第二辆为上等车,则乘上上等车,若第二辆为中等车,则乘不上上等车.
所以,他乘上上等车的概率P==.]
5.D [从这6家企业中选出2家的选法有(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F)共有15种.其中,在中标的企业中没有来自北京市的选法有:(A,B),(A,C),(B,C)共3种.所以“在中标的企业中,没有来自北京市”的概率为=.所以“在中标的企业中,至少有一家来自北京市”的概率为1-=.]
6.D [由袋中随机取出2个小球的基本事件总数为10,取出小球标注数字和为3的事件为1,2.取出小球标注数字和为6的事件为1,5或2,4.∴取出的小球标注的数字之和为3或6的概率为P==.]
7.120
解析 设男教师有n人,则女教师有(n+12)人.
由已知从这些教师中选一人,选到男教师的概率
P==,得n=54,
故参加联欢会的教师共有120人.
8.
解析 当x=1,2,4,8时,log2x分别为整数0,1,2,3.又因总体共有10个,其概率为=.
9.0.2
解析 从5根竹竿中一次随机抽取2根竹竿共有10种抽取方法,而抽取的两根竹竿长度恰好相差0.3 m的情况是2.5和2.8,2.6和2.9两种,
∴概率P==0.2.
10.解 (1)根据古典概型的定义进行判断得,x的可能取值情况为:1,2,3,4,5,6;
(2)事件A为2,4,6;事件B为4,5,6,事件C为1,2,
(3)由题意可知①②③均是古典概型.
其中P(A)==;
P(B)==;
P(C)==.
11.解 设“中三等奖”的事件为A,“中奖”的事件为B,从四个小球中有放回的取两个共有(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3),(2,0),(2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3)16种不同的方法.
(1)两个小球号码相加之和等于3的取法有4种:
(0,3)、(1,2)、(2,1)、(3,0).
故P(A)==.
(2)由(1)知,两个小球号码相加之和等于3的取法有4种.
两个小球号码相加之和等于4的取法有3种:(1,3),(2,2),(3,1),
两个小球号码相加之和等于5的取法有2种:(2,3),(3,2),
P(B)=++=.
12.解 设事件A为“方程x2+2ax+b2=0有实根”.
当a>0,b>0时,方程x2+2ax+b2=0有实根的充要条件为a≥b.
基本事件共12个:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3),其中第一个数表示a的取值,第二个数表示b的取值.
事件A中包含6个基本事件:(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),
事件B发生的概率为P(A)==.
13.解 (1)利用树形图我们可以列出连续抽取2张卡片的所有可能结果(如下图所示).
由上图可以看出,试验的所有可能结果数为20,因为每次都随机抽取,所以这20种结果出现的可能性是相同的,试验属于古典概型.
用A1表示事件“连续抽取2人一男一女”,A2表示事件“连续抽取2人都是女生”,则A1与A2互斥,并且A1∪A2表示事件“连续抽取2张卡片,取出的2人不全是男生”,由列出的所有可能结果可以看出,A1的结果有12种,A2的结果有2种,由互斥事件的概率加法公式,可得P(A1∪A2)=P(A1)+P(A2)=+==0.7,即连续抽取2张卡片,取出的2人不全是男生的概率为0.7.
(2)有放回地连续抽取2张卡片,需注意同一张卡片可再次被取出,并且它被取出的可能性和其他卡片相等,我们用一个有序实数对表示抽取的结果,例如“第一次取出2号,第二次取出4号”就用(2,4)来表示,所有的可能结果可以用下表列出.
第二次抽取
第一次抽取
1
2
3
4
5
1
(1,1)
(1,2)
(1,3)
(1,4)
(1,5)
2
(2,1)
(2,2)
(2,3)
(2,4)
(2,5)
3
(3,1)
(3,2)
(3,3)
(3,4)
(3,5)
4
(4,1)
(4,2)
(4,3)
(4,4)
(4,5)
5
(5,1)
(5,2)
(5,3)
(5,4)
(5,5)
试验的所有可能结果数为25,并且这25种结果出现的可能性是相同的,试验属于古典概型.
用A表示事件“独唱和朗诵由同一个人表演”,由上表可以看出,A的结果共有5种,因此独唱和朗诵由同一个人表演的概率P(A)===0.2.
章末复习课
课时目标 1.加深对事件、概率、古典概型、几何概型及随机模拟意义的理解.2.提高应用概率解决实际问题的能力.
1.抛掷两颗骰子,所得的两个点数中一个恰是另一个的两倍的概率为( )
A. B. C. D.
2.对总数为N的一批零件抽取一个容量为30的样本,若每个零件被抽到的概率为0.25,则N的值为( )
A.120 B.200 C.150 D.100
3.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为x,y,则log2xy=1的概率为( )
A. B. C. D.
4.三张卡片上分别写上字母E、E、B,将三张卡片随机地排成一行,恰好排成英文单词BEE的概率为________.
5.在闭区间[-1,1]上任取两个实数,则它们的和不大于1的概率是________.
6.有一段长为10米的木棍,现要截成两段,每段不小于3米的概率有多大?
一、选择题
1.利用简单随机抽样从含有6个个体的总体中抽取一个容量为3的样本,则总体中每个个体被抽到的概率是( )
A. B. C. D.
2.若以连续掷两枚骰子分别得到的点数m、n作为点P的坐标,则点P落在x2+y2=9内的概率为( )
A. B. C. D.
3.某单位电话总机室内有2部外线电话:T1和T2,在同一时间内,T1打入电话的概率是0.4,T2打入电话的概率是0.5,两部同时打入电话的概率是0.2,则至少有一部电话打入的概率是( )
A.0.9 B.0.7 C.0.6 D.0.5
4.设A={1,2,3,4,5,6},B={1,3,5,7,9},集合C是从A∪B中任取2个元素组成的集合,则C?(A∩B)的概率是( )
A. B. C. D.
5.从数字1,2,3中任取两个不同数字组成两位数,该数大于23的概率为( )
A. B. C. D.
6.在面积为S的△ABC的边AB上任取一点P,则△PBC的面积大于的概率是( )
A. B. C. D.
题 号
1
2
3
4
5
6
答 案
二、填空题
7.有1杯2 L的水,其中含有1个细菌,用一个小杯从这杯水中取出0.1 L,这一小杯水中含有细菌的概率是________.
8.一个袋子中有5个红球,3个白球,4个绿球,8个黑球,如果随机地摸出一个球,记A={摸出黑球},B={摸出白球},C={摸出绿球},D={摸出红球},则P(A)=________;P(B)=________;P(C∪D)=________.
9.一只蚂蚁在如图所示的地板砖(除颜色不同外,其余全部相同)上爬来爬去,它最后停留在黑色地板砖上的概率为________.
三、解答题
10.黄种人群中各种血型的人所占的比例如下:
血型
A
B
AB
O
该血型的人所占比例(%)
28
29
8
35
已知同种血型的人可以输血,O型血可以输给任一种血型的人,其他不同血型的人不能互相输血,小明是B型血,若小明因病需要输血,问:
(1)任找一个人,其血可以输给小明的概率是多少?
(2)任找一个人,其血不能输给小明的概率是多少?
能力提升
11.将长为l的棒随机折成3段,求3段构成三角形的概率.
12.利用随机模拟方法计算图中阴影部分(y=x3和x=2以及x轴所围成的部分)的面积.
1.两个事件互斥,它们未必对立;反之,两个事件对立,它们一定互斥.
若事件A1,A2,A3,…,An彼此互斥,则
P(A1∪A2∪…∪An)=P(A1)+P(A2)+…+P(An).
2.关于古典概型,必须要解决好下面三个方面的问题:
①本试验是否是等可能的?
②本试验的基本事件有多少个?
③事件A是什么,它包含多少个基本事件?
只有回答好了这三方面的问题,解题才不会出错.
3.几何概型的试验中,事件A的概率P(A)只与子区域A的几何度量(长度、面积或体积)成正比,而与A的位置和形状无关.求试验为几何概型的概率,关键是求得事件所占区域和整个区域Ω的几何度量,然后代入公式即可求解.
4.关于随机数与随机模拟试验问题
随机模拟试验是研究随机事件概率的重要方法,用计算器或计算机模拟试验,首先要把实际问题转化为可以用随机数来模拟试验结果的量,我们可以从以下几个方面考虑:
(1)确定产生随机数组数,如长度型、角度型(一维)一组,面积型(二维)二组.
(2)由所有基本事件总体对应区域确定产生随机数的范围,由事件A发生的条件确定随机数应满足的关系式.
答案:
章末复习课
双基演练
1.B [抛掷两枚骰子出现的可能结果有6×6=36(个),所得的两个点数中一个恰是另一个的两倍,包含(1,2),(2,4),(3,6),(2,1),(4,2),(6,3)共6个基本事件,故所求概率为=.]
2.A [因为从含有N个个体的总体中抽取一个容量为30的样本时,每次抽取一个个体时任一个体被抽到的概率为;在整个抽样过程中各个个体被抽到的概率为;所以=0.25,从而有N=120.]
3.C [由log2xy=1?2x=y,x∈{1,2,3,4,5,6},y∈{1,2,3,4,5,6}.
∴共三种.∴P==.]
4.
解析 题中三张卡片随机地排成一行,共有三种情况:BEE,EBE,EEB,∴概率为.
5.
解析
如图所示
P==.
6.解 记“剪得两段都不小于3米”为事件A,从木棍的两端各度量出3米,这样中间就有10-3-3=4(米).在中间的4米长的木棍处剪都能满足条件,
所以P(A)===0.4.
作业设计
1.A [总体个数为N,样本容量为M,则每一个个体被抽得的概率为P===.]
2.D [掷骰子共有36个结果,而落在圆x2+y2=9内的情况有(1,1),(1,2),(2,1),(2,2)共4种,∴P==.]
3.B [所求的概率为0.4+0.5-0.2=0.7.]
4.A [A∪B={1,2,3,4,5,6,7,9},A∩B={1,3,5},
在A∪B中任取两个元素,共有7+6+5+4+3+2+1=28(种)不同的取法,
从A∩B中任取2个元素,共有1 3,1 5,3 5三种不同取法,因此,C?(A∩B)的概率是P=.]
