《直线与平面垂直的判定》教学设计与反思
《直线与平面垂直的判定》的教学设计
(一)、内容及其解析
直线与平面垂直是直线和平面相交中的一种特殊情况,它是空间中直线与直线垂直位置关系的拓展,又是平面与平面垂直的基础,是空间中垂直位置关系间转化的重心,同时它又是直线和平面所成的角、直线与平面、平面与平面距离等内容的基础,因而它是空间点、直线、平面间位置关系中的核心概念之一。
直线与平面垂直定义中的“任意一条直线”就是“所有直线”。定义本身也表明了直线与平面垂直的意义,即如果一条直线垂直于一个平面,那么这条直线就垂直于这个平面内的所有直线。进一步可以看出,在直线与平面垂直的判定定理中,把原来定义中要求与任意一条(无限)直线垂直转化为只要与两条(有限)相交直线垂直就行了,使直线与平面垂直的判定简捷而又具有可操作性。
对直线与平面垂直的定义的研究遵循“直观感知、抽象概括”的认知过程展开,而对直线与平面垂直的判定的研究则遵循“直观感知、操作确认、归纳总结、初步运用”的认知过程展开,通过该内容的学习,进一步培养学生空间想象能力和几何直观能力,发展学生的合情推理能力、一定的推理论证能力和运用图形语言进行交流的能力。同时体验和感悟转化的数学思想,即“空间问题转化为平面问题”,“无限问题转化为有限问题”,“直线与直线垂直和直线与平面垂直的相互转化”。
教学重点:直观感知、操作确认,概括出直线与平面垂直的定义和判定定理。
(二)、目标及其解析
1、目标:理解直线与平面垂直的意义,掌握直线与平面垂直的判定定理。
2、解析:(1)借助对图片、实例的观察,抽象概括出直线与平面垂直的定义;(2)通过直观感知、操作确认,归纳出直线与平面垂直的判定定理;(3)能运用直线与平面垂直的判定定理,证明与直线和平面垂直有关的简单命题(在平面内选择两条相交直线,证明它们与平面外的直线垂直);(4)能运用直线与平面垂直定义证明两条直线垂直。
(三)、教学问题诊断分析
学生已经学习了直线、平面平行的判定及性质,学习了两直线(共面或异面)互相垂直的位置关系,有了“通过观察、操作并抽象概括等活动获得数学结论”的体会,有了一定的空间想象能力、几何直观能力和推理论证能力。
在直线与平面垂直的判定定理中,学生对为什么要且只要两条相交直线的理解有一定的困难,因为定义中“任一条直线”指的是“所有直线”,这种用“有限”代替“无限”的过程导致学生形成理解上的思维障碍。同时,由于学生的空间想象能力、推理论证能力有待进一步加强,在直线与平面垂直判定定理的运用中,不知如何选择已知平面内的两条相交直线来证直线与平面线垂直,或选择与直线垂直的平面证明直线与直线垂直,导致证明过程中无从着手或发生错误。
教学难点:操作确认并概括出直线与平面垂直的判定定理及其初步运用。
(四)、教学支持条件分析
为了有效实现教学目标,适时应用多媒体课件,三角板等实物教具。学生也要自备三角形纸片、三角板、笔(表直线)、课本(表平面)等学具。
(五)、教学过程设计
1、教学基本流程
2、教学情境
(1)、观察归纳直线与平面垂直的定义
①直观感知
问题1:请同学们观察图片(多媒体展示),说出旗杆与地面、大桥桥柱与水面是什么位置关系?你能举出一些类似的例子吗?
设计意图:从实际背景出发,直观感知直线和平面垂直的位置关系,从而建立初步印象,为下一步的数学抽象做准备。
师生活动:观察图片,引导学生举出更多直线与平面垂直的例子,如教室内直立的墙角线和地面的位置关系,直立书的书脊与桌面的位置关系等,由此引出课题。
②、观察归纳
思考1:直线和平面垂直的意义是什么?
