第二章 圆周运动 综合拔高练(含答案解析)

文档属性

名称 第二章 圆周运动 综合拔高练(含答案解析)
格式 docx
文件大小 332.8KB
资源类型 试卷
版本资源 粤教版(2019)
科目 物理
更新时间 2025-07-24 16:52:21

图片预览

文档简介

第二章 圆周运动
综合拔高练
五年高考练
               
考点1 描述圆周运动各物理量之间的关系
1.(2021全国甲,15)“旋转纽扣”是一种传统游戏。如图,先将纽扣绕几圈,使穿过纽扣的两股细绳拧在一起,然后用力反复拉绳的两端,纽扣正转和反转会交替出现。拉动多次后,纽扣绕其中心的转速可达50 r/s,此时纽扣上距离中心1 cm处的点向心加速度大小约为 (  )
               
A.10 m/s2 B.100 m/s2
C.1 000 m/s2 D.10 000 m/s2
2.(2021广东,4)由于高度限制,车库出入口采用如图所示的曲杆道闸。道闸由转动杆OP与横杆PQ链接而成,P、Q为横杆的两个端点。在道闸抬起过程中,杆PQ始终保持水平。杆OP绕O点从与水平方向成30°匀速转动到60°的过程中,下列说法正确的是(  )
A.P点的线速度大小不变
B.P点的加速度方向不变
C.Q点在竖直方向做匀速运动
D.Q点在水平方向做匀速运动
考点2 水平面内的圆周运动
3.(2021河北,9)(多选)如图,矩形金属框MNQP竖直放置,其中MN、PQ足够长,且PQ杆光滑。一根轻弹簧一端固定在M点,另一端连接一个质量为m的小球,小球穿过PQ杆。金属框绕MN轴分别以角速度ω和ω'匀速转动时,小球均相对PQ杆静止。若ω'>ω,则与以ω匀速转动时相比,以ω'匀速转动时 (  )
A.小球的高度一定降低
B.弹簧弹力的大小一定不变
C.小球对杆压力的大小一定变大
D.小球所受合外力的大小一定变大
4.(2022山东,8)无人配送小车某次性能测试路径如图所示,半径为3 m的半圆弧BC与长8 m的直线路径AB相切于B点,与半径为4 m的半圆弧CD相切于C点。小车以最大速度从A点驶入路径,到适当位置调整速率运动到B点,然后保持速率不变依次经过BC和CD。为保证安全,小车速率最大为4 m/s,在ABC段的加速度最大为2 m/s2,CD段的加速度最大为1 m/s2。小车视为质点,小车从A到D所需最短时间t及在AB段做匀速直线运动的最长距离l为 (  )
A.t= s,l=8 m
B.t= s,l=5 m
C.t= s,l=5.5 m
D.t= s,l=5.5 m
5.(2022辽宁,13,节选)2022年北京冬奥会短道速滑混合团体2 000米接力决赛中,我国短道速滑队夺得中国队在本届冬奥会的首金。
如果把运动员在弯道滑行的过程看作轨迹为半圆的匀速圆周运动,如图所示,若甲、乙两名运动员同时进入弯道,滑行半径分别为R甲=8 m、R乙=9 m,滑行速率分别为v甲=10 m/s、v乙=11 m/s,求甲、乙过弯道时的向心加速度大小之比,并通过计算判断哪位运动员先出弯道。
考点3 竖直平面内的圆周运动
6.(2020课标Ⅰ,16)如图,一同学表演荡秋千。已知秋千的两根绳长均为10 m,该同学和秋千踏板的总质量约为50 kg。绳的质量忽略不计。当该同学荡到秋千支架的正下方时,速度大小为8 m/s,此时每根绳子平均承受的拉力约为 (  )
A.200 N B.400 N C.600 N D.800 N
7.(2019天津,10,节选)完全由我国自行设计、建造的国产新型航空母舰已完成多次海试,并取得成功。航母上的舰载机采用滑跃式起飞,故甲板是由水平甲板和上翘甲板两部分构成,如图1所示。为了便于研究舰载机的起飞过程,假设上翘甲板BC是与水平甲板AB相切的一段圆弧,示意如图2,AB长L1=150 m,BC水平投影L2=63 m,图中C点切线方向与水平方向的夹角θ=12°(sin 12°≈0.21)。若舰载机从A点由静止开始做匀加速直线运动,经t=6 s到达B点进入BC。已知飞行员的质量m=60 kg,g=10 m/s2,求舰载机刚进入BC时,飞行员受到竖直向上的压力FN多大。
