全书综合测评 习题及解析

文档属性

名称 全书综合测评 习题及解析
格式 docx
文件大小 340.5KB
资源类型 试卷
版本资源 粤教版(2019)
科目 物理
更新时间 2025-07-24 16:27:55

图片预览

文档简介

全书综合测评
注意事项
1.本试卷满分100分,考试用时75分钟。
2.无特殊说明,本试卷中g取10 m/s2。
一、单项选择题(本题共8小题,每小题3分,共24分。在每小题给出的四个选项中,只有一项是符合题目要求的)
1.一中子与一质量数为A(A>1)的原子核发生弹性正碰。若碰前原子核静止,则碰撞前与碰撞后中子的速率之比为(  )
A.   B.   
C.   D.
2.关于光现象,下列说法正确的是(  )
A.图甲中一束白光通过三棱镜形成彩色光带是光的干涉现象
B.图乙中光照射不透明的圆盘,在圆盘的阴影中心出现了一个亮斑是光的折射现象
C.图丙中肥皂膜上出现彩色条纹是光的衍射现象
D.图丁中佩戴特殊眼镜观看立体电影利用了光的偏振现象
3.2021年9月17日13时30分许,“神舟十二号”返回舱在东风着陆场安全降落。“神舟”系列航天飞船返回舱返回地面的示意图如图所示,其过程可简化为:打开降落伞一段时间后,整个装置沿竖直方向匀速下降,为确保返回舱能安全着陆,在返回舱距地面1 m左右时,舱内宇航员主动切断与降落伞的连接(“切伞”),同时点燃返回舱的缓冲火箭,在火箭向下喷气过程中返回舱减至安全速度。已知“切伞”瞬间返回舱的速度大小v1=10 m/s,火箭喷出的气体速度大小v2=1 002 m/s,火箭“喷气”时间极短,喷气完成后返回舱的速度大小v3=2 m/s,则喷气完成前、后返回舱的质量比为(  )
A.125∶124   B.100∶99
C.45∶44   D.95∶96
4.有一摆长为L的单摆,悬点正下方某处有一小钉,摆球经过平衡位置向左摆动时,摆线的上部被小钉挡住,使摆长发生变化。现使摆球做小幅度摆动,摆球从右边最高点M至左边最高点N运动过程中的频闪照片如图所示(悬点与小钉未被摄入)。P为摆动中的最低点,已知每相邻两次闪光的时间间隔相等,由此可知,小钉与悬点的距离为(  )
A.   B.   
C.   D.无法确定
5.某横波在介质中沿x轴传播,甲图为t=0.25 s时的波形图,乙图为P点(x=1.5 m处的质点)的振动图像,那么下列说法不正确的是(  )
A.该波向右传播,波速为2 m/s
B.质点L与质点N的运动方向总相反
C.t=0.75 s时,质点M处于平衡位置,并正在向y轴正方向运动
D.t=1.25 s时,质点K向右运动了2 m
6.如图所示,一块由玻璃制成的三棱镜的横截面为直角三角形ABC,其中AB=AC,该三棱镜对红光的折射率大于。一束平行于BC边的白光射到AB面上,光束先在AB面折射后射到BC面上,接着又从AC面射出。下列说法不正确的是(  )
A.各色光在AB面的折射角都小于30°
B.各色光在BC面的入射角都大于45°
C.有的色光可能在BC面不发生全反射
D.从AC面射出的光束中红光在最下方
7.如图所示,表面光滑的楔形物块ABC固定在水平地面上,∠ABC<∠ACB,质量相同的物块a、b分别从斜面顶端沿AB、AC由静止自由滑下。在两物块a、b分别沿斜面AB、AC下滑到底端的过程中,下列说法正确的是(  )
A.两物块所受重力的冲量相同
B.两物块的动量改变量相同
C.两物块的动能改变量相同
D.两物块到达斜面底端时重力的瞬时功率相同