5.A[从数字1,2,3中任取两个不同数字组成的两位数有12,21,13,31,23,32共6种,每种结果出现的可能性是相同的,所以该试验属于古典概型,记事件B为“取出两个不同数字组成两位数大于23”,则B中包含31,32两个基本事件,根据古典概型概率公式,得P(A)==.]
6.C
[如图,在AB边取点P′,
使=,
则P只能在AP′内运动,则概率为=.]
7.
解析 此为与体积有关的几何概型问题,
∴P==.
8.
解析 由古典概型的算法可得P(A)==,P(B)=,P(C∪D)=P(C)+P(D)=+=.
9.
解析 P==.
10.解 (1)对任一人,其血型为A、B、AB、O型血的事件分别记为A′、B′、C′、D′,它们是互斥的.由已知,有
P(A′)=0.28,P(B′)=0.29,P(C′)=0.08,P(D′)=0.35.
因为B、O型血可以输给B型血的人,故“可以输给B型血的人”为事件B′∪D′.根据互斥事件的加法公式,有
P(B′∪D′)=P(B′)+P(D′)=0.29+0.35=0.64.
(2)由于A、AB型血不能输给B型血的人,故“不能输给B型血的人”为事件A′∪C′,且P(A′∪C′)=P(A′)+P(C′)=0.28+0.08=0.36.
答 任找一人,其血可以输给小明的概率为0.64,其血不能输给小明的概率为0.36.
11.解 设A={3段构成三角形},x,y分别表示其中两段的长度,则第3段的长度为l-x-y,则试验的全部结果可构成集合
Ω={(x,y)|0
x+l-x-y>y?y<,
y+l-x-y>x?x<.
故所求结果构成集合
A={(x,y)|x+y>,y<,x<}.
如图,阴影部分表示集合A,△OBC表示集合Ω,故所求概率为P(A)===,
即折成的3段能构成三角形的概率为.
12.解 在坐标系中画出矩形(x=0,x=2,y=0,y=8所围成的部分),利用面积比与概率、频率的关系进行计算.
(1)利用计算器或计算机产生两组0至1区间的均匀随机数,a1=RAND,b1=RAND.
(2)进行伸缩变换a=a1]N1,N),即为点落在阴影部分的概率的近似值.
(5)由几何概率公式得点落在阴影部分的概率为P=.
∴=,∴S≈,即为阴影部分的面积的近似值.
课件25张PPT。第三章 §3.1 随机事件的概率3.1.1 随机事件的概率1.了解随机事件、必然事件、不可能事件的概念;
2.理解概率的含义以及频率与概率的区别与联系;
3.能列举一些简单试验的所有可能结果.问题导学题型探究达标检测学习目标知识点一 随机事件问题导学 新知探究 点点落实思考 抛掷一粒骰子,下列事件,在发生与否上有什么特点?
(1)向上一面的点数小于7;
(2)向上一面的点数为7;
(3)向上一面的点数为6.答案 (1)必然发生;(2)必然不发生;(3)可能发生也可能不发生.答案答案一定不会发生一定会发生可能发生也可能不发生思考 抛掷一枚硬币10次,正面向上出现了3次,则在这10次试验中,正面向上的频数与频率分别是多少?知识点二 频数与频率??答案事件A出现的次数nA知识点三 概率返回思考 一枚质地均匀的硬币,抛掷10次,100次,1 000次,正面向上的频率与0.5相比,有什么变化?答案 随着抛掷的次数增加,正面向上的次数与总次数之比会逐渐接近0.5.答案(1)含义:概率是度量随机事件发生的 的量.
(2)与频率联系:对于给定的随机事件A,事件A发生的 随着试验次数的增加稳定于 ,因此可以用 来估计 .可能性大小频率fn(A)概率P(A)频率fn(A)概率P(A)类型一 必然事件、不可能事件和随机事件的判定题型探究 重点难点 个个击破解析答案反思与感悟例1 在下列事件中,哪些是必然事件?哪些是不可能事件?哪些是随机事件?
(1)如果a,b都是实数,那么a+b=b+a;
(2)从分别标有1,2,3,4,5,6的6张号签中任取一张,得到4号签;
(3)铁球浮在水中;
(4)某电话总机在60秒内接到至少15次传呼;
(5)在标准大气压下,水的温度达到50 ℃时沸腾;
(6)同性电荷,相互排斥.解 由实数运算性质知(1)恒成立是必然事件;
(6)由物理知识知同性电荷相斥是必然事件,(1)(6)是必然事件.
铁球会沉入水中;
标准大气压下,水的温度达到50℃时不沸腾,(3)(5)是不可能事件.
由于(2)(4)中的事件有可能发生,也有可能不发生,所以(2)(4)是随机事件.反思与感悟要判定事件是何种事件,首先要看清条件,因为三种事件都是相对于一定条件而言的.第二步再看它是一定发生,还是不一定发生,还是一定不发生.一定发生的是必然事件,不一定发生的是随机事件,一定不发生的是不可能事件.反思与感悟跟踪训练1 指出下列事件是必然事件、不可能事件还是随机事件.
(1)中国体操运动员将在下次奥运会上获得全能冠军;
(2)出租车司机小李驾车通过几个十字路口都将遇到绿灯;
(3)若x∈R,则x2+1≥1;
(4)抛一枚骰子两次,朝上面的数字之和大于12.解析答案解 由题意知:(1)(2)中事件可能发生,也可能不发生,所以是随机事件;
(3)中事件一定会发生,是必然事件;
由于骰子朝上面的数字最大是6,两次朝上面的数字之和最大是12,不可能大于12,
所以(4)中事件不可能发生,是不可能事件.类型二 列举试验结果例2 某人做试验,从一个装有标号为1,2,3,4的小球的盒子中,无放回地取两个小球,每次取一个,先取的小球的标号为x,后取的小球的标号为y,这样构成有序实数对(x,y).
(1)写出这个试验的所有结果;解析答案解 当x=1时,y=2,3,4;
当x=2时,y=1,3,4;
当x=3时,y=1,2,4;
当x=4时,y=1,2,3.
因此,这个试验的所有结果是(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3).(2)写出“第一次取出的小球上的标号为2”这一事件.解析答案解 记“第一次取出的小球上的标号为2”为事件A,
则A={(2,1),(2,3),(2,4)}.反思与感悟在写试验结果时,一般采用列举法写出,必须首先明确事件发生的条件,根据日常生活经验,按一定次序列举,才能保证所列结果没有重复,也没有遗漏.反思与感悟跟踪训练2 袋中装有大小相同的红、白、黄、黑4个球,分别写出以下随机试验的条件和结果.
(1)从中任取1球;解 条件为:从袋中任取1球.结果为:红、白、黄、黑4种.(2)从中任取2球.解 条件为:从袋中任取2球.若记(红,白)表示一次试验中,取出的是红球与白球,结果为:(红,白),(红,黄),(红,黑),(白,黄),(白,黑),(黄,黑)6种.解析答案类型三 用频率估计概率例3 李老师在某大学连续3年主讲经济学院的高等数学,下表是李老师这门课3年来的考试成绩分布:
经济学院一年级的学生王小慧下
学期将选修李老师的高等数学课,
用已有的信息估计她得以下分数
的概率(结果保留到小数点后三位).
(1)90分以上;(2)60分~69分;
(3)60分以上.解析答案反思与感悟用已有的信息,可以估计出王小慧下学期选修李老师的高等数学课得分的概率如下:
(1)将“90分以上”记为事件A,则P(A)≈0.067;
(2)将“60分~69分”记为事件B,则P(B)≈0.140;
(3)将“60分以上”记为事件C,则P(C)≈0.067+0.282+0.403+0.140=0.892.反思与感悟随机事件在一次试验中是否发生虽然不能事先确定,但是在大量重复试验的情况下,它的发生呈现出一定的规律性,可以用事件发生的频率去“测量”,因此可以通过计算事件发生的频率去估算概率.反思与感悟解析答案跟踪训练3 某射手在同一条件下进行射击,结果如下表所示:(1)填写表中击中靶心的频率;解 表中依次填入的数据为:0.80,0.95,0.88,0.92,0.89,0.91.解析答案返回(2)这个射手射击一次,击中靶心的概率约是多少?解 由于频率稳定在常数0.89附近,所以这个射手射击一次,击中靶心的概率约是0.89.1.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( )
A.必然事件 B.随机事件
C.不可能事件 D.无法确定B达标检测 12345解析 正面向上恰有5次的事件可能发生,也可能不发生,即该事件为随机事件.解析答案1234解析答案52.下列说法正确的是( )
A.任一事件的概率总在(0,1)内
B.不可能事件的概率不一定为0
C.必然事件的概率一定为1
D.以上均不对解析 任一事件的概率总在[0,1]内,不可能事件的概率为0,必然事件的概率为1.C3.给出关于满足A?B的非空集合A,B的四个命题:
①若任取x∈A,则x∈B是必然事件;
②若任取x?A,则x∈B是不可能事件;
③若任取x∈B,则x∈A是随机事件;
④若任取x?B,则x?A是必然事件.
其中正确的命题是( )
A.①③ B.①③④ C.①②④ D.①④1234答案5B123454.在一次掷硬币试验中,掷100次,其中有48次正面朝上,设反面朝上为事件A,则事件A出现的频率为( )
A.48 B.52 C.0.48 D.0.52D答案123455.设某厂产品的次品率为2%,则该厂8 000件产品中合格品的件数约为( )
A.160 B.1 600 C.784 D.7 840D答案规律与方法1.辨析随机事件、必然事件、不可能事件时要注意看清条件,在给定的条件下判断是一定发生(必然事件),还是不一定发生(随机事件),还是一定不发生(不可能事件).
2.随机事件在一次试验中是否发生虽然不能事先确定,但是在大量重复试验的情况下,随机事件的发生呈现一定的规律性,因而,可以从统计的角度,通过计算事件发生的频率去估算概率.