我们已经学过直线和平面平行的判定和性质,知道直线和平面平行的问题可转化为考察直线和平面内直线平行的关系, 直线和平面垂直的问题同样可以转化为考察直线和平面内直线的关系。
问题2:(1)如图1,在阳光下观察直立于地面旗杆AB及它在地面的影子BC,旗杆所在的直线与影子所在直线的位置关系是什么?(2)旗杆AB与地面上任意一条不过旗杆底部B的直线B'C'的位置关系又是什么?由此可以得到什么结论?
设计意图:引导学生用“平面化”与“降维”的思想来思考问题,通过观察思考,感知直线与平面垂直的本质内涵。
师生活动:学生思考作答, 教师用多媒体课件演示旗杆在地面上的影子随着时间的变化而移动的过程,再引导学生根据异面直线所成角的概念得出旗杆所在直线与地面内的任意一条直线都垂直。
问题3:如图2,AC、AD是用来固定旗杆AB的铁链,它们与地面内任意一条直线都垂直吗?
设计意图:通过反面剖析,进一步感悟直线与平面垂直的本质。
师生活动:引导学生将三角板直立于桌面上,用一直角边作旗杆AB,斜边作为铁链AC,观察桌面上的直线(用笔表示)是否与AC垂直,由此否定上述结论。
问题4:通过上述观察分析,你认为应该如何定义一条直线与一个平面垂直?
设计意图:让学生归纳、概括出直线与平面垂直的定义。
师生活动:学生回答,教师补充完善,指出定义中的“任意一条直线”与“所有直线”是同意词,同时给出直线与平面垂直的记法与画法。
③、辨析讨论
辨析1:下列命题是否正确,为什么?
(1)如果一条直线垂直于一个平面内的无数条直线,那么这条直线与这个平面垂直。
(2)如果一条直线垂直一个平面,那么这条直线就垂直于这个平面内的任一直线。
设计意图:通过问题辨析与讨论,加深概念的理解,掌握概念的本质属性。由(1)使学生明确定义中的“任意一条直线”是“所有直线”的意思。由(2)使学生明确,直线与平面垂直的定义既是判定又是性质,“直线与直线垂直”和“直线与平面垂直”可以相互转化。
师生活动:命题(1)判断中引导学生用笔表直线,用三角板两直角边表两垂直直线,用书本表平面举出反例。教师利用三角板和一根棍子进行演示,将一块大直角三角板的一条直角边AC放在黑板面上,这时另一条直角边BC就和黑板面的一条直线(即三角板与黑板面的交线AC)垂直,在此基础上,在黑板面上放一根和AC平行的棍子EF并平行移动,那么BC始终和EF垂直,但BC不一定和黑板面垂直,最后教师给出反例的直观图。并指出它是判断直线与直线垂直的常用方法,它将直线与直线垂直的问题转化为判定一条直线垂直于另一条直线所在的平面。
(2)、探究发现直线与平面垂直的判定定理
①、分析实例
思考2:我们该如何检验学校广场上的旗杆是否与地面垂直?
虽然可以根据直线与平面垂直的定义判定直线与平面垂直,但由于利用定义判定直线与平面垂直需要考察平面内的每一条直线与已知直线是否垂直,这种方法实际上难以实施,因为我们无法去一一检验。因而有必要寻找一个便捷、可行的判断直线和平面垂直的方法。
问题5:如课件上的图片,观察跨栏、简易木架等实物,你认为其竖杆能竖直立于地面的原因是什么?
设计意图:通过图片观察思考,感知判定直线与平面垂直时只需平面内有限条直线(两条相交直线),从中体验有限与无限之间的辩证关系。
师生活动:引导学生观察思考,师生共同分析竖杆能竖直立于地面的原因(即它固定在两相交横杆上且与两横杆垂直)。
②、操作确认
实验:如图5,请同学们拿出准备好的一块(任意)三角形的纸片,我们一起来做一个试验:过△ABC的顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放置在桌面上,(BD、DC与桌面接触).
问题6:(1)折痕AD与桌面垂直吗?(2)如何翻折才能使折痕AD与桌面所在的平面垂直?
设计意图:通过观察试验,分析折痕AD与桌面不垂直的原因,探究发现折痕AD与桌面垂直的条件。
师生活动:在折纸试验中,学生会出现“垂直”与“不垂直”两种情况,引导学生进行交流,根据直线与平面垂直的定义分析“不垂直”的原因。学生再次折纸,经过讨论交流,发现当且仅当折痕AD是BC边上的高,即AD⊥BC,翻折后折痕AD与桌面垂直。
问题7: 如图6,由折痕AD⊥BC,翻折之后垂直关系,即AD⊥CD,AD⊥BD发生变化吗?由此你能得到什么结论?