考点4 圆周运动与平抛运动的结合
8.(2022河北,10)(多选)如图,广场水平地面上同种盆栽紧密排列在以O为圆心、R1和R2为半径的同心圆上,圆心处装有竖直细水管,其上端水平喷水嘴的高度、出水速度及转动的角速度均可调节,以保障喷出的水全部落入相应的花盆中。依次给内圈和外圈上的盆栽浇水时,喷水嘴的高度、出水速度及转动的角速度分别用h1、v1、ω1和h2、v2、ω2表示。花盆大小相同,半径远小于同心圆半径,出水口截面积保持不变,忽略喷水嘴水平长度和空气阻力。下列说法正确的是(  )
A.若h1=h2,则v1∶v2=R2∶R1
B.若v1=v2,则h1∶h2=∶
C.若ω1=ω2,v1=v2,喷水嘴各转动一周,则落入每个花盆的水量相同
D.若h1=h2,喷水嘴各转动一周且落入每个花盆的水量相同,则ω1=ω2
高考模拟练
应用实践
1.如图所示,光滑的凸轮绕O轴匀速转动,C、D是凸轮边缘上的两点,AB杆被限制在竖直方向移动,杆的下端A在O点正上方与凸轮边缘接触且被托住。凸轮位于图示位置时,AB杆正在上升。则 (  )
A.凸轮绕O轴沿逆时针方向旋转
B.凸轮上C、D两点线速度大小相等
C.凸轮上C、D两点角速度大小相等
D.凸轮上C、D两点向心加速度大小相等
2.
如图所示为某汽车大卖场测试汽车过拱形桥性能的场景,若拱形桥简化为圆弧形桥,测得圆弧形拱桥两底端间的水平距离为24 m,圆弧顶离地面的高为6 m,重力加速度g取10 m/s2,汽车行驶到桥顶时对桥的压力恰好为零,则汽车在桥顶时速度的大小为 (  )
A.5 m/s B.5 m/s
C.10 m/s D.15 m/s
3.
(多选)如图所示,内壁粗糙的“V”形漏斗绕竖直转轴OO'以恒定的角速度匀速转动。在内侧壁上有两个完全相同的小物块a、b相对于漏斗始终静止。已知a到底端O的距离是b到底端O的距离的2倍,则下列说法正确的是 (  )
A.a所受摩擦力方向沿侧壁向上
B.侧壁对a的支持力等于b所受支持力的2倍
C.侧壁对a的摩擦力可能与b所受摩擦力的大小相等
D.侧壁对a的作用力一定大于a的重力
4.(多选)如图所示,用长为L的轻绳(轻绳不可伸长)连接的甲、乙两物块(均可视为质点),放置在水平圆盘上,甲、乙连线的延长线过圆盘的圆心O,甲与圆心O的距离也为L,甲、乙两物体的质量均为m,与圆盘间的动摩擦因数均为μ,物块与圆盘间的最大静摩擦力等于滑动摩擦力,甲、乙始终相对圆盘静止,则下列说法中正确的是 (  )
A.圆盘转动的角速度为 时,轻绳开始有张力
B.轻绳最大弹力为μmg
C.轻绳最大弹力为μmg
D.圆盘转动的角速度最大为
5.如图所示,一个可视为质点的小物块从水平平台上的P点以初速度5 m/s向右滑动,小物块与水平平台间的动摩擦因数为0.45,小物块运动到 A点时以4 m/s的速度水平抛出,当小物块运动至B点时,恰好沿切线方向进入半径为2.75 m的固定圆弧轨道BC,圆弧轨道的圆心角∠BOC=37°。小物块滑动至C点时,对圆弧轨道C点的压力为25.4 N。然后小物块滑到与C端切线平齐的长木板上。已知长木板与地面间的动摩擦因数为0.2,小物块与长木板之间的动摩擦因数为0.5,小物块的质量为1.1 kg,长木板的质量为3.9 kg,最大静摩擦力等于滑动摩擦力,g=10 m/s2,sin 37°=0.6,cos 37°=0.8。
(1)求水平平台上P点到A点的距离l。
(2)求小物块运动至B点时的速度大小。
(3)长木板至少为多长时才能保证小物块不滑出长木板
迁移创新
6.在模拟试验中,月球探测器(如图甲)能够在自动导航系统的控制下行走,且每隔10 s向地球发射一次无线电信号。探测器上还装有两套相同的使探测器获得加速度的装置(简称减速器,其中一个备用)。某次试验中探测器的自动导航系统出现故障,从而使探测器只能匀速直线前进而不能自动避开障碍物,此时地面控制人员就需要进行人工遥控操作。下表为地面操控中心显示屏上的部分数据:
(
收到信号时间
与前方障碍物距离
/