8.如图所示,左图为大型游乐设施跳楼机,右图为其结构简图。跳楼机由静止开始从a位置自由下落到b位置,再从b位置开始以恒力制动竖直下落到c位置停下。已知跳楼机和游客的总质量为m,a、b高度差为2h,b、c高度差为h,重力加速度为g,忽略空气阻力。则(  )
A.从a到b与从b到c的运动时间之比为 2∶1
B.从a到b,跳楼机座椅对游客的作用力与游客的重力大小相等
C.从b到c,跳楼机受到的制动力大小等于2mg
D.从a到b,跳楼机和游客总重力的冲量大小为m
二、多项选择题(本题共4小题,每小题4分,共16分。在每小题给出的选项中,有多项符合题目要求。全部选对的得4分,部分选对的得1分,有选错的得0分)
9.下列关于光的说法合理的是(  )
A.图甲是一束复色光进入水珠后传播的示意图,其中a光束在水珠中传播的速度一定小于b光束在水珠中传播的速度
B.图乙是小孔衍射的图样,也被称为“泊松亮斑”
C.图丙中的M、N是偏振片,P是光屏。当M固定不动缓慢转动N时,光屏P上光的强度将随之发生变化,此现象表明光波是横波
D.图丁是空气中双缝干涉的原理图,若P1到S1、S2的路程差是半波长的偶数倍,则P处是亮纹
10.如图所示,矩形ABCD为一玻璃砖的截面,AB=L、AD=2L。该截面内一条单色光线a从A点射向BC中点E,刚好在BC发生全反射并直接射向D点。该单色光的另一条与AE平行的光线b从AB上的P点(未画出)折射进入玻璃砖,光线经BC反射后直接射向CD的中点F。已知真空中光速为c,则下列说法正确的是(  )
A.玻璃砖的折射率为
B.光线b第一次打在BC面上时发生全反射
C.光线b第一次打在CD面上时发生全反射
D.光线b第一次从P点传播到F点用时为
11.振源S在O点做竖直方向的简谐运动,频率为10 Hz,t=0时刻形成向右传播的简谐横波如图所示(向左传播的简谐横波图中未画出)。则下列说法正确的是(  )
A.t=0时,x=-2 m处的质点振动方向向上
B.t=0.175 s时,x=-6 m处的质点处在平衡位置
C.t=0.225 s时,x=5 m处的质点处在波峰位置
D.波速大小可能为40 m/s
12.如图所示,竖直放置的半径为R的半圆形轨道与水平轨道平滑连接,不计一切摩擦。圆心O点正下方放置一质量为2m的小球A,质量为m的小球B以初速度v0水平向左运动,与小球A发生弹性碰撞。碰后小球A在半圆形轨道运动时不脱离轨道,已知重力加速度为g,则小球B的初速度v0可能为(  )
A.2   B.   
C.2   D.
三、非选择题(本题共6题,共60分)
13.(8分)某同学利用如图所示的装置测量某种单色光的波长。实验时,光源正常发光,调整仪器从目镜中可以观察到干涉条纹。
(1)转动手轮,使测量头的分划板中心刻线与某亮纹中心对齐,将该亮纹定为第1条亮纹,此时手轮上的示数如图甲所示;然后同方向转动手轮,使分划板中心刻线与第6条亮纹中心对齐,记下此时手轮上的示数,如图乙所示为    mm,求得相邻亮纹的间距Δx为    mm(计算结果保留三位有效数字)。


(2)若相邻亮纹的间距为Δx、单缝与屏的距离为L1,双缝与屏的距离为L2,单缝宽为d1,双缝间距为d2,则光的波长用上述部分物理量可表示为λ=    ;
(3)若想增加从目镜中观察到的条纹个数,写出一条可行的措施    。
14.(8分)某同学利用如下实验装置研究两小球a和b碰撞过程中的守恒量。实验步骤如下:
①如图所示,将白纸、复写纸固定在竖直放置的木条上,用来记录实验中球a、球b与木条的撞击点。
②将木条竖直立在轨道末端右侧并与轨道接触,让小球a从斜轨上A点由静止释放,撞击点为B'。