设计意图:引导学生发现折痕AD与桌面垂直的条件,即AD垂直桌面内两条相交直线。
师生活动:师生共同分析折痕AD是BC边上的高时的实质,即AD是BC边上的高时,翻折之后垂直关系不变,即AD⊥CD,AD⊥BD。这就是说,当AD垂直于桌面内的两条两条相交直线CD、BD时,它就垂直于桌面。
问题8:(1)如图7,把AD、BD、CD抽象为直线l、m、n,把桌面抽象为平面α,直线l与平面α垂直的条件是什么?(2)如图8,若α内两条相交直线m,n与l无公共点,且l⊥m,l⊥n,直线l还垂直平面α吗?由此你能给出判定直线与平面垂直的方法吗?
设计意图:让学生归纳出直线与平面垂直的判定定理,并能用符号语言准确表示,使学生明白要判断一条直线与一个平面是否垂直,取决于在这个平面内能否找到两条相交直线和已知直线垂直,至于这两条相交直线是否和已知直线有公共点是无关紧要的。
师生活动:学生叙述结论,不完善的地方教师引导、补充完整,并结合“两条相交直线确定一个平面”的事实作简要说明。然后让学生用图形语言与符号语言来表示定理。指出定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。
③、质疑深化
辨析2:下列命题是否正确,为什么?
如果一条直线与一个梯形的两条边垂直,那么这条直线垂直于梯形所在的平面。
设计意图:通过辨析,强化定理中“两条相交直线”的条件。
师生活动:学生思考作答,教师再次强调“相交”条件。
(3)、初步应用
例1、求证:与三角形的两条边同时垂直的直线必与第三条边垂直。
设计意图:初步感受如何运用直线与平面垂直的判定定理与定义解决问题,明确运用判定定理的条件。
师生活动:学生根据题意画图,将其转化为几何命题:△ABC中,a⊥AC,a⊥BC,求证:a⊥AB。请两位同学板演,其余同学在练习本上完成,师生共同评析,明确运用线面垂直判定定理时的具体步骤,防止缺少条件,特别是“相交”的条件。
例2、如图10,已知a∥b,a⊥α,求证:b⊥α。
设计意图:进一步感受如何运用直线与平面垂直的判定定理或用定义证明直线与平面垂直,体会空间中平行关系与垂直关系的转化与联系。
师生活动:教师引导学生分析思路,可用判定定理证,也可利用定义证,提示辅助线的添法。学生在练习本上完成,对照课本P73例1,完善自己的解题步骤。让学生用文字语言叙述:如果两条平行直线中的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面。指出:命题体现了平行关系与垂直关系的联系,其结果可以作为直线和平面垂直的又一个判定方法。
(4)、目标检测:
如图11,在正方体ABCD-ABCD中,E、F分别是A A、C C的中点,判断下列结论是否正确:
① AC⊥面CDDC ② AC⊥面BDDB ③ EF⊥面BDDB ④ AC⊥BD
设计意图:利用所学知识解决直线与平面垂直的有关问题,体会转化思想在解决问题中的作用。其中①是定义的应用,②是判定定理的应用,③是例2结论的应用,④是判定定理与定义的应用。
师生活动:学生思考讨论,请一位同学用投影仪展示并分析其思路,教师参与讨论。
(5)、作业
1、如图,点P是平行四边形ABCD所在平面外一点,O是对角线AC与BD的交点,且PA=PC,PB=PD. 求证:PO⊥平面ABCD。
2、课本P74 练习1
3、课本P73 探究题:在直四棱柱A'B'C'D'-ABCD(侧棱与底面垂直的棱柱称为直棱柱)中,底面四边形满足什么条件时,A'C⊥B'D'?