3.写试验结果时,要按顺序写,特别要注意题目中的有关字眼,如“先后”“依次”“顺序”“放回”“不放回”等.返回课件23张PPT。第三章 §3.1 随机事件的概率3.1.2 概率的意义1.通过实例进一步理解概率的意义;
2.了解概率在公平性、决策和预报等方面的应用;
3.理解概率统计中随机性与规律性的关系.问题导学题型探究达标检测学习目标知识点一 正确理解概率的含义问题导学 新知探究 点点落实思考 抛掷一枚质地均匀的硬币,出现正面的概率为0.5,是否意味着连续抛2次,一定是一次正面朝上,一次是反面朝上?答案 抛掷一枚硬币出现正面的概率为0.5,它是大量试验得出的一种规律性结果,对具体的几次试验来讲不一定能体现出这种规律性,在连续抛掷一枚硬币两次的试验中,可能两次均正面朝上,也可能两次均反面朝上,也可能一次正面朝上,一次反面朝上.答案随机事件在一次试验中发生与否是 的,但随机性中含有规律性,认识了这种随机性中的规律性,就能比较准确地预测随机事件发生的 .答案随机可能性思考 一副围棋子共181枚黑子,180枚白子.如果裁判闭目从中任取一枚,指定比赛双方的一方猜黑白,猜对先行,否则让对方先行.这种规则是否公平?知识点二 概率与公平性答案 从361枚棋子中任取一枚,取到黑子的概率大,指定一方猜黑,猜对先行的概率大,所以这个规则不公平.
一般地,我们所谓的规则,规则公平的标准是参与各方机会均等,即胜出的概率相等.答案知识点三 概率与决策返回思考 一个班主任听说自己班里有一个学生迟到了,但不知是谁,他首先猜是那位经常迟到的.他的这种猜想原理是什么?可不可能猜错?答案 该班主任是把以往迟到的频率当概率,用极大似然法选择迟到概率最大的那位同学.这样猜可能犯错,但猜对的可能性更大.答案极大似然法:
如果我们面临的是从多个可选答案中挑选正确答案的决策任务,那么
“ ”可以作为决策的准则,这种判断问题的方法称为极大似然法.极大似然法是统计中重要的统计思想方法之一.使得样本出现的可能性最大类型一 概率的正确理解题型探究 重点难点 个个击破解析答案反思与感悟例1 下列说法正确的是( )
A.由生物学知道生男生女的概率约为0.5,一对夫妇先后生两个小孩, 则
一定为一男一女
B.一次摸奖活动中,中奖概率为0.2,则摸5张票,一定有一张中奖
C.10张票中有1 张奖票,10人去摸,谁先摸则谁摸到奖票的可能性大
D.10张票中有1 张奖票,10人去摸,无论谁先摸,摸到奖票的概率都是0.1解析 一对夫妇生两个小孩可能是(男,男),(男,女),(女,男),(女,女),所以A不正确;
中奖概率为0.2是说中奖的可能性为0.2,当摸5张票时,可能都中奖,也可能中一张、两张、三张、四张,或者都不中奖,所以B不正确;
10张票中有1张奖票,10人去摸,每人摸到的可能性是相同的,即无论谁先摸,摸到奖票的概率都是0.1,所以C不正确,D正确.
答案 D反思与感悟(1)概率是随机事件发生可能性大小的度量,是随机事件A的本质属性,随机事件A发生的概率是大量重复试验中事件A发生的频率的近似值.
(2)随机事件A在一次试验中发生与否是随机的,并不是概率大就一定会发生,对具体的问题要从全局和整体上去看待,而不是局限于某一次试验或某一个具体的事件.反思与感悟跟踪训练1 某射手击中靶心的概率是0.9,是不是说明他射击10次就一定能击中9次?解析答案?类型二 概率思想的实际应用例2 设有外形完全相同的两个箱子,甲箱中有99个白球1个黑球,乙箱中有1个白球99个黑球.先随机地抽取一箱,再从取出的一箱中抽取一球,结果取得白球.问这球是从哪一个箱子中取出的?解析答案?反思与感悟统计中极大似然法思想的概率解释:在一次试验中,概率大的事件比概率小的事件出现的可能性更大.反思与感悟??解析答案例3 有四张卡片,分别写有2,3,7,8.规定任意不放回地抽取两张,积是2的倍数则甲获胜,积是3的倍数则乙获胜,如果积是6的倍数则重来.这个游戏规则公平吗??解析答案反思与感悟在各类游戏中,如果各方获胜概率相等,那么规则就是公平的.反思与感悟跟踪训练3 街头有人摆一种游戏,方法是投掷两枚骰子,如果两枚骰子投一次点数之和是2,3,4,10,11,12这六种情况,红方胜,而当两枚骰子点数之和是5,6,7,8,9时,白方胜,这种游戏对双方公平吗?若不公平,请说明哪方占便宜?解析答案返回解 两枚骰子点数之和如下表:所以这种游戏不公平,白方比较占便宜.返回?D达标检测 12345答案12345?B答案?1234答案5D123454.某中学要在高一年级的二、三、四班中任选一个班参加社区服务活动,有人提议用如下方法选班:掷两枚硬币,正面向上记作2点,反面向上记作1点,两枚硬币的点数和是几,就选几班.按照这个规则,当选概率最大的是( )
A.二班 B.三班
C.四班 D.三个班机会均等B答案123455.同时向上抛掷100枚质量均匀的铜板,落地时这100枚铜板全都正面向上,则这100枚铜板更可能是下面哪种情况( )
A.这100枚铜板两面是一样的
B.这100枚铜板两面是不一样的
C.这100枚铜板中有50枚两面是一样的,另外50枚两面是不一样的
D.这100枚铜板中有20枚两面是一样的,另外80枚两面是不一样的A解析答案解析 一枚质量均匀的铜板,抛掷一次正面向上的概率为0.5,从题意中知抛掷100枚结果正面都向上,因此这100枚铜板两面是一样的可能性最大.规律与方法1.概率是描述随机事件发生的可能性大小的一个数量,即使是大概率事件,也不能肯定事件一定会发生,只是认为事件发生的可能性大.
2.孟德尔通过试验、观察、猜想、论证,从碗豆实验中发现遗传规律是一种统计规律,这是一种科学的研究方法,我们应认真体会和借鉴.
3.利用概率思想正确处理和解释实际问题,是一种科学的理性思维,在实践中要不断巩固和应用,提升自己的数学素养. 返回课件35张PPT。3.1.3 概率的基本性质第三章 §3.1 随机事件的概率1.正确理解事件的包含、并事件、交事件、相等事件,以及互斥事件、对立事件的概念;
2.理解并熟记概率的基本性质;
3.会用概率的性质求某些事件的概率.问题导学题型探究达标检测学习目标知识点一 事件的关系问题导学 新知探究 点点落实思考 一粒骰子掷一次,记事件A={出现的点数大于4},事件B={出现的点数为5},则事件B发生时,事件A一定发生吗?答案 因为5>4,故B发生时A一定发生.答案一般地,对于事件A与事件B,如果事件 发生,则事件 一定发生,这时称事件B包含事件A(或称事件A包含于事件B),记作 (或A?B).不可能事件记为?,任何事件都包含不可能事件.如果事件A发生,则事件B一定发生,反之也成立,(若 ,且 ),我们说这两个事件相等,即A=B.ABB?AB?AA?B思考 一粒骰子掷一次,记事件C={出现的点数为偶数},事件D={出现的点数小于3},当事件C,D都发生时,掷出的点数是多少?事件C,D至少有一个发生时呢?知识点二 事件的运算答案 事件C,D都发生,即掷出的点数为偶数且小于3,故此时掷出的点数为2,事件C,D至少一个发生,掷出的点数可以是1,2,4,6.答案一般地,关于事件的运算,有下表:答案事件A发生或事件B发生并事件和事件A∪BA+B事件A发生且事件B发生交事件积事件A∩BAB知识点三 互斥与对立的概念思考 一粒骰子掷一次,事件E={出现的点数为3},事件F={出现的点数大于3},事件G={出现的点数小于4},则E∩F是什么事件?E∪F呢?G∩F呢?G∪F呢?答案 E∩F=不可能事件,E∪F={出现的点数大于2},E,F互斥,但不对立;
G∩F=不可能事件,G∪F=必然事件,G,F互斥,且对立.答案一般地,有下表:答案不可能事件A∩B=?不可能事件必然事件知识点四 概率的基本性质思考 概率的取值范围是什么?为什么?答案 概率的取值范围是0~1之间,即0≤P(A)≤1;
由于事件的频数总是小于或等于试验的次数,
所以频率在0~1之间,
因而概率的取值范围也在0~1之间.答案返回一般地,概率的几个基本性质
(1)概率的取值范围为 .
(2) 的概率为1, 的概率为0.
(3)概率加法公式:如果事件A与事件B互斥,则P(A∪B)= .
特例:若A与B为对立事件,则P(A)= .
P(A∪B)= ,P(A∩B)= .答案[0,1]必然事件不可能事件P(A)+P(B)1-P(B)10类型一 事件的关系与运算题型探究 重点难点 个个击破解析答案例1 判断下列各对事件是不是互斥事件,并说明理由.
某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,其中:
(1)“恰有1名男生”和“恰有2名男生”;解 是互斥事件.
理由是:在所选的2名同学中,“恰有1名男生”实质是选出的是“1名男生和1名女生”,它与“恰有2名男生”不可能同时发生,所以是一对互斥事件.解析答案(2)“至少有1名男生”和“至少有1名女生”;解 不是互斥事件.
理由是:“至少有1名男生”包括“1名男生、1名女生”和“2名都是男生”两种结果.“至少有1名女生”包括“1名女生、1名男生”和“2名都是女生”两种结果,它们可能同时发生.解析答案(3)“至少有1名男生”和“全是男生”;解 不是互斥事件.
理由是:“至少有1名男生”包括“1名男生、1名女生”和“2名都是男生”,这与“全是男生”可能同时发生.解析答案反思与感悟(4)“至少有1名男生”和“全是女生”.解 是互斥事件.