③将木条平移到图中所示位置,小球a从斜轨上A点由静止释放,确定落点为图中P点。
④将球b静止放置在水平槽的末端,将小球a从斜轨上A点由静止释放,使它们发生碰撞,确定球a和球b相撞后的落点。
⑤测得B'与N、P、M各点的高度差分别为h1、h2、h3。
根据该同学的实验,问答下列问题:
(1)两小球的质量关系为ma    mb(填“>”“=”或“<”)。
(2)步骤④中,小球a的落点为图中的    点,小球b的落点为图中的    点。
(3)若再利用天平测量出两小球的质量分别为m1、m2,则满足    表示两小球碰撞前后动量守恒。
15.(9分)图甲为太空站中测量人体质量的装置(BMMD),该装置可简化为图乙所示的结构,P为上表面光滑的固定底座,A是质量为mA的座椅,座椅两侧连接着相同的轻质弹簧,座椅可在P上左右滑动,BMMD利用空座椅做简谐运动的周期与坐上宇航员后做简谐运动的周期来计算宇航员的质量。假定初始状态下两弹簧均处于原长,宇航员坐上座椅后与座椅始终保持相对静止。
(1)若已知做简谐运动的物体其加速度与位移均满足a+ω2x=0的关系,其中x为物体相对于平衡位置的位移,ω为圆频率,圆频率由系统自身性质决定,圆频率与简谐运动周期的关系为Tω=2π,已知两弹簧的劲度系数均为k,求:当空座椅偏离平衡位置向右的位移为x时的加速度大小(用k、x、mA表示)和方向;空座椅做简谐运动时ω的表达式(用mA、k表示)。
(2)若物体的加速度与位移仍然满足a+ω2x=0的关系,通过测量得到空座椅做简谐运动的周期为TA,坐上宇航员后,宇航员与座椅做简谐运动的周期为TQ,则该宇航员的质量mQ为多少 (用mA、TA、TQ表示)
16.(10分)一列简谐波沿x轴传播,已知轴上x1=2 m处质点P和x2=6.5 m处质点Q的振动图像如图1、图2所示。求:
(1)此列波的波源振动频率;
(2)此列波的传播速率;
(3)若该波沿x轴负方向传播且波长大于5 m,从波传到Q开始计时,t=20 s内P、Q运动的路程差是多少。
17.(10分)如图所示,某玻璃砖的截面由半圆和等腰直角三角形ABC组成,AC是半圆的直径,AC长为2R,一束单色光照射在圆弧面上的D点,入射角为60°,折射光线刚好照射在AB边的中点E,折射光线在AB面上的入射角为45°,光在真空中传播速度为c,求:
(1)玻璃砖对单色光的折射率;
(2)光在玻璃砖中传播的时间(不考虑光在圆弧面上的反射)。
18.(15分)风洞一般称之为风洞试验,依据运动的相对性原理,将飞行器的模型或实物固定在地面人工环境中,人为制造气流流过,以此模拟空中各种复杂的飞行状态,获取实验数据。这是现代飞机、导弹、火箭等研制定型和生产的“绿色通道”。简单地说,风洞就是在地面上人为地创造一个“天空”。如图所示,两根光滑轨道固定在地面上,其中AB段水平且长度为7R,BC段为圆心角为37°的圆弧轨道且半径为5R,圆心在B点正上方。整个装置处在水平向右的风中,在A处固定一个小球1,另一个完全相同的小球2恰好能静止在C处。某时刻由静止释放小球1,经过一段时间后两球发生弹性碰撞,小球2从C处沿轨道飞出。已知两轨道间距离小于小球直径,小球所受风力恒为F,重力加速度大小为g,sin 37°=0.6,cos 37°=0.8。求:
(1)小球2的质量;
(2)小球1与小球2碰撞前瞬间小球1所受轨道的弹力大小;
(3)小球2在碰撞后飞行过程中到地面的最大距离;
(4)小球2落地瞬间风力的瞬时功率。
答案全解全析
全书综合测评