4、设计一个检验学校广场上的旗杆是否与地面垂直的方案,写出实施步骤和依据。
设计意图:通过训练,巩固本课所学知识,感悟其中蕴涵的转化数学思想,增强学生的应用意识。其中第1题主要运用直线与平面垂直的判定定理,第2、3题是活用直线与平面垂直的定义与判定定理,第4题前后呼应,为解决课中给出的问题提供各种方案,是本课所学知识的实际应用。
二、《直线与平面垂直的判定》的教学反思
直线与平面垂直是直线与平面相交中的一种特殊情况。它既是线线垂直的拓展,也是学习面面垂直的基础,同时它也为研究线面角、二面角、点到平面的距离、直线到平面的距离、两个平行平面间的距离等内容进行了必要的知识准备。因此它不仅是连接线线垂直和面面垂直的纽带,也是空间中点、线、面位置关系的核心内容。
本节课主要研究了直线与平面垂直的定义、判定定理以及它们初步应用,并在此过程中渗透了类比、猜想、归纳等方法,让学生从中体会将空间问题转化为平面问题,将无限转化为有限,将线面垂直转化为线线垂直的化归思想。
通过借助多媒体辅助教学,采用“引导—探究式”教学方法。整个教学过程遵循“直观感知—操作确认—归纳总结”的认知规律,注重发展学生的合情推理能力,降低几何证明的难度,同时,加强空间观念的培养,注重知识产生的过程性。
1、学生是有直线与平面垂直现象的经验,但要让学生回答什么是直线与平面垂直却有一定的困难。所以,如何让学生对线面垂直的认识由感性上升到理性是需要突破的关键,但不宜直接告诉学生定义的内容,而应把它放到了具体的情境中让学生自己去感受和体会。通过学生对旗杆和它在地面内影子的位置关系的观察,让学生亲自参与定义的构建过程,并通过辨析深化对定义的理解,使定义本身变得具体生动,这样就避免了学生死记硬背概念,有利于理解数学概念的本质。再通过对定义中的“任意一条直线”能否换成“无数条直线”问题的探讨,使学生对定义的认识经一步深化。
2、线面垂直的判定定理不易发现,在教学中,通过创设问题情境引起学生思考,安排折纸试验,讨论交流,给学生充分活动的时间与空间,帮助学生从自己的实践中获取知识。教师尽量少讲,学生能做的事就让他们自己去做,使学生更好的参与教学活动,展开思维,体验探索的乐趣,增强学习数学的兴趣。
3、了解学生基本情况是进行教学设计和实施教学的重要条件。在设计和实施教学时,不仅关注概念的形成,而且充分关注知识间的联系以及知识所体现出来的思想方法。但是,如果设计离学生原有的认知环境、认知水平有较大差异的话,在教学实施时是很难达到预期目标的。因此,进行教学设计时,应充分重视了解学生、根据学生的认知水平设计问题的重要性。
4、数学内容的地位与作用决定教学目标,教学目标的份量产生教学重点。如果不明确教学过程中的数学内容,或者不明确数学内容的地位与作用,我们就不可能制定出恰当的教学目标,就不可能通过教学培养学生的能力与素质。因此,对教学内容的解析,不仅可以明确内容中所涉数学概念的核心是什么,概念是否是核心概念,而且还是确定教学目标的依据。但有些情况下教学目标是不唯一的,不同目标在教学中所占的份量(或比重)也是不同的。因此,按照各教学目标所占的份量来产生教学重点就是一件自然的事情。
5、教学过程的设计,必须紧密围绕教学目标,特别是教学重点。设计问题串引导学生思考是教学过程设计的重点之一,设计的指导思想是有利于以最小的教学资源(如教学时间)来达成教学目标,也就是说所设计的问题必须紧密围绕教学目标,必须始终关注学生的知识构建和思想方法的提炼。
本节课的教学达到了预期目标,学生基本上能知道直线与平面垂直的判定定理的内容,会注意到定理中的三个条件一个都不能少。通过例题的讲解,学生知道了证明直线与平面垂直的方法,一种是利用定义,一种是运用判定定理,而利用判定定理关键是要去平面内去找两条条直线与已知直线垂直线。因此,在几何课的教学中,要尽可能地让学生自己动手和观察,自主发现问题,并尝试自己总结规律,得出结论,从而提高学习效率和兴趣。
平面与平面垂直
直线与平面垂直
直线与直线垂直