理由是:“至少有1名男生”包括“1名男生、1名女生”和“2名都是男生”两种结果,它和“全是女生”不可能同时发生.如果A、B是两个互斥事件,反映在集合上,是表示A、B这两个事件所含结果组成的集合彼此互不相交.反思与感悟跟踪训练1 一个射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件?
事件A :命中环数大于7环; 事件B :命中环数为10环;
事件C :命中环数小于6环; 事件D :命中环数为6、7、8、9、10环.解析答案解 A 与C 互斥(不可能同时发生),B 与C 互斥,C 与D 互斥,C 与D 是对立事件(至少一个发生).类型二 概率的几个基本性质?解析答案?(2)取到黑色牌(事件D)的概率是多少?解析答案?反思与感悟事件C是事件A与事件B的并事件,且事件A与事件B互斥,因此可用互斥事件的概率加法公式求解,事件C与事件D是对立事件,因此P(D)=1-P(C).反思与感悟?解析答案解 设得到黑球、黄球的概率分别为x,y,由题意得类型三 事件关系与概率性质的简单应用例3 某公务员去开会,他乘火车、轮船、汽车、飞机去的概率分别为0.3,0.2,0.1,0.4.
(1)求他乘火车或乘飞机去的概率;解析答案解 记“他乘火车”为事件A,“他乘轮船”为事件B,“他乘汽车”为事件C,“他乘飞机”为事件D.
这四个事件两两不可能同时发生,
故它们彼此互斥,
所以P(A∪D)=P(A)+P(D)=0.3+0.4=0.7.
即他乘火车或乘飞机去的概率为0.7.(2)求他不乘轮船去的概率;解析答案解 设他不乘轮船去的概率为P,则
P=1-P(B)=1-0.2=0.8,
所以他不乘轮船去的概率为0.8.(3)如果他乘交通工具的概率为0.5,请问他有可能乘哪种交通工具?解析答案解 由于P(A)+P(B)=0.3+0.2=0.5,
P(C)+P(D)=0.1+0.4=0.5,
故他可能乘火车或乘轮船去,也有可能乘汽车或乘飞机去.反思与感悟对于一个较复杂的事件,一般将其分解为几个简单的事件.当这些事件彼此互斥时,即可用概率加法公式.反思与感悟?解析答案?(2)甲不输的概率.解析答案?返回1.给出以下结论:
①互斥事件一定对立;
②对立事件一定互斥;
③互斥事件不一定对立;
④事件A与事件B的和事件的概率一定大于事件A的概率;
⑤事件A与事件B互斥,则有P(A)=1-P(B).
其中正确命题的个数为( )
A.0 B.1
C.2 D.3达标检测 12345解析答案解析 对立必互斥,互斥不一定对立,∴②③正确,①错;
又当A∪B=A时,P(A∪B)=P(A),∴④错;
只有A与B为对立事件时,才有P(A)=1-P(B),
∴⑤错.
答案 C12345123452.抛掷一枚骰子,“向上的点数是1或2”为事件A,“向上的点数是2或3”为事件B,则( )
A.A?B
B.A=B
C.A∪B表示向上的点数是1或2或3
D.A∩B表示向上的点数是1或2或3C解析 设A={1,2},B={2,3},A∩B={2},A∪B={1,2,3},
∴A∪B表示向上的点数为1或2或3.解析答案3.从装有5个红球和3个白球的口袋内任取3个球,那么,互斥而不对立的事件是( )
A.至少有一个红球与都是红球
B.至少有一个红球与都是白球
C.至少有一个红球与至少有一个白球
D.恰有一个红球与恰有两个红球12345解析答案解析 A项中,若取出的3个球是3个红球,则这两个事件同时发生,故它们不是互斥事件,所以A项不符合题意;
B项中,这两个事件不能同时发生,且必有一个发生,则它们是互斥事件且是对立事件,所以B项不符合题意;
C项中,若取出的3个球是1个红球2个白球时,它们同时发生,则它们不是互斥事件,所以C项不符合题意;
D项中,这两个事件不能同时发生,是互斥事件,若取出的3个球都是红球,则它们都没有发生,故它们不是对立事件,所以D项符合题意.
答案 D12345123454.一商店有奖促销活动中有一等奖与二等奖两个奖项,中一等奖的概率为0.1,中二等奖的概率为0.25,则不中奖的概率为( )
A.0 B.1 C.0.65 D.0.35解析答案解析 中奖的概率为0.1+0.25=0.35,中奖与不中奖互为对立事件,
所以不中奖的概率为1-0.35=0.65.C12345?B?解析答案规律与方法1.互斥事件和对立事件都是针对两个事件而言的,它们两者之间既有区别又有联系.在一次试验中,两个互斥事件有可能都不发生,也可能有一个发生,但不可能两个都发生;而两个对立事件必有一个发生,但是不可能两个事件同时发生,也不可能两个事件都不发生.所以两个事件互斥,它们未必对立;反之两个事件对立,它们一定互斥.
2.互斥事件的概率加法公式是一个很基本的计算公式,解题时要在具体的情景中判断各事件间是否互斥,只有互斥事件才能用概率加法公式P(A∪B)=P(A)+P(B).3.求复杂事件的概率通常有两种方法:
(1)将所求事件转化成彼此互斥事件的并事件;
(2)先求其对立事件的概率,再求所求事件的概率.返回课件23张PPT。第三章 §3.2 古典概型3.2.1 古典概型(一)1.理解基本事件的概念并会罗列某一事件包含的所有基本事件;
2.理解古典概型的概念及特点;
3.会应用古典概型概率公式解决简单的概率计算问题.问题导学题型探究达标检测学习目标知识点一 基本事件问题导学 新知探究 点点落实思考 一枚硬币抛一次,基本事件有2个:正面向上,反面向上.试从集合并、交的角度分析这两个事件的关系.答案 两个事件的交事件为不可能事件,并事件为必然事件.答案(1)任何两个基本事件是 的;
(2)任何事件(除不可能事件)都可以表示成基本事件的 .互斥和思考 一枚矿泉水瓶盖抛一次,出现正面向上与反面向上的概率相同吗?知识点二 古典概型答案 因为瓶盖重心的原因,正面向上和反面向上的可能性是不一样的.由此可以看出基本事件不一定等可能.答案如果某概率模型具有以下两个特点:
(1)试验中所有可能出现的基本事件 ;
(2)每个基本事件出现的 ;
那么我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型.只有有限个可能性相等知识点三 古典概型的概率公式思考 在抛掷硬币试验中,如何求正面朝上及反面朝上的概率?答案返回?类型一 基本事件的罗列方法题型探究 重点难点 个个击破解析答案例1 从字母a、b、c、d中任意取出两个不同字母的试验中,有哪些基本事件? 事件“取到字母a”是哪些基本事件的和? 解 所求的基本事件有6个, A={a,b},B={a,c},C={a,d}, D={b,c},E={b,d},F={c,d};
“取到字母a”是基本事件A、B、C的和,即A+B+C. 反思与感悟罗列基本事件时首先要考虑元素间排列有无顺序,其次罗列时不能毫无规律,而要按照某种规律罗列,比如树状图.反思与感悟跟踪训练1 做投掷2颗骰子的试验,用(x,y)表示结果,其中x表示第一颗骰子出现的点数,y表示第2颗骰子出现的点数.写出:
(1)试验的基本事件;解析答案解 这个试验的基本事件共有36个,如下:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6).(2)事件“出现点数之和大于8”;解析答案解 “出现点数之和大于8”包含以下10个基本事件:(3,6),(4,5),(4,6),(5,4),(5,5),(5,6),(6,3),(6,4),(6,5),(6,6).(3)事件“出现点数相等”;解析答案解 “出现点数相等”包含以下6个基本事件:(1,1),(2,2),(3,3),(4,4),(5,5),(6,6).(4)事件“出现点数之和等于7”.解析答案解 “出现点数之和等于7”包含以下6个基本事件:(1,6),(2,5),(3,4),(4,3),(5,2),(6,1).类型二 古典概型的判定例2 某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环、……、命中5环和不中环.你认为这是古典概型吗?为什么? 解析答案解 不是古典概型,
因为试验的所有可能结果只有7个,
而命中10环、命中9环、……、命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件. 反思与感悟判断一个试验是不是古典概型要抓住两点:一是有限性;二是等可能性.反思与感悟跟踪训练2 从所有整数中任取一个数的试验中“抽取一个整数”是古典概型吗? 解析答案解 不是,因为基本事件是无数个. 类型三 古典概型概率的计算例3 单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案.如果考生掌握了考查的内容,他可以选择唯一正确的答案,假设考生不会做,他随机地选择一个答案,则他答对的概率是多少?解析答案?反思与感悟解答概率题要有必要的文字叙述,一般要用字母设出所求的随机事件,要写出所有的基本事件及个数,写出随机事件所包含的基本事件及个数,然后应用公式求出.反思与感悟跟踪训练3 某种饮料每箱装6听,如果其中有2听不合格,质检人员依次不放回地从某箱中随机抽出2听,求检测出不合格产品的概率.解析答案?返回1.某校高一年级要组建数学、计算机、航空模型三个兴趣小组,某学生只选报其中的2个,则基本事件共有( )
A.1个 B.2个 C.3个 D.4个达标检测 12345解析答案解析 该生选报的所有可能情况:{数学和计算机},{数学和航空模型}、{计算机和航空模型},所以基本事件有3个.C12345解析 A、B、D为古典概型,
因为都适合古典概型的两个特征:有限性和等可能性,
而C不适合等可能性,
故不为古典概型.解析答案2.下列不是古典概型的是( )
A.从6名同学中,选出4人参加数学竞赛,每人被选中的可能性的大小
B.同时掷两颗骰子,点数和为7的概率
C.近三天中有一天降雨的概率
D.10个人站成一排,其中甲、乙相邻的概率C?12345C?解析答案12345?C?解析答案12345B答案规律与方法?返回课件31张PPT。3.2.1 古典概型(二)第三章 §3.2 古典概型1.加深对基本事件与古典概型概念的理解;
2.进一步熟悉用列举法写出随机事件所包含的基本事件及个数;
3.能应用古典概型计算公式求复杂事件的概率.问题导学题型探究达标检测学习目标知识点一 与顺序有关的古典概型问题导学 新知探究 点点落实思考 同时掷两枚质地均匀的硬币,出现“一正一反”的概率与“两枚正面”的概率哪个大??答案思考 口袋里有标号为1,2,3的3个球,从中不放回地摸取2个,两球都是奇数的概率是多少?知识点二 与顺序无关的古典概型?答案知识点三 古典概型的解题步骤?答案基本事件基本事件返回类型一 树状图题型探究 重点难点 个个击破解析答案例1 有A、B、C、D四位贵宾,应分别坐在a、b、c、d四个席位上,现在这四人均未留意,在四个席位上随便就坐,
(1)求这四人恰好都坐在自己的席位上的概率;
(2)求这四人恰好都没坐在自己的席位上的概率;
(3)求这四人恰好有1位坐在自己的席位上的概率.反思与感悟解 将A、B、C、D四位贵宾就座情况用下面图形表示出来:?解析答案反思与感悟?反思与感悟借助树状图罗列基本事件,书写量小且不重不漏,是一个不错的方法.反思与感悟跟踪训练1 先后抛掷两枚大小相同的骰子.
