教 学 设 计
设计
教师
科 目
数 学
年级
七年级
授课时间
45分钟
课题名称
8.3实际问题与二元一次方程组(一)
教
学
目
标
科学的确立教学目标是教学的首要环节,根据《新课程标准》,立足于每一位学生的发展,结合教学内容,确立如下目标:
(1)知识技能:使学生能够探索事物之间的数量关系,利用方程或方程组解决实际问题。
(2)问题解决:使学生能够根据实际问题,寻找其中的相等关系,最终转化为数学问题求解。
(3)数学思考:经历和体验列方程组解决实际问题的过程。体会方程组是刻画现实世界的有效数学模型
(4)情感态度:在运用数学表达和解决问题的过程中,认识数学具有抽象,严谨和应用广泛的特点,体会数学的价值。
教
学
重
难
点
依据教学内容,教学目标我确立了以下重难点:
重点:能根据题意列二元一次方程组;能根据题意找出等量关系;
难点:正确发现并找出问题中的两个等量关系
教
学
手
段
充分利用多媒体辅助教学,以一个直观的形象引起学生的注意,从而实现课堂教学的情境化,生动化,趣味化,激发学生的求知欲望,增加了课堂容量,提高了教学效率。
教
学
过
程
1.复习旧知
教师以问题形式复习:(1)列方程解决实际问题的步骤是什么?
(2)还记得解二元一次方程组的方法吗?
由学生进行回答,并在课件上进行展示(结合课件展示可以更加清晰的呈现问题)。
2.新知探究
探究1:养牛场原有30头大牛和15头小牛,1天约需用饲料675 kg;一周后又购进12头大牛和5头小牛,这时1天约需要饲料940 kg.饲养员李大叔估计平均每头大牛1天约需要饲料18~20 kg,每头小牛1天约需要7~8 kg.你能否通过计算检验他的估计?、
课件展示题目。
以学生身边的实际问题展开讨论,突出数学与现实的联系。
教师引导学生对本题进行分析:
1.题目中有哪些已知量?哪些未知量?
引导学生说出,教师利用信息技术手段在课件上进行标注。
2.有哪几个等量关系?
引导学生写出来,也可以让学生在课件上直接写(具有代表性)。
3.通过以上的分析引导学生发现有两个未知数,两个等量关系,所以可以用列方程组的方式解决问题。
(1)学生在导学案上列出方程(2)学生在黑板上书写解题过程.
(3)学生点评,教师引导规范解题步骤。
教
学
过
程
4.通过计算饲养员李大叔的估计正确吗?
学生对比计算结果和李大叔的估计,得到结论。
引导学生归纳列二元一次方程组解决实际问题的步骤。
3.新知应用
(1)买10支笔和15本笔记本需58元,买20支笔和40本笔记本需148元,问每支笔和每本笔记本各多少钱?
学生完成后,同桌互换,通过投影,进一步规范步骤。
(2)有大小两种货车,2辆大车与3辆小车一次可以运货15.5吨;5辆大车与6辆小车一次可以支货35吨;3辆大车与5辆小车一次可以运货多少吨?
学生通过多媒体书写解题过程,与标准答案进行对比。
4.课堂小结
通过本节课的学习你有什么收获?
由学生口述,并由老师规范(课件呈现)
教师进一步引导学生总结运用方程组建立数学模型,解决实际问题的过程。
5.当堂达标
1.某宾馆有单人间和双人间两种房间,入住3个单人间和6个双人间共需1020元,入住1个单人间和5个双人间共需700元,设一个单人间需要x元,一个双人间需要y元,则可列方程组为_______ ______________
2.某中学为丰富学生的校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮球。若购买3个足球和2个篮球共需310元;购买2个足球和5个篮球共需500元。购买一个足球,一个篮球各需多少元?
3.学校为了奖励初三优秀毕业生,计划购买一批平板电脑和一批学习机,购买1台平板电脑比购买3台学习机多600元,购买2台平板电脑和3台学习机共需8400元.求购买1台平板电脑和1台学习机各需多少元?