m
 9
:
10
:
20
52     
 9
:
10
:
30
32     
发出指令时间
给减速器指令加速度大小
/
m·s
-2
 9
:
10
:
33
2     
收到信号时间
与前方障碍物距离
/
m
 9
:
10
:
40
12     
)
已知月球距地球约为r =3.0×105 km,控制中心接收到信号到控制人员发出指令最少需要Δt = 3 s时间。前方障碍物相对探测器极大,可将该情况简化为探测器正垂直驶向无限大的障碍物(如图乙)。
回答以下问题:
(1)通过对显示屏上的数据分析,你认为减速器是否执行了9:10:33发出的减速指令
(2)分析说明为避免本次碰撞,在加速度大小相同的情况下,发出下列哪种指令更安全
①做匀速圆周运动;②做匀减速直线运动。
(3)若你是控制中心人员,在9:10:40接收到信号后,应该怎么做 若发出指令②,给减速器设定的加速度需要满足什么条件
答案与分层梯度式解析
第二章 圆周运动
综合拔高练
五年高考练
1.C 纽扣上各点绕其中心做圆周运动的角速度相等,已知n=50 r/s,则an=ω2r=(2πn)2r=4×π2×502×1×10-2 m/s2≈1×103 m/s2,选项C正确。
2.A 由题意知,P以O点为圆心、OP为半径做匀速圆周运动,Q点也做匀速圆周运动,设其圆心为A,AQ为半径,如图所示。由v=ωr、a=ω2r知,P、Q的线速度和向心加速度大小不变,方向时刻变化,故选项A正确,B错误。Q点在竖直面内做匀速圆周运动,其水平、竖直方向上的分速度大小一直在变化,故选项C、D错误。故选A。
3.BD 对小球受力分析,假设在图示位置PQ杆对小球的弹力向右,如图:
竖直方向:
T cos θ=mg ①
水平方向:
T sin θ-N=mω2r ②
对①式,若θ减小,则cos θ增大,弹簧弹力T增大,①式不成立;若θ增大,则cos θ减小,T减小,①式不成立,所以不管ω怎样变化,θ都不变,即小球的高度不变,弹簧的弹力大小一定不变,故A错误,B正确。
由②式得N=T sin θ-mω2r,由于没有给定ω'的值,所以N的大小变化不能确定,由牛顿第三定律知C错误。
小球所受的合外力充当向心力,F合=mω2r,ω增大,F合增大,故D正确。
4.B 根据a=可知,在BC段、CD段的最大速率分别为vBC== m/s,vCD==2 m/s,在BC段、CD段的速率不变,因此在两圆弧段运动的最大速率v=2 m/s,通过两圆弧的时间为t2=+= s,小车从A点以最大速率v0=4 m/s匀速经过一段距离l之后开始减速,恰好到B点时速率为2 m/s,根据匀变速直线运动规律得v2-=-2a1(8 m-l),解得l=5 m,在AB段经历时间t1=+= s,因此总时间为t= s,选项B正确。
5.答案  甲
解析 根据向心加速度的表达式有a=
可得甲、乙的向心加速度之比为=×=
甲、乙两运动员做匀速圆周运动,则运动的时间为t甲=,t乙=
代入数据可得甲、乙运动的时间为t甲= s,t乙= s
因t甲6.B 该同学荡秋千可视为做圆周运动,设每根绳子的拉力大小为F,以该同学和秋千踏板整体为研究对象,根据牛顿第二定律得2F-mg=,代入数据解得F=405 N,故每根绳子平均承受的拉力约为400 N,故B项正确,A、C、D项错误。
7.答案 1.1×103 N
解析 舰载机由静止开始做匀加速直线运动,设其刚进入上翘甲板时的速度为v,则有
L1=·t ①
设上翘甲板所对应的圆弧半径为R,根据几何关系,有
L2=R sin θ ②
由牛顿第二定律,有
FN-mg=m ③
联立①②③式,代入数据,得
FN=1.1×103 N④
8.BD 根据平抛运动规律有h=gt2、R=v0t,若h1=h2,则喷出去的水在空中运动时间相等,所以=,选项A错误;根据平抛运动规律,得=,若v1=v2,化简得=,选项B正确;浇水时水的流量Q=Sv0,其中S是出水口横截面积,浇水一周总水量为V总=Q·=S·v0,若ω1=ω2,v1=v2,则总水量相同,但半径越大,摆放的花盆越多,所以落入每个花盆的水量越小,选项C错误;设每个花盆的直径大小为d,则半径为R的圆上能摆放的盆数为n=,浇水一周总水量V总=Q·=SR,落入每个花盆的水量V0==,若h1=h2,落入每个花盆的水量相同,则ω1=ω2,选项D正确。