(1)求点数之和出现7点的概率;
(2)求出现两个4点的概率;
(3)求点数之和能被3整除的概率.解析答案解 用树状图列举基本事件如下:?解析答案?类型二 与顺序有关的古典概型例2 同时掷两个骰子,计算:
(1)一共有多少种不同的结果?解析答案解 掷一个骰子的结果有6种,我们把两个骰子标上记号1,2以便区分,由于1号骰子的结果都可以与2号骰子的任意一个结果配对,我们用一个“有序实数对”来表示组成同时掷两个骰子的一个结果(如下表),其中第一个数表示1号骰子的结果,第二个数表示2号骰子的结果.(可由列表法得到)由表中可知同时掷两个骰子的结果共有36种.(2)其中向上的点数之和是5的结果有多少种?解析答案解 在上面的结果中,向上的点数之和为5的结果有4种,分别为(1,4),(2,3),(3,2),(4,1).(3)向上的点数之和是5的概率是多少?解析答案?反思与感悟因为掷两粒骰子会出现相同元素(1,1),(2,2),…,故罗列事件要按有序罗列,把(1,2),(2,1)当成不同事件,否则就不是古典概型了.反思与感悟跟踪训练2 假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,……,9十个数字中的任意一个.假设一个人完全忘记了自己的储蓄卡密码,问他在自动取款机上随机试一次密码就能取到钱的概率是多少?解析答案?类型三 与顺序无关的古典概型例3 现有8名奥运会志愿者,其中志愿者A1、A2、A3通晓日语,B1、B2、B3通晓俄语,C1、C2通晓韩语,从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.
(1)求A1被选中的概率;解析答案解 从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间
Ω={(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2),(A2,B1,C1),(A2,B1,C2),(A2,B2,C1),(A2,B2,C2),(A2,B3,C1),(A2,B3,C2),(A3,B1,C1),(A3,B1,C2),(A3,B2,C1),(A3,B2,C2),(A3,B3,C1),(A3,B3,C2)}有18个基本事件组成.
由于每一个基本事件被抽取的机会均等,
因此这些基本事件的发生是等可能的.解析答案?(2)求B1和C1不全被选中的概率.解析答案解 用N表示“B1和C1不全被选中”这一事件,反思与感悟本例相当于从8个不同元素中不放回地抽取3个,故可按无序罗列基本事件.反思与感悟跟踪训练3 一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出2只球.
(1)共有多少个基本事件?解析答案解 分别记白球为1、2、3号,黑球为4、5号,从中摸出2只球,有如下基本事件(摸到1、2号球用(1,2)表示):
(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).
因此,共有10个基本事件.(2)摸出的2只球都是白球的概率是多少?解析答案?返回1.右图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的概率为( )达标检测 12345解析答案A.0.2 B.0.4
C.0.5 D.0.6?B12345C?解析答案?12345答案D123454.已知集合A={-9,-7,-5,-3,-1,0,2,4,6,8},从集合A中选取不相同的两个数,构成平面直角坐标系上的点,观察点的位置,则事件A={点落在x轴上}与事件B={点落在y轴上}的概率关系为( )
A.P(A)>P(B) B.P(A)
2.解题时,将所有基本事件全部列出是避免重复或者遗漏的有效方法.对于用直接方法难以解决的问题,可以求其对立事件的概率,进而求得其概率,以降低难度.返回课件19张PPT。3.2.2 (整数值)随机数(random numbers)
的产生第三章 §3.2 古典概型1.了解随机数的意义;
2.会用模拟方法(包括计算器产生随机数进行模拟)估计概率;
3.理解用模拟方法估计概率的实质.问题导学题型探究达标检测学习目标知识点一 随机数问题导学 新知探究 点点落实思考 体彩中心往往用一个透明容器,里面装上标有数字的小球,搅拌均匀后随机取出一个来产生中奖号码.容器中每个小球被取出的机会均等吗?每次取出小球前能否预知取出的数字?答案 采用这种方法,每个小球被取出的机会均等,产生的数字不可预期.随机数的产生:
一般地 ,要产生1~n(n∈N*)之间的随机整数,把n个 相同的小球分别标上1,2,3,…,n,放入一个袋中,把它们 ,然后从中摸出一个,这个球上的数就称为随机数.答案大小形状充分搅拌产生随机数的常用方法:
① ,② ,③ .
其中,计算机或计算器产生的随机数是依照 产生的数,具有__
( 很长),它们具有类似 的性质.因此,计算机或计算器产生的并不是真正的随机数,我们称它们为 .答案用计算器产生用计算机产生抽签法确定算法周期性周期随机数伪随机数思考 为了得到某一随机事件发生的概率,我们要做大量重复试验,有的同学可能觉得这样做试验花费的时间太多了,那么,有没有其他方法可以代替试验呢?知识点二 模拟方法答案 可以用数字代表试验结果.通过产生随机数代替试验.答案一般地,对于古典概型,我们可以将随机试验中所有基本事件进行编号,利用计算器或计算机产生随机数,从而获得试验结果.这种用计算器或计算机模拟试验的方法,称为 或 .这种方法的最大优点是不需要对试验进行具体操作,可以广泛应用到各个领域.随机模拟方法蒙特卡罗方法返回类型一 随机数的产生题型探究 重点难点 个个击破解析答案例1 要产生1~25之间的随机整数,你有哪些方法?解 方法一 可以把25个大小形状相同的小球分别标上1,2,3,…,24,25,放入一个袋中,把它们充分搅拌,然后从中摸出一个,这个球上的数就称为随机数.放回后重复以上过程,就得到一系列的1~25之间的随机整数.
方法二 可以利用计算机产生随机数,以Excel为例:
(1)选定A1格,键入“=RANDBETWEEN(1,25)”,按Enter键,则在此格中的数是随机产生的;
(2)选定A1格,点击复制,然后选定要产生随机数的格,比如A2至A100,点击粘贴,则在A2至A100的格中均为随机产生的1~25之间的数,这样我们就很快就得到了100个1~25之间的随机数,相当于做了100次随机试验.反思与感悟(1)抽签法产生的是真正意义上的随机数,但难以大量产生;
(2)随机函数RANDBETWEEN(a,b)产生从整数a到整数b的取整数值的随机数,是伪随机数.反思与感悟跟踪训练1 抛掷一枚均匀的骰子30次,可以得到30个1~6之间的随机数.如果没有骰子,你有什么办法得到试验的结果?解析答案解 可以由计算器或计算机产生30个1~6之间的随机数.类型二 随机模拟方法例2 某篮球爱好者做投篮练习,假设其每次投篮命中的概率是60%,若该篮球爱好者连续投篮4次,求至少投中3次的概率.用随机模拟的方法估计上述概率.解析答案?反思与感悟整数随机数模拟试验估计概率时,首先要确定随机数的范围和用哪些数代表不同的试验结果.我们可以从以下三方面考虑:
(1)当试验的基本事件等可能时,基本事件总数即为产生随机数的范围,每个随机数代表一个基本事件;
(2)研究等可能事件的概率时,用按比例分配的方法确定表示各个结果的数字个数及总个数;
(3)当每次试验结果需要n个随机数表示时,要把n个随机数作为一组来处理,此时一定要注意每组中的随机数字能否重复.反思与感悟跟踪训练2 种植某种树苗成活率为0.9,若种植这种树苗5棵,求恰好成活4棵的概率.设计一个试验,随机模拟估计上述概率.解析答案返回解 利用计算器或计算机产生0到9之间取整数值的随机数,我们用0代表不成活,1至9的数字代表成活,这样可以体现成活率是0.9,因为是种植5棵,所以每5个随机数作为一组可产生30组随机数,例如,
69801 66097 77124 22961 74235
31516 29747 24945 57558 65258
74130 23224 37445 44344 33315
27120 21782 58555 61017 45241
44134 92201 70362 83005 94976
56173 34783 16624 30344 01117解析答案?返回1.与大量重复试验相比,随机模拟方法的优点是( )
A.省时、省力 B.能得概率的精确值
C.误差小 D.产生的随机数多达标检测 12345答案A12345解析 随机数容量越大,实际数越接近概率,故选B.解析答案2.用随机模拟方法估计概率时,其准确程度决定于( )
A.产生的随机数的大小 B.产生的随机数的个数
C.随机数对应的结果 D.产生随机数的方法B3.在用计算器模拟抛硬币试验时,假设计算器只能产生0~9之间的随机数,则下列说法错误的是( )
A.可以用0,2,4,6,8来代表正面
B.可以用1,2,3,6,8来代表正面
C.可以用4,5,6,7,8,9来代表正面
D.产生的100个随机数中不一定恰有50个偶数12345答案C123454.抛掷两枚均匀的正方体骰子,用随机模拟方法估计出现点数之和为10的概率时,产生的整数随机数中,每几个数字为一组( )
A.1 B.2 C.10 D.12答案B12345?答案D规律与方法1.随机数具有广泛的应用,可以帮助我们安排和模拟一些试验,这样可以代替我们做大量重复试验.通过本节课的学习,我们要熟练掌握随机数产生的方法以及随机模拟试验的步骤:(1)设计概率模型;(2)进行模拟试验;(3)统计试验结果.