1.A 设中子的质量为m,因为发生的是弹性正碰,动量守恒,机械能守恒,规定初速度的方向为正方向,有:mv1=mv2+Amv,m=m+·Amv2,联立两式解得:=,故A正确,B、C、D错误。
2.D 图甲中一束白光通过三棱镜形成彩色光带是光的折射现象,A错误;图乙中光照射不透明的圆盘,在圆盘的阴影中心出现了一个亮斑是光的衍射现象,B错误;图丙中肥皂膜上出现彩色条纹是光的干涉现象,C错误;图丁中佩戴特殊眼镜观看立体电影利用了光的偏振现象,D正确。
3.A 设喷气前返回舱质量为m,喷气完成后返回舱的质量为m',火箭“喷气”时间极短,有mv1=m'v3+(m-m')v2,代入数据解得m∶m'=125∶124,故选A。
4.C 设每相邻两次闪光的时间间隔为t,则摆球在右侧摆动的周期为T1=16t,在左侧摆动的周期为T2=8t,T1∶T2=2∶1。则2π∶2π=2∶1,解得L1∶L2=4∶1,所以,小钉与悬点的距离s=L1-L2=L。故选C。
5.D 由振动图像可知,在t=0.25 s时,P点振动方向向上,所以波向右传播,由题图知,λ=4 m,T=2 s,则波速v==m/s=2 m/s,故A正确;由题图甲可知,质点L与质点N平衡位置相距半个波长,因此振动情况总是相反,则运动方向总是相反,故B正确;题图甲为t=0.25 s时的波形图,再经过t'=0.5 s=T,即当t=0.75 s时,质点M处于平衡位置,并正在向y轴正方向运动,故C正确;质点K在平衡位置附近来回振动,并不随着波迁移,故D错误。本题选不正确的,故选D。
6.C 设红光在AB面的折射角为α,由折射定律知>,解得sin α<;因为红光的波长最长,折射角最大,所以各色光在AB面的折射角都小于30°,故A说法正确。由几何关系知,各色光射向BC面时,入射角都大于45°,故B说法正确。由临界角公式sin C=知,各色光发生全反射的临界角都小于45°,各色光都在BC面发生全反射,故C说法错误。由于红光射向BC面时的入射角最大,故红光射到AC面时在最下方,故D说法正确。
7.C 设斜面倾角为θ,则物块在斜面上的加速度大小为a=g sin θ;设斜面高度为h,则物块在斜面上滑行的时间为t==;由于∠ABC<∠ACB,可得物块a在AB斜面上的滑行时间比物块b在AC斜面上的滑行时间长。根据I=FΔt可知,两物块所受重力的冲量不相同,选项A错误;根据动量定理可知mg sin θ·t=Δp,代入时间t,可得m=Δp,两物块动量改变量的大小相等,但方向不同,故两物块的动量改变量不相同,选项B错误;根据动能定理可得mgh=ΔEk,两物块的动能改变量相同,选项C正确;两物块到达斜面底端时重力的瞬时功率P=mgv sin θ,则重力的瞬时功率不相同,选项D错误。
8.A 下落过程中,从a到b加速过程的平均速度与从b到c减速过程的平均速度相等,由t=得t1∶t2=hab∶hbc=2∶1,A正确。由a到b为自由落体运动,座椅对游客的力为0,B错误。由a到b的加速度为g,则有2h=,设由b到c加速度为a,则有h=,联立解得a=2g,方向向上,从b到c,设制动力为F,根据牛顿第二定律有F-mg=ma,得F=mg+ma=3mg,C错误。根据自由落体运动规律有2h=,得在b位置的速度大小为vb=2,根据动量定理得,跳楼机和游客总重力的冲量大小为I=Δp=mvb=2m,D错误。
9.CD 图甲是一束复色光进入水珠后传播的示意图,其中a光束在水珠中偏折程度较小,即折射率较小,由n=可知,a光在水珠中传播速度较大,A错误。图乙不是小孔衍射的图样,也不是泊松亮斑,B错误。图丙中的M、N是偏振片,P是光屏。当M固定不动缓慢转动N时,光屏P上光的强度将随之发生变化,即出现偏振现象,只有横波才有偏振现象,表明光波是横波,C正确。图丁是空气中双缝干涉的原理图,若P1到S1、S2的路程差是半波长的偶数倍,说明P点是振动加强的点,则P处是亮纹,D正确。
