人教版五年级数学上册平行四边形的面积教学设计

文档属性

名称 人教版五年级数学上册平行四边形的面积教学设计
格式 docx
文件大小 38.5KB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2025-07-18 13:50:17

图片预览

文档简介

人教版五年级数学上册平行四边形的面积教学设计
【教材分析】
本单元学习的内容主要包括平行四边形、三角形、梯形和组合图形的面积四个部分。它们的面积计算是在学生掌握了这些图形的特征以及长方形、正方形面积计算的基础上,以未知向已知转化为基本方法开展学习的,这也为进一步学习圆的面积和立体图形的表面积奠定基础。学习组合图形的面积安排在平行四边形、三角形和梯形面积计算之后,也是利用转化的数学思想,让学生把不规则的平面图形转化为规则的平面图形来计算,降低了学生的学习难度,并巩固了学生对各种平面图形的特征的认识及面积计算,发展了学生的空间观念。
【学情分析】
学生在学习本单元知识之前,已经初步认识了这几种平面图形的特征,并掌握了长方形和正方形面积计算方法,也学习了运用折、剪、拼、量、算等操作方式探究有关图形知识的方法,还积累了一些运用“转化”方法解决问题的经验。同时,五年级学生的思维和动手能力都有了一定的发展,已经具备了一定的自主探究和合作学习能力。因此,本单元的学习要建立在学生数、剪、拼、摆等操作活动之上,要让他们在独立思考、动手操作、合作交流基础上经历推导图形面积公式的全过程,教师既要做好引导,又要注意引导的“度”,不要把学生的思维限制在一种固定方法上,要尊重学生的想法,鼓励学生从不同的途径和角度去思考和解决问题,渗透数学思想方法,发展空间观念。
【教学目标】
1、从比较两个花坛大小情景引入,提出要探究的数学问题,引出计算平行四边形面积的方法,进而理解归纳平行四边形的面积公式。
2、结合具体情景,借助方格图理解平行四边形面积的计算方法,经历面积计算方法的探索过程,渗透数形结合思想;
3、借助示意图用转化的方法理解平行四边形面积公式,在探索与交流活动中培养学生观察和推理的能力,并用自己的语言概括归纳和总结方法;
4、让学生在探究的过程中对呈现的多种方法进行交流,进一步明晰计算方法,积累学习的活动经验。
【教学重难点】
教学重点:理解公式并正确计算平行四边形的面积。
教学难点:理解平行四边形面积公式的推导过程。
【教学过程】
一、感知情景,导入课题。
师:我们学校教学楼西侧有一块空地,现在想摆放两个花坛。看,分别什么形状的?
生:长方形和平行四边形。
师:哪块更大?其实是比较图形的?
生:比较两个图形的面积。
师:我们已经知道了长方形的面积计算方法,那它的面积就是?
生:6×4=24平方米。
师:这个平行四边形花坛的面积又该怎样计算呢?同学们请看,老师测量了几个数据,你想怎么列式计算?
生:6×5;6×4;6×2+5×2...
师:大家有不同的想法,这都是我们的猜测。大家先说一说,你认为哪个一定是不对的?
生:6×2+5×2,这是求的平行四边形的周长。
师:周长是求这四条边的长度,而面积是求这个面的大小。那该怎么计算平行四边形的面积呢?这节课我们一起来探究。
二、自主学习,小组探究。
环节一:回顾旧知。
师:先想想之前我们是怎么测量长方形面积的?
生:数格子。用小正方形去铺,数一数每行有几个,有几行。
师:我们规定边长为一个长度单位的小正方形的面积就是面积单位。通常借助面积单位这个工具来测量图形的面积。关于长方形我们只要数出每行有几个,再数出有几行,就能求出它包含多少个面积单位,也就求出了长方形的面积。
环节二:测量平行四边形的面积。
师:老师把花坛的实物图用平行四边形的平面图画了下来,想要测量出这个平行四边形的面积也就是求它里面包含多少个面积单位,我们同样可以借助方格纸来数一数。
1、生动手操作。
学生独立思考,完成学习单。数出平行四边形的面积。
2、汇报介绍。