2.计算器和计算机产生随机数的方法
用计算器的随机函数RANDI(a,b)或计算机的随机函数RANDBETWEEN(a,b)可以产生从整数a到整数b的取整数值的随机数.返回课件23张PPT。第三章 §3.3 几何概型3.3.1 几何概型1.了解几何概型与古典概型的区别;
2.了解几何概型的定义及其特点;
3.会用几何概型的概率计算公式求几何概型的概率.问题导学题型探究达标检测学习目标知识点一 几何概型的概念问题导学 新知探究 点点落实思考 往一个方格中投一粒芝麻,芝麻可能落在方格中的任何一点上.这个试验可能出现的结果是有限个,还是无限个?若没有人为因素,每个试验结果出现的可能性是否相等?答案 出现的结果是无限个;每个结果出现的可能性是相等的.答案几何概型的定义:
如果每个事件发生的概率只与 ,则称这样的概率模型为几何概率模型,简称几何概型.构成该事件区域的长度(面积或体积)成比例几何概型的特点:
(1)试验中所有可能出现的结果(基本事件)有 .
(2)每个基本事件出现的可能性 .无限多个相等答案思考 既然几何概型的基本事件有无限多个,难以像古典概型那样计算概率,那么如何度量事件A所包含的基本事件数与总的基本事件数之比?知识点二 几何概型的概率公式?答案返回类型一 几何概型的概念题型探究 重点难点 个个击破解析答案例1 判断下列试验中事件A发生的概型是古典概型,还是几何概型.
(1)抛掷两颗骰子,求出现两个“4点”的概率;解 抛掷两颗骰子,出现的可能结果有6×6=36种,且它们都是等可能的,因此属于古典概型;解析答案(2) 下图中有两个转盘,甲乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜.求甲获胜的概率.解 游戏中指针指向B区域时有无限多个结果,而且不难发现“指针落在阴影部分”,概率可以用阴影部分的面积与总面积的比来衡量,即与区域面积有关,因此属于几何概型.反思与感悟判断一个概率是古典概型还是几何概型的步骤:(1)判断一次试验中每个基本事件发生的概率是否相等,若不相等,那么这个概率既不是古典概型也不是几何概型;(2)如果一次试验中每个基本事件发生的概率相等,再判断试验结果的有限性,当试验结果有有限个时,这个概率是古典概型;当试验结果有无限个时,这个概率是几何概型.反思与感悟跟踪训练1 判断下列试验是否为几何概型,并说明理由:
(1)某月某日,某个市区降雨的概率;解析答案解 不是几何概型,因为它不具有等可能性;(2)设A为圆周上一定点,在圆周上等可能地任取一点与A连接,求弦长超过半径的概率.解析答案解 是几何概型,因为它具有无限性与等可能性.类型二 几何概型的概率计算例2 某公共汽车站每隔10分钟有一辆汽车到达,乘客到达车站的时刻是任意的,求乘客候车时间不超过6分钟的概率.解析答案解 如图所示,设上辆车于时刻T1到达,而下辆车于时刻T2到达,则线段T1T2的长度为10,设T是线段T1T2上的点,且TT2的长为6,记“等车时间不超过6分钟”为事件A,则事件A发生即当点t落在线段TT2上,即D=T1T2=10,d=TT2=6.反思与感悟数形结合为几何概型问题的解决提供了简捷直观的解法.利用图解题的关键:首先用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A满足的几何区域,然后根据构成这两个区域的几何长度(面积或体积),用几何概型概率公式求出事件A的概率.反思与感悟跟踪训练2 某人午觉醒来,发现表停了,他打开收音机,想听电台报时,求他等待的时间不多于10分钟的概率.解析答案解 记“等待的时间不多于10分钟”为事件A,打开收音机的时刻位于[50,60]时间段内则事件A发生.类型三 几何概型中的测度的选择?解析答案反思与感悟解 乙的思路正确.
因为射线CM落在∠ACB内的任意位置是等可能的.
若以长度为“测度”,就是错误的,因为M在AB上的落点不是等可能的.
设事件D为“作射线CM,使|AM|>|AC|”.
因为△ACC′是等腰三角形,反思与感悟选哪个量为测度,关键在于弄清楚“试验”是什么,“试验的一个结果”又是什么.反思与感悟?解析答案解 ∵∠B=60°,∠C=45°,∴∠BAC=75°,返回记事件N为“在∠BAC内作射线AM交BC于点M,使|BM|<1”,则可得∠BAM<∠BAD时事件N发生.1.下列关于几何概型的说法错误的是( )
A.几何概型也是古典概型中的一种
B.几何概型中事件发生的概率与位置、形状无关
C.几何概型中每一个结果的发生具有等可能性
D.几何概型在一次试验中出现的结果有无限个达标检测 12345解析答案解析 几何概型与古典概型是两种不同的概型.A12345解析 向△ABC内部投一点的结果有无限个,属于几何概型.解析答案?B?12345B解析 若以O为圆心,1为半径作圆,
则圆与长方形的公共区域内的点满足到点O的距离小于或等于1,解析答案12345D答案12345D答案规律与方法?返回课件25张PPT。3.3.2 均匀随机数的产生第三章 §3.3 几何概型1.了解均匀随机数的意义,会利用计算器(计算机)产生均匀随机数;
2.理解用模拟方法估计概率的实质,会用模拟方法估计概率;
3.会利用均匀随机数解决具体的有关概率的问题.问题导学题型探究达标检测学习目标知识点一 均匀随机数的意义问题导学 新知探究 点点落实思考 回忆一下在古典概型中我们是如何利用整数值随机数来模拟古典概型的?能不能用它来模拟几何概型?答案 我们用整数值随机数对应古典概型中的基本事件,通过大量产生随机数来代替试验,通过统计产生的随机数中代表事件A发生的那些数的个数,进而计算频率来估计事件A发生的概率.
因为几何概型的基本事件无限多,代表总的基本事件以及事件A包含的基本事件是连续的区域,所以不能用整数值随机数来模拟几何概型.要想用随机数对应几何概型中的基本事件,也需要用连续的.答案一般地,在取值区间 上的任何一个 出现的可能性都是 的.我们把这样的随机数叫均匀随机数.[a,b]实数答案相等1.计算器上产生[0,1]的均匀随机数的函数是 函数.
2.Excel软件产生[0,1]的均匀随机数的函数为“ ”.
3.[a,b]上均匀随机数的产生.
利用计算器或计算机产生[0,1]上的均匀随机数x=RAND,然后利用伸缩和平移交换,x= 就可以得到[a,b]内的均匀随机数,试验的结果是[a,b]上的任何一个实数,并且任何一个实数都是等可能的.知识点二 均匀随机数的产生答案RANDrand()x1*(b-a)+a思考 我们已经有了几何概型概率公式,为什么还要估计概率?知识点三 用模拟方法估计概率答案返回答案 原因有两个:一个是几何概型涉及的区域不规则,难以度量;另一个是用计算机产生随机数样本容量可以很大,而且统计结果方便快捷,可操作性强.
用模拟方法估计概率的步骤:
①把实际问题中事件A及基本事件总体对应的区域转化为随机数的范围;
②用计算机(或计算器)产生指定范围内的随机数;
③统计试验的结果,代入几何概型概率公式估得概率.
利用几何概型的概率公式,结合随机模拟试验,可以解决求概率、面积、参数值等一系列问题.类型一 均匀随机数的产生题型探究 重点难点 个个击破解析答案例1 取一根长度为5 m的绳子,拉直后在任意位置剪断,用均匀随机模拟方法估计剪得两段的长都不小于2 m的概率有多大??反思与感悟均匀随机数的产生都是以[0,1]上的均匀随机数为基础,通过平移和伸缩变换得到目标区间上的随机数.反思与感悟跟踪训练1 如图所示,向边长为2的正方形内投飞镖,用计算机随机模拟这个试验,求飞镖落在中央边长为1的正方形内的概率.解析答案解 用计算机随机模拟这个试验,步骤如下:
(1)利用计算器或计算机产生两组[0,1]上的均匀随机数a1=RAND,b1=RAND.
(2)经过伸缩平移变换,a=(a1-0.5)*4,b=(b1-0.5)*4得到两组[-2,2]上的均匀随机数.
(3)统计出试验总次数N,落在阴影部分的次数N1.?类型二 随机模拟方法例2 假设你家订了一份报纸,送报人可能在早上6:30~7:30之间把报纸送到你家,你父亲离开家去上班的时间在早上7:00~8:00之间,如果把“你父亲在离开家之前能得到报纸”称为事件A,你能设计一种随机模拟的方法近似计算事件A发生的概率吗?解析答案?反思与感悟用随机数模拟的关键是把实际问题中事件A及基本事件总体对应的区域转化为随机数的范围.用转盘产生随机数,这种方法可以亲自动手操作,但费时费力,试验次数不可能很大.
用计算机产生随机数,可以产生大量的随机数,又可以自动统计试验的结果,同时可以在短时间内进行多次重复试验,可以对试验结果的随机性和规律性有更深刻的认识.反思与感悟跟踪训练2 在下图的正方形中随机撒一把豆子,计算落在圆中的豆子数与落在正方形中的豆子数之比并以此估计圆周率的值. 解析答案解析答案由于落在每个区域的豆子数是可能数出来的,所以就得到了π的近似值.类型三 用模拟法估计面积例3 利用随机模拟方法计算由y=1和y=x2所围成的图形的面积.解析答案反思与感悟解 以直线x=1,x=-1,y=0,y=1为边界作矩形,
(1)利用计算器或计算机产生两组0~1区间的均匀随机数,
a1=RAND,b=RAND;
(2)进行平移和伸缩变换,a=2(a1-0.5);
(3)数出落在阴影内的样本点数N1,用几何概型公式计算阴影部分的面积.