高考模拟练
1.C 由题知,AB杆正在上升,可知A点到轴心的距离在增大,故可判断凸轮的转动方向为顺时针,选项A错误;凸轮上C、D两点属于同轴转动,所以角速度相等,但它们到轴O的距离不同,由v=rω可得,线速度大小不相等,选项B错误,C正确;凸轮上C、D两点的角速度相等,但它们到轴O的距离不同,由an=rω2可得,加速度大小不相等,选项D错误。
2.B 设桥的半径为R,由几何关系可知R2=(12 m)2+(R-6 m)2,解得R=15 m;在桥的最高点,有mg=m,得v==5 m/s,选项B正确,A、C、D错误。
3.CD 设a、b质量均为m,a做匀速圆周运动的半径为2r,角速度为ω,内壁的倾角为θ,如图甲所示,取沿内壁向下为正方向,则侧壁对a、b的摩擦力分别为Ffa=mg sin θ-mω2·2r cos θ,Ffb=mg sin θ-mω2rcos θ,所以Ffa不一定沿侧壁向上,且根据数学知识可知,当Ffa<0且Ffb>0时,负值表示方向与规定正方向相反,Ffa和Ffb的大小可能相等,故A错误,C正确;同前面分析可知,侧壁对a、b的支持力大小为FNa=mg cos θ+mω22r sin θ,FNb=mg cos θ+mω2r sin θ≠2FNa,故B错误;侧壁对a的作用力与a的重力的合力F提供向心力,如图乙所示,根据几何关系可知F一定大于mg,故D正确。
4.CD 当ω较小时,甲、乙均由静摩擦力提供向心力,由F=mω2r可知,ω增大,物块受到的静摩擦力也增大,而乙的运动半径大于甲的运动半径,所以乙受到的静摩擦力先达到最大,有μmg=m(2L)ω2,解得ω=,此后ω继续增大,要保证乙不滑动,轻绳开始产生弹力,选项A错误;角速度继续增大,甲受到的静摩擦力继续增大,直到甲受到的静摩擦力也达到最大,此时ω最大,轻绳中的张力T也最大,对乙有Tm+μmg=m·2L,对甲有μmg-Tm=m·L,故圆盘转动的角速度最大为ωm=,轻绳弹力最大为Tm=,选项C、D正确,B错误。
5.答案 (1)1 m (2)5 m/s (3)3.6 m
解析 (1)小物块从P点运动到A点做匀减速直线运动,加速度大小a=μg=0.45×10 m/s2=4.5 m/s2
根据公式-=2ax可得-=-2al,代入数据解得l=1 m
(2)进入圆弧轨道时,小物块的速度方向与水平面的夹角为37°,有cos 37°=
则小物块运动到B点时的速度vB=5 m/s
(3)小物块运动到C点时,有FN-mg=
解得vC=6 m/s
长木板与地面间的最大静摩擦力f1=μ1(M+m)g=10 N,由题意可知小物块与长木板间的摩擦力f2=μ2mg=5.5 N
因为f1>f2,所以小物块在长木板上滑动时,长木板静止不动。设小物块在长木板上做匀减速运动,运动至长木板最右端时速度刚好为0,则长木板长度s==3.6 m,所以长木板至少为3.6 m时才能保证小物块不滑出长木板。
6.答案 见解析
解析 (1)在第一个10 s内,探测器的位移为20 m,第二个10 s内位移也是20 m,故减速器没有执行减速指令。
(2)设探测器速度为v,加速度大小为a
做匀速圆周运动时,根据a=
得R=
做匀减速直线运动时,根据v2=2ax
得x=
由于R > x,故发出指令②更安全。
(3)因减速器没有执行减速指令,故应启用备用减速设备。
探测器速度v== m/s=2 m/s
地月间电磁波传输时间t1==1 s
9:10:40接收到信号时,探测器与障碍物间的距离为x1=12 m- vt1=10 m
经Δt=3 s发出指令,指令传输时间为1 s,所以探测器接收到指令时与障碍物间的距离为
x=10 m-2×(3+1) m=2 m
设指令加速度大小为a',恰好至障碍物前停止,则v2=2a'x
得a'=1 m/s2
故加速度应满足a≥1 m/s2