10.BD 设玻璃砖的折射率为n,根据几何关系可知该单色光在玻璃砖中发生全反射的临界角C满足sin C==,解得n=2,故A错误。如图所示,设光线b在AB面的折射角为α,则根据折射定律有n==2,解得sin α=,根据几何关系可知光线b在BC面的入射角的正弦值等于cos α,并且cos α=>,所以光线b第一次打在BC面上时发生全反射;根据几何关系可知光线b在CD面的入射角等于α,并且sin α<,所以光线b第一次打在CD面上时不能发生全反射,故B正确,C错误。光线b第一次从P点到F点的传播距离为s==,光线b在玻璃砖中的传播速度为v==,光线b第一次从P点传播到F点用时为t==,故D正确。
11.BC t=0时,x=-2 m处的质点与x=2 m处的质点振动方向相同,根据同侧法可知,t=0时,x=2 m处的质点振动方向向下,故A错误;由图可知波长λ=2 m,则波速为v=λf=20 m/s,故D错误;波从x=-2 m质点处传到x=-6 m质点处所需的时间t1= s=0.2 s,因为Δt1=0.175 st2=0.2 s,所以t=0.225 s=2T时,波已经传播到x=5 m质点处。因为x=5 m处的质点与x=1 m处质点位置相同,由同侧法可知t=0 s时x=1 m处质点向上振动,所以t=0.225 s=2T时,x=5 m处质点处于波峰位置,故C正确。
12.BC A与B碰撞的过程为弹性碰撞,则碰撞的过程中动量守恒和机械能守恒,设B的初速度方向为正方向,碰撞后B与A的速度分别为v1和v2,则:mv0=mv1+2mv2,m=m+·2m,联立解得v2=①,若小球A恰好能通过最高点,说明到达最高点时小球的重力提供向心力,设在最高点的速度为vmin,由牛顿第二定律得:2mg=2m·②;A在碰撞后到达最高点的过程中机械能守恒,有2mg·2R=·2m-·2m③;联立①②③解得:v0=,可知若小球A经过最高点,则需要v0≥。若小球A不能到达最高点,则小球不脱离轨道,恰好到达与O等高处时,由机械能守恒定律得:2mg·R=·2m④,联立①④解得:v0=,可知若小球不脱离轨道,需满足:013.答案 (1)11.652(2分) 2.28(2分) (2)(2分) (3)将屏向靠近双缝的方向移动(2分)
解析 (1)测量头读数方法:固定刻度读数+可动刻度读数,所以乙图读数为11.5 mm+0.01×15.2 mm=11.652 mm。
甲图读数:0+0.01×26.0 mm=0.260 mm,相邻亮纹的间距Δx= mm≈2.28 mm。
(2)由双缝干涉条纹间距公式可得Δx=λ,变形可得λ=。
(3)若想增加从目镜中观察到的条纹个数,即减小Δx,分析公式Δx=λ可知,将屏向靠近双缝的方向移动即可。
14.答案 (1)>(2分) (2)M(2分) N(2分)
(3)=+(2分)
解析 (1)为防止碰撞后入射球反弹,则要求入射球的质量大于被碰球的质量,即ma>mb。
(2)由实验步骤④可知,将被碰球b静止放置在水平槽的末端,将入射球a从斜轨上A点由静止释放,使两球相撞,则碰撞后入射球的速度较小,而被碰球速度较大,故球a落点为M点,球b落点为N点。
(3)由平抛运动规律有:x=vt,h=gt2,所以v=,当水平位移相等时,v与成正比(与竖直位移的二次方根成反比)。
动量守恒要验证的式子是m1v0=m1v1+m2v2