例如做1 000次试验,即N=1 000,模拟得到N1=698,解决本题的关键是利用随机模拟法和几何概率公式分别求得几何概率,然后通过解方程求得阴影部分面积的近似值,解决此类问题时注意两点:一是选取合适的对应图形;二是由几何概型正确计算概率.反思与感悟跟踪训练3 利用随机模拟的方法近似计算图中阴影部分(y=2-2x-x2与x轴围成的图形)的面积.解析答案返回?解析答案?返回1.用均匀随机数进行随机模拟,可以解决( )
A.只能求几何概型的概率,不能解决其他问题
B.不仅能求几何概型的概率,还能计算图形的面积
C.不但能估计几何概型的概率,还能估计图形的面积
D.最适合估计古典概型的概率达标检测 12345答案C12345答案2.关于用Excel软件产生均匀随机数,下列说法错误的是( )
A.只能产生[0,1]区间上的随机数
B.产生均匀随机数的函数是RAND
C.产生的均匀随机数是伪随机数
D.用Excel软件不但能产生大量均匀随机数,还方便统计结果.B3.将[0,1]内的均匀随机数转化为[-3,4]内的均匀随机数,需要实施的变换为( )
A.a=a1*7 B.a=a1*7+3
C.a=a1*7-3 D.a=a1*4 12345C解析 根据伸缩和平移变换a=a1*[4-(-3)]+(-3)= a1*7-3解析答案12345D解析答案4.用随机模拟方法求得某几何概型的概率为m,其实际概率的大小为n,则( )
A.m>n B.m
2.利用几何概型的概率公式,结合随机模拟试验,可以解决求概率、面积、参数值等一系列问题,体现了数学知识的应用价值.返回课件38张PPT。第三章 概率习题课1.进一步了解频率与概率的关系;
2.加深对互斥事件、对立事件的理解,并会应用这些概念分割较为复杂的事件;
3.理解古典概型及其概率计算公式,会用列举法求概率.问题导学题型探究达标检测学习目标知识点一 频率与概率的关系答案问题导学 新知探究 点点落实随机事件A在 条件下进行n次试验,事件A发生了m次,则事件A发生
的频率= ,随着试验次数的增加,频率呈现 性,即频率总是
于某个常数P(A),称P(A)为事件A的概率.相同规律接近?1.若事件A,B互斥,则A∩B为 事件,P(A∪B) 1(判别大小关系).
2.若事件A,B对立,则A∩B为 事件,P(A∪B) 1(判别大小关系).
3.若事件A,B互斥,则 (填“一定”“不一定”)对立;若事件A,B对立,则 (填“一定”“不一定”) 互斥.
4.若事件A,B互斥,则P(A+B)= ,若事件A,B对立,则P(A)= .答案知识点二 互斥事件、对立事件不可能≤不可能=不一定一定P(A)+P(B)1-P(B)1.解决古典概型问题首先要搞清所求问题是不是古典概型,其判断依据是:
(1)试验中所有可能出现的基本事件是否只有 个;(2)每个基本事件出现的可能性是否 .
2.利用古典概型求事件A的概率的步骤是:
(1)用 把古典概型试验的基本事件一一列出来;
(2)从中找出事件A包含的 ;
(3)P(A)=______________________.答案知识点三 古典概型及其概率计算公式返回有限相等列举法基本事件及个数类型一 随机事件的频率与概率解析答案题型探究 重点难点 个个击破例1 某企业生产的乒乓球被指定为乒乓球比赛专用球,目前有关部门对某批产品进行了抽样检测,检测结果如下表所示:(1)计算表中乒乓球优等品的频率;解 表中乒乓球优等品的频率依次是0.900,0.920,0.970,0.940,0.954,0.951.(2)从这批乒乓球产品中任取一个,质量检查为优等品的概率是多少?(结果保留到小数点后三位)解析答案反思与感悟解 由(1)知,抽取的球数n不同,计算得到的频率值不同,但随着抽取球数的增多,频率在常数0.950的附近摆动,所以质量检查为优等品的概率约为0.950.?反思与感悟解析答案跟踪训练1 下表是某种油菜子在相同条件下的发芽试验结果表,请完成表格并回答问题.(1)完成上面表格;解 填入表中的数据依次为1,0.8,0.9,0.857,0.892,0.910,
0.913,0.893,0.903,0.905.(2)该油菜子发芽的概率约是多少?解 该油菜子发芽的概率约为0.900.解析答案类型二 互斥事件的概率解析答案反思与感悟例2 某射击运动员射击一次射中10环,9环,8环,7环的概率分别为0.24,0.28,0.19,0.16.计算这名运动员射击一次:
(1)射中10环或9环的概率;
(2)至少射中7环的概率;
(3)射中环数不超过7环的概率.解 记“射中10环”为事件A,“射中9环”为事件B,“射中8环”为事件C,“射中7环”为事件D.
则事件A、B、C、D两两互斥,且P(A)=0.24,P(B)=0.28,P(C)=0.19,P(D)=0.16.
(1)∵射中10环或9环为事件A∪B,
∴由概率加法公式得P(A∪B)=P(A)+P(B)=0.24+0.28=0.52.
(2)∵至少射中7环的事件为A∪B∪C∪D,
∴P(A∪B∪C∪D)=P(A)+P(B)+P(C)+P(D)
=0.24+0.28+0.19+0.16=0.87.解析答案反思与感悟(3)记“射中环数不超过7环”为事件E,
则事件E的对立事件为A∪B∪C.
∵P(A∪B∪C)=P(A)+P(B)+P(C)
=0.24+0.28+0.19=0.71,
∴P(E)=1-P(A∪B∪C)=1-0.71=0.29.反思与感悟把较为复杂的事件分割为彼此互斥(或对立)的简单事件,再求概率,是处理概率问题的常用办法.反思与感悟跟踪训练2 下表为某班英语及数学成绩,设x、y分别表示英语成绩和数学成绩.全班共有学生50人,成绩分为1~5五个档次.例如表中所示英语成绩为4分的学生共14人,数学成绩为5分的学生共5人.(1)x=4的概率是多少?x=4且y=3的概率是多少?x≥3的概率是多少?在x≥3的基础上y=3同时成立的概率是多少?解析答案(2)x=2的概率是多少?a+b的值是多少?解析答案类型三 古典概型的概率解析答案例3 甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.
(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;?解析答案反思与感悟(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.?处理古典概型时注意:
(1)审清题意;(2)确认是不是古典概型;(3)选择简捷方式表达基本事件;(4)罗列时注意有无顺序要求.反思与感悟跟踪训练3 盒中有3只灯泡,其中2只是正品,1只是次品.
(1)从中取出1只,然后放回,再取1只,求:①连续2次取出的都是正品所包含的基本事件总数;②两次取出的一个为正品,一个为次品所包含的基本事件总数;解析答案解 将灯泡中2只正品记为a1,a2,1只次品记为b1,则第一次取1只,第二次取1只,基本事件为(a1,a1),(a1,a2),(a1,b1),(a2,a1),(a2,a2),(a2,b1),(b1,a1),(b1,a2),(b1,b1),共9个.
①连续2次取出的都是正品所包含的基本事件为(a1,a1),(a1,a2),(a2,a1),(a2,a2),共4个;
②两次取出的一个为正品,一个为次品所包含的基本事件为(a1,b1),(a2,b1),(b1,a1),(b1,a2),共4个.(2)从中一次任取2只,求2只都是正品的概率.解析答案?类型四 古典概型概率的综合应用解析答案例4 为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行分层抽样调查,测得身高情况的统计图如下:(1)估计该校男生的人数;解 样本中男生人数为40,由分层抽样比例为10%估计全校男生人数为400.解析答案(2)估计该校学生身高在170~185 cm之间的概率;?解析答案反思与感悟(3)从样本中身高在180~190 cm之间的男生中任选2人,求至少有1人身高在185~190 cm之间的概率.解 样本中身高在180~185 cm之间的男生有4人,设其编号为①②③④,样本中身高在185~190 cm之间的男生有2人,设其编号为⑤⑥.
从上述6人中任选2人的树状图为?本题经历了获得数据,分析数据,应用数据,进行预报和决策全过程.反思与感悟跟踪训练4 某日用品按行业质量标准分成五个等级,等级系数x依次为1,2,3,4,5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:解析答案(1)若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a,b,c的值;?(2)在(1)的条件下,将等级系数为4的3件日用品记为x1,x2,x3,等级系数为5的2件日用品记为y1,y2,现从x1,x2,x3,y1,y2这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率.解析答案返回?1.某射手的一次射击中,射中10环、9环、8环的概率分别为0.2、0.3、0.1,则此射手在一次射击中不超过8环的概率为( )
A.0.5 B.0.3 C.0.6 D.0.9A达标检测 12345解析 依题意知,此射手在一次射击中不超过8环的概率为1-(0.2+0.3)=0.5.解析答案2.有一个容量为66的样本,数据的分组及各组的频数如下:
[11.5,15.5),2;[15.5,19.5),4;[19.5,23.5),9;[23.5,27.5),18;[27.5,31.5),11;[31.5,35.5),12;[35.5,39.5),7;[39.5,43.5),3.
根据样本的频率分布估计,数据落在[31.5,43.5)的概率约是( )12345解析答案B3.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是( )?解析答案A1234512345解析 因为事件A与事件B是互斥事件,D解析答案123455.一个口袋中装有大小相同的1个白球和已经编有不同号码的3个黑球,从中摸出2个球,则摸出1个黑球、1个白球的概率是( )解析答案解析 摸出2个球,基本事件的总数是6.其中“1个黑球,1个白球”所含事件的个数是3,C规律与方法?返回3.事件A的概率的计算方法,关键要分清基本事件总数n与事件A包含的基本事件数m.因此必须解决以下三个方面的问题:第一,本试验是不是等可能的;第二,本试验的基本事件数有多少个;第三,事件A是什么,它包含的基本事件数有多少个.回答好这三个方面的问题,解题才不会出错.课件35张PPT。第三章 概率章末复习课1.理解频率与概率的关系,会用随机模拟的方法用频率估计概率;
2.掌握随机事件的概率及其基本性质,能把较复杂的事件转化为较简单的互斥事件求概率;
3.能区分古典概型与几何概型,并能求相应概率.知识整合题型探究达标检测学习目标[知识网络]知识整合 新知探究 点点落实答案[知识梳理]1.频率与概率
频率是概率的 ,是随机的,随着试验的不同而 ;概率是多数次的试验中频率的稳定值,是一个 ,不要用一次或少数次试验中的频率来估计概率.