预设生1:我是这样想的,先数满格的,有20格,不满一格的算半格,有8格,折合成4个满格,加起来一共有24格,平行四边形的面积就是24平方厘米。
师:嗯,一个一个的数,凑半格为满格再接着数,很不错的想法。
预设生2:我想介绍这一种,把右边的大三角形平移到左边来,就变成了一个长方形。这个长方形每行有6个这样的面积单位,一共有这样的4行,4×6=24个,平行四边形的面积就是24平方厘米。
师:整体平移变成长方形一起数,非常巧妙。
3、比较方法。
师:你更喜欢哪一种方法?
生:第二种,这样数的更快。移过去变成长方形,直接就能求出来了。
师:刚才我们用不同的方法数出这个平行四边形里有24个面积单位,知道了它的面积是24平方米。
环节三:推导平行四边形的面积计算公式。
1、学生思考:怎样计算平行四边形的面积呢?
生1:把平行四边形剪开拼成一个长方形。
生2再说一说。
师:嗯,我们就试一试。
2、小组合作。
四人小组合作,将平行四边形转化成长方形,并探究他俩之间的关系,尝试推导平行四边形面积计算公式。
3、小组汇报。
生1:我把这个三角形拼到右边,就变成了长方形。
生2:我们在平行四边形上画了一条高,并沿着这条高剪开,得到了一个直角三角形和直角梯形,然后将右边的直角三角形平移到直角梯形的左边就变成了一个长方形。
生3:我们发现平行四边形转化成长方形,形状变了,但面积不变。
生4:长方形的长就相当于平行四边形的底,长方形的宽相当于平行四边形的高,因为长方形的面积=长×宽,那么平行四边形的面积=底×高。
其他小组点评或补充。
4、展示其他方法。
5、回顾梳理。
师生总结:我们通过割补转化验证出了平行四边形的面积和长方形的面积是相等的。长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高。因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。
师:我们还可以发现,平行四边形的底像长方形的长一样可以用一行有几个面积单位表示出,平行四边形的高和长方形的宽一样也可以用几行表示出。那底乘高也就计算出平行四边形里包含多少个面积单位,也就是它的面积。
如果用字母S表示平行四边形的面积,字母a表示底,字母h表示高,那么平行四边形面积计算公式可以怎样表示?(板书:S=ah)
6、回归情境。
师:那刚才我们学校的平行四边形花坛的面积可以怎么计算?强调:解决问题时一般先写上公式,再代入数进行计算。(板书规范书写)
师:那大家再来思考一下6×5为什么不对呢?
生:5不是它的高。
师拉动平行四边形框架,生观察。感受平行四边形的面积与邻边无关,要用底乘高。
环节四:数学文化。
出示出入相补原理,感受数学文化。
三、实践应用,拓展延伸。
师:根据所给数据,你能求出平行四边形停车位的面积吗?生尝试计算写在作业纸上。
生汇报,师生总结:计算平行四边形的面积时一定要找到一组底和它对应的高。
3.拓展延伸。
几何画板出示1:高不变,底变大,面积变大
2:底不变,高变小,面积变小
3:底和高都不变,面积也不变。
师生共同总结:等底等高的平行四边形,面积也是相等的。
四、回顾新知,总结提升。
生谈收获,并根据自主评价单,给自己的表现打一个分数吧。
师生梳理本节课思维导图并进行大单元梳理。
教后反思:
本节课中安排了两个环节突破重难点,一是通过数方格的方法感知图形的面积就是它里面包含面积单位的个数,从而体会度量面积的本质就是数面积单位的个数。二是借助转化的方法,将平行四边形转化成已经学过的图形,并探究两者之间的关系,从而推导面积计算公式。在教学过程中,引导学生经历猜想-验证-结论的过程,通过动手操作,小组合作,充分讨论如何计算平行四边形的面积。
练习环节注重层层递进,运用公式直接求面积,再解决生活实际问题。最后设置几何画板,学生观察图形的变化,感受平行四边形的面积与底和高有关,并且总结出等底等高的平行四边形面积相等。
整节课中学生不仅加深了对公式的理解,也提高了合作学习的能力,有效地激发了学生的思维,培养了学生的几何直观和空间观念。