即=+。
15.答案 (1),方向向左 ω= (2)
解析 (1)设空座椅偏离平衡位置向右的位移为x时的加速度大小为a,由胡克定律和牛顿第二定律有2kx=mAa①(1分)
解得a=②(1分)
此时座椅所受合外力方向向左,所以加速度方向向左。(1分)
取向右为正方向,则由②式和题给表达式可得
+ω2x=0③(2分)
解得ω=④(1分)
(2)由④式和题给表达式可得TA=2π⑤(1分)
同理可得TQ=2π⑥(1分)
联立⑤⑥解得mQ=⑦(1分)
16.答案 (1)0.25 Hz (2)见解析 (3)0.15 m
解析 (1)波源振动频率f==0.25 Hz(2分)
(2)若波沿x轴正方向传播,则P、Q之间距离为(n+)λ(1分)
波从P传播到Q经历的时间为(n+)T
所以v== m/s(n=0,1,2…)(1分)
若波沿x轴负方向传播,则P、Q之间距离为λ(1分)
波从Q传播到P经历的时间为T
所以v== m/s(n=0,1,2…)(1分)
(3)若该波沿x轴负方向传播且波长大于5 m,则
T则波传到Q、P的时间差为Δt==3 s(1分)
从波传到Q开始计时,t=20 s内P、Q运动的路程
sQ=×4A=1 m(1分)
sP=×4A=0.85 m(1分)
路程差为Δs=sQ-sP=0.15 m(1分)
17.答案 (1) (2)
解析 (1)由几何关系可知,△AEO为等腰直角三角形,则有
EO=AO·sin 45°=R(1分)
又由正弦定理可得=(1分)
联立解得D点的折射角r=∠EDO=30°(1分)
由折射定律得n===(1分)
(2)由 sin C=可知,光在AB面和BC面发生全反射,光路图如图所示
由几何关系可得∠EOD=105°,(1分)
由正弦定理得=(1分)
解得ED=(1分)
由光路图及对称性可知,光在玻璃砖中通过的路程为
s=2+R=(+2)R(1分)
则光在玻璃砖中传播的时间为
t===(2分)
18.答案 (1) (2) (3)3.34R (4)
解析 (1)对恰好静止时的小球2进行受力分析,在沿切线方向有
F cos 37°=mg sin 37°(1分)
解得m=(1分)
(2)小球1从开始运动至与小球2碰撞前瞬间,设碰撞前瞬间小球1的速度大小为v,由动能定理得
F(7R+5R sin 37°)-mg(5R-5R cos 37°)=mv2(1分)
解得v=
在碰前瞬间,对小球1受力分析,由牛顿第二定律得
FN-mg cos 37°=(1分)
解得FN=(1分)
(3)小球2与小球1发生弹性碰撞,由动量守恒、能量守恒可知
m1v+0=m1v1+m2v'(1分)
m1v2+0=m1+m2v'2(1分)
由于m1=m2
解得v1=0,v'=v(1分)
两球发生速度交换,小球1静止在C处,小球2以v斜向右上方飞出,小球2飞出时的水平分速度vx=v cos 37°
小球2飞出时的竖直分速度vy=v sin 37°
小球2在竖直方向先做匀减速运动,设达到最高点上升高度为h,由运动学公式可知h==(1分)
则距离地面的最大高度
H=h+(5R-5R cos 37°)=+R=3.34R(1分)
(4)设小球2从飞出至达到最高点历时为t1,由运动学公式可知
t1==(1分)
设小球2从最高点至落地,历时为t2,由运动学公式可知
t2==(1分)
在水平方向,由牛顿第二定律可知F=max
解得ax=(1分)
由运动学公式可知,小球2落地瞬间的水平分速度
v2=v cos 37°+ax(t1+t2)(1分)
风力的瞬时功率P=Fv2=(1分)
14