学生完成,教师批阅,课件展示答案。
此环节,使学生加深理解如何使用二元一次方程组解决实际问题,学生通过前面的学习,很容易找到解决问题的方法,让学生感受到问题变化的巧妙,树立了学习数学的信心。
6.布置作业
作业安排按照学生的层次性分类定量的进行,从而从不同层次有效的提高学生对知识的掌握程度。
评测练习
某宾馆有单人间和双人间两种房间,入住3个单人间和6个双人间共需1020元,入住1个单人间和5个双人间共需700元,设一个单人间需要x元,一个双人间需要y元,则可列方程组为_______ ______________
某中学为丰富学生的校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮球。若购买3个足球和2个篮球共需310元;购买2个足球和5个篮球共需500元。购买一个足球,一个篮球各需多少元?
3.学校为了奖励初三优秀毕业生,计划购买一批平板电脑和一批学习机,购买1台平板电脑比购买3台学习机多600元,购买2台平板电脑和3台学习机共需8400元.求购买1台平板电脑和1台学习机各需多少元?
课件16张PPT。 8.3实际问题与二元一次方程组
1.列方程解决实际问题的步骤是什么?审设列解答2.还记得解二元一次方程组的方法吗?代入消元法和加减消元法
能正确分析实际问题中的数量关系,会设未知数,建立二元一次方程组模型并能解决实际问题。
1.养牛场原有30头大牛和15头小牛,1天约用饲料
675 kg;一周后又购进12头大牛和5头小牛,这时1天
约用饲料940 kg.饲养员李大叔估计每头大牛1天约需
饲料18~20 kg,每头小牛1天约需饲料7~8 kg.你能
通过计算检验他的估计吗?
分析:1.题目中有哪些已知量?哪些未知量?
? 2.有哪几个等量关系?
3.你准备用列 的方法解决问题。
通过以上分析写出你的解题过程。
(注意你的步骤)解:设每头大牛1天需用饲料x千克,小牛需用y千克,根据题意列方程组,得解这个方程组得
所以每头大牛1天需用饲料20千克,小牛需用5千克. 答:饲料员李大叔对大牛的食量估计较准确,对小牛的食量估计偏高。 2.请你归纳出二元一次方程组解决实际问题的步骤。审设列解答 20x+40y=148 1.买10支笔和15本笔记本需58元,买20支笔和40本笔记本需148元,问每支笔和每本笔记本各多少钱? 解:设每支笔x元,每本笔记本y元。 根据题意得 10x+15y=58 解这个方程组,得 y=3.2 x=1答:每支笔是1元,每本笔记本是3.2元2.有大小两种货车,2辆大车与3辆小车一次可以运货15.5吨;5辆大车与6辆小车一次可以支货35吨;3辆大车与5辆小车一次可以运货多少吨?x=4 解:设每辆大车可运货x吨,每辆小车可运货y吨。 根据题意得 解这个方程组,得y=2.5
所以,3辆大车与5辆小车一次可以运货:
3×4+5×2.5=24.5吨
答: 3辆大车与5辆小车一次可以运货24.5吨。2x+3y=15.55x+6y=35通过本节课的学习,你有什么收获?
二元一次方程组解决实际问题的步骤。1.审 2.设 3.列 4.解 5.答实际问题 数学问题
(二元一次方程组) 数学问题的解
(二元一次方程组的解)实际问题
的答案
代入法
加减法
(消元)设未知数、列方程组利用二元一次方程组分析和解决实际问题的基本过程: 1.某宾馆有单人间和双人间两种房间,入住3个单人间和6个双人间共需1020元,入住1个单人间和5个双人间共需700元,设一个单人间需要x元,一个双人间需要y元,则可列方程组为_______ ______________
2.某中学为丰富学生的校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮球。若购买3个足球和2个篮球共需310元;购买2个足球和5个篮球共需500元。购买一个足球,一个篮球各需多少元?
3.学校为了奖励初三优秀毕业生,计划购买一批平板电脑和一批学习机,购买1台平板电脑比购买3台学习机多600元,购买2台平板电脑和3台学习机共需8400元.求购买1台平板电脑和1台学习机各需多少元?
3x+6y=1020
x+5y=7001.
2.解:设一个足球x元,一个篮球y元
根据题意列方程组得
3x+2y=310
2x+5y=500
解这个方程组得
x=50
y=80
答:一个足球50元,一个篮球80元。
3.解:设购买1台平板电脑x元,1台学习机y元
根据题意列方程组得 x-3y=600
2x+3y=8400 解这个方程组得 x=3000y=800答:一台平板电脑3000元,一台学习机800元。 课本102页第8,9题