2.求较复杂概率的常用方法
(1)将所求事件转化为彼此 的事件的和;对立近似值变化常数互斥答案?区域整个区域返回类型一 频率与概率解析答案题型探究 重点难点 个个击破例1 对一批U盘进行抽检,结果如下表:(1)计算表中次品的频率;解 表中次品频率从左到右依次为0.06,0.04,0.025,0.017,0.02,0.018.解析答案(2)从这批U盘中任意抽取一个是次品的概率约是多少?解 当抽取件数a越来越大时,出现次品的频率在0.02附近摆动,所以从这批U盘中任意抽取一个是次品的概率约是0.02.(3)为保证买到次品的顾客能够及时更换,要销售2 000个U盘,至少需进货多少个U盘?解 设需要进货x个U盘,为保证其中有2 000个正品U盘,则x(1-0.02)≥2 000,因为x是正整数,所以x≥2 041,即至少需进货2 041个U盘.反思与感悟概率是个常数.但除了几类概型,概率并不易知,故可用频率来估计.反思与感悟解析答案跟踪训练1 某射击运动员为备战奥运会,在相同条件下进行射击训练,结果如下:(1)该射击运动员射击一次,击中靶心的概率大约是多少?解 由题意得,击中靶心的频率与0.9接近,故概率约为0.9.解析答案(2)假设该射击运动员射击了300次,则击中靶心的次数大约是多少?解 击中靶心的次数大约为300×0.9=270.(3)假如该射击运动员射击了300次,前270次都击中靶心,那么后30次一定都击不中靶心吗?解 由概率的意义,可知概率是个常数,不因试验次数的变化而变化.后30次中,每次击中靶心的概率仍是0.9,所以不一定不击中靶心.(4)假如该射击运动员射击了10次,前9次中有8次击中靶心,那么第10次一定击中靶心吗?解 不一定.类型二 互斥事件与对立事件解析答案例2 甲、乙两人参加普法知识竞赛,共有5个不同题目,选择题3个,判断题2个,甲、乙两人各抽一题.
(1)甲、乙两人中有一个抽到选择题,另一个抽到判断题的概率是多少?
(2)甲、乙两人中至少有一人抽到选择题的概率是多少?反思与感悟解 把3个选择题记为x1,x2,x3,2个判断题记为p1,p2.“甲抽到选择题,乙抽到判断题”的情况有:(x1,p1),(x1,p2),(x2,p1),(x2,p2),(x3,p1),(x3,p2),共6种;
“甲抽到判断题,乙抽到选择题”的情况有:(p1,x1),(p1,x2),(p1,x3),(p2,x1),(p2,x2),(p2,x3),共6种;
“甲、乙都抽到选择题”的情况有:(x1,x2),(x1,x3),(x2,x1),(x2,x3),(x3,x1),(x3,x2),共6种;“甲、乙都抽到判断题”的情况有:(p1,p2),(p2,p1),共2种.
因此基本事件的总数为6+6+6+2=20种.解析答案反思与感悟反思与感悟在求有关事件的概率时,若从正面分析,包含的事件较多或较烦琐,而其反面却较容易入手,这时,可以利用对立事件求解.反思与感悟跟踪训练2 有4张面值相同的债券,其中有2张中奖债券.
(1)有放回地从债券中任取2张,每次取出1张,计算取出的2张中至少有1张是中奖债券的概率;解析答案解 把4张债券分别编号1,2,3,4,其中3,4是中奖债券,用(2,3)表示“第一次取出2号债券,第二次取出3号债券”,所有可能的结果组成的基本事件空间为Ω={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)}.
用C表示“有放回地从债券中任取2次,取出的2张都不是中奖债券”,(2)无放回地从债券中任取2张,每次取出1张,计算取出的2张中至少有1张是中奖债券的概率.解析答案解 无放回地从债券中任取2张,所有可能的结果组成的基本事件空间Ω={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)}.
用D表示“无放回地从债券中任取2张,取出的2张都不是中奖债券”,类型三 古典概型与几何概型解析答案例3 某产品的三个质量指标分别为x,y,z,用综合指标S=x+y+z评价该产品的等级.若S≤4,则该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:(1)利用上表提供的样本数据估计该批产品的一等品率;解 计算10件产品的综合指标S,如下表:?解析答案反思与感悟(2)在该样本的一等品中,随机抽取2件产品,
①用产品编号列出所有可能的结果;
②设事件B为“在取出的2件产品中,每件产品的综合指标S都等于4”,求事件B发生的概率.解 ①在该样本的一等品中,随机抽取2件产品的所有可能结果为{A1,A2},{A1,A4},{A1,A5},{A1,A7},{A1,A9},{A2,A4},{A2,A5},{A2,A7},{A2,A9},{A4,A5},{A4,A7},{A4,A9},{A5,A7},{A5,A9},{A7,A9},共15种.②在该样本的一等品中,综合指标S等于4的产品编号分别为A1,A2,A5,A7,则事件B发生的所有可能结果为{A1,A2},{A1,A5},{A1,A7},{A2,A5},{A2,A7},{A5,A7},共6种.反思与感悟古典概型与几何概型的共同点是各基本事件等可能;不同点是前者总的基本事件有限,后者无限.反思与感悟跟踪训练3 如图所示的大正方形面积为13,四个全等的直角三角形围成一个阴影小正方形,较短的直角边长为2,向大正方形内投掷飞镖,飞镖落在阴影部分的概率为( )解析答案解得x=1或x=-5(舍去),D类型四 列举法与数形结合解析答案例4 三个人玩传球游戏,每个人都等可能地传给另两人(不自传),若从A发球算起,经4次传球又回到A手中的概率是多少?解 记三人为A、B、C,则4次传球的所有可能可用树状图方式列出:如下图.
每一个分支为一种传球方案,则基本事件的总数为16个,
而又回到A手中的事件个数为6个,反思与感悟事件个数没有很明显的规律,而且涉及的基本事件又不是太多时,我们可借助树状图法直观地将其表示出来,有利于条理地思考和表达.反思与感悟跟踪训练4 设M={1,2,3,4,5,6,7,8,9,10},任取x,y∈M,x≠y.求x+y是3的倍数的概率.解析答案?返回1.下列事件中,随机事件的个数为( )
①在某学校明年的田径运动会上,学生张涛获得100米短跑冠军;
②在体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯;
③从标有1,2,3,4的4张号签中任取一张,恰为1号签;
④在标准大气压下,水在4 ℃时结冰.
A.1 B.2 C.3 D.4达标检测 12345解析答案解析 ①在某学校明年的田径运动会上,学生张涛有可能获得100米短跑冠军,也有可能未获得冠军,是随机事件;
②在体育课上,体育老师随机抽取一名学生去拿体育器材,李凯不一定被抽到,是随机事件;
③从标有1,2,3,4的4张号签中任取一张,不一定恰为1号签,是随机事件;
④在标准大气压下,水在4 ℃时结冰是不可能事件.故选C.
答案 C123452.把黑、红、白3张纸牌分给甲、乙、丙三人,则事件“甲分得红牌”与“乙分得红牌”是( )
A.对立事件 B.互斥但不对立事件
C.不可能事件 D.必然事件解析答案解析 根据题意,把黑、红、白3张纸牌分给甲、乙、丙三人,事件“甲分得红牌”与“乙分得红牌”不会同时发生,
故两者是互斥事件,
但除了“甲分得红牌”与“乙分得红牌”之外,还有“丙分得红牌”,
故两者不是对立事件,
所以事件“甲分得红牌”与“乙分得红牌”是互斥但不对立事件.B123453.下列试验属于古典概型的有( )
①从装有大小、形状完全相同的红、黑、绿各一球的袋子中任意取出一球,观察球的颜色;
②在公交车站候车不超过10分钟的概率;
③同时抛掷两枚硬币,观察出现“两正”“两反”“一正一反”的次数;
④从一桶水中取出100 mL,观察是否含有大肠杆菌.
A.1个 B.2个 C.3个 D.4个12345解析答案解析 古典概型的两个基本特征是有限性和等可能性.
①符合两个特征;对于②和④,基本事件的个数有无限多个;
对于③,出现“两正”“两反”与“一正一反”的可能性并不相等,
故选A.
答案 A1234512345解析答案?C12345解析答案?C规律与方法1.两个事件互斥,它们未必对立;反之,两个事件对立,它们一定互斥.若事件A1,A2,A3,…,An彼此互斥,则P(A1∪A2∪…∪An)=P(A1)+P(A2)+…+P(An).
2.关于古典概型,必须要解决好下面三个方面的问题:
(1)本试验是不是等可能的?
(2)本试验的基本事件有多少个?
(3)事件A是什么,它包含多少个基本事件?
只有回答好这三个方面的问题,解题才不会出错.3.几何概型的试验中,事件A的概率P(A)只与子区域A的几何度量(长度、面积或体积)成正比,而与A的位置和形状无关.求试验为几何概型的概率,关键是求得事件所占区域和整个区域Ω的几何度量,然后代入公式即可求解.
4.关于随机数与随机模拟试验问题
随机模拟试验是研究随机事件概率的重要方法,用计算器或计算机模拟试验,首先要把实际问题转化为可以用随机数来模拟试验结果的量,我们可以从以下两个方面考虑:
(1)确定产生随机数组数,如长度型、角度型(一维)一组,面积型(二维)二组.
(2)由所有基本事件总体对应区域确定产生随机数的范围,由事件A发生的条件确定随机数应满足的关系式.返回