《巩固卷》——第三单元观察物体(单元测试)(含解析)-2025-2026学年四年级上册数学(苏教版)

文档属性

名称 《巩固卷》——第三单元观察物体(单元测试)(含解析)-2025-2026学年四年级上册数学(苏教版)
格式 docx
文件大小 747.6KB
资源类型 试卷
版本资源 苏教版
科目 数学
更新时间 2025-07-31 11:34:07

图片预览

文档简介

中小学教育资源及组卷应用平台
《巩固卷》——第三单元观察物体(单元测试)-2025-2026学年四年级上册数学(苏教版)
一、单选题
1.一个几何体从上面看是,从左面看是,这个几何体是(  )
A. B.
C. D.
2.妙妙用一些小正方体木块拼成了一个立体图形,从右面看从上面看是这个立体图形至少由(  )个小正方体木块拼成。
A.10 B.9 C.6
3.如图所示的立体图形,从(  )看到的形状相同。
A.上面和右面 B.正面和上面 C.正面和左面 D.上面和左面
4.下面物体中,从右面看,看到的图形是的是(  )。
A. B. C.
5.用同样大小的正方体摆成的立体图形,从右面看到的形状是,从上面看到的形状是,从正面看到的形状是(  )。
A. B. C. D.
6.用同样大小的正方体摆成一个图形,从正面看到的是 ,从上面看到的是 ,那么从左面看到的是(  )。
A. B. C. D.
7.一个立体图形由6个正方体组成,从左面看形状是 ,从上面看形状是 ,共有(  )种不同的搭法。
A.3 B.6 C.7
二、判断题
8.如图,从正面和左面看到的图形不相同。(  )
9.用4个同样大的物体摆成右边的物体 ,从左面看到的图形是 。(  )
10.用几个相同的小正方体摆成一个组合体,从上面看到的形状是,那么这个组合体一定是用3个小正方体摆成的。(  )
11.我看到一个物体的一面是正方形,这个物体一定是正方体。(  )
12. 从上面看到的形状为 。(  )
13.用4个同样大的正方体摆物体,从上面看是 。一共有5种不同的摆法。(  )
14.一堆积木从正面看是 ,从左面看是 ,至少需要5个小方块。(  )
15.某一由小正方体堆成的几何体,从上面看到的图形是 ,则这个几何体至少需要5个小正方体。(  )
三、填空题
16.从不同的位置观察长方体,每次最多能看到长方体的   个面。
17.一个几何体,从前面看到的图形是,从左面看到的图形是,搭一个这样的几何体,最少需要   个小正方体。
18.从不同位置观察一个正方体,一次最多能看到   个面。
19.观察正方体时,最多能看到   个面,每个面都是完全   的。
20. 共有   个小正方体。从前面看到   个小正方形。
21.用小正方体摆一个从左面看到的是 ,从上面看到的是 的立体图形,至少需要   个小正方体。
22.妙想用4个正方体搭立体图形,从上面看到的形状是
,有   种搭法。
23.要搭一个从上面、正面看都是 的几何体,至少用   个小正方体。
四、操作题
24.观察下面物体,分别画出从前面、上面、左面看到的图形。
五、解决问题
25.右边的三个图形分别是从什么方向看到的?填一填。
26.下面的图形分别是从下边物体的哪一面看到的?用线连一连。
27.
(1)有多少种不同的搭法?
(2)从左面看,不可能看到的图形是   。(填序号)
28.下面A,B,C三个图形分别是谁看到的?用线连一连.
29.下图是马超同学用一些相同的小正方体摆成的立体图形。
(1)每个小正方形面的边长是3厘米。从左面看,他所看到的图形面积是多少平方厘米?
(2)马超同学在原图的基础上继续用这种小正方体摆图形,从前面看,看到的面正好是一个大正方形。他至少需要再摆上多少个小正方体?
30.用小正方体搭一个立体图形,使得从左面看和上面看分别得到下面的两个图形.
要搭成这样的立体图形最少需要几个小正方体?最多有几个小正方体?
31.如下图是从三个不同方向观察一个立体图形所看到的图形,最少需要多少个小正方体才能摆成的 试一试。
答案解析部分
1.【答案】D
【解析】【解答】解:
故答案为:D。
【分析】只有最后一项从上面看,看到两层,下面一层2个正方形,上面一层2个正方形,并且中间对齐;
从左面看,看到两层,下面一层2个正方形,上面一层1个正方形,并且左侧对齐。
2.【答案】B
【解析】【解答】就:如图:
这个立体图形至少由9个小正方体木块拼成。
故答案为:B。
【分析】从上面看到的图形决定每个小正方体的摆放位置,从其他方向看到的图形决定每个位置上小正方体的摆放个数。
3.【答案】C
【解析】【解答】解:这个立体图形从正面和左面看到的形状相同。
故答案为:C。
【分析】这个立体图形从正面和左面看,看到两层,下面一层两个正方形,上面一层一个正方形,并且左侧对齐。
4.【答案】C
【解析】【解答】解:从右面看,看到的图形是的是C项中的图。
故答案为:C。
【分析】选项A,从右面看到的图形是;选项B,从右面看到的图形是。据此作答即可。
5.【答案】A
【解析】【解答】解:从正面看到的形状是。
故答案为:A。
【分析】这个立体图形由两排组成,前面一排3个并列的正方体,后面一排一个正方体,并且在前面一排中间一个的后面。
6.【答案】C
【解析】【解答】解: 用同样大小的正方体摆成一个图形,从正面看到的是,从上面看到的是,可以得出这个立体图形是,所以从左面看到的图形是。
故答案为:C。
【分析】根据从正面看到的图形可得这个立体图形有两层,上层有1个正方体位于左侧;从上面看到的图形可得出这个立体图形最前排有3个小正方体,后一排有1个小正方体,即可确定出这个立体图形的形状,即上层有1个小正方体位于前排最左侧;下层有4个小正方体且前排有3个小正方体,后排有1个小正方体位于中间;进而即可得出从左面看到的图形。
7.【答案】A
【解析】【解答】解:共有3种不同的搭法。
故答案为:A。
【分析】第一种:第一层排两行,第一行排3个,第二行排2个,分别排在第一行正方形最左边和最右边的前面,此时排了5个正方形,最后一个放在第一行最左边正方形的上面;第二种:第一层的排法与第一种一样,最后一个放在第一行中间正方形的上面;第三种:第一层的排法与第一种一样,最后一个放在第一行最右边正方形的上面。
8.【答案】错误
【解析】【解答】解:从正面和左面看到的图形相同。原题说法错误。
故答案为:错误。
【分析】从正面和左面看到的图形都是有两列,第一竖列有2个小正方形,第二竖列有1个小正方形。
9.【答案】正确
【解析】【解答】 用4个同样大的物体摆成右边的物体 ,从左面看到的图形是 。说法正确。
故答案为:正确。
【分析】观察物体时,从左面看,左面的物体会挡住右面的物体,只能看到一行,左右各一个小正方形。
10.【答案】错误
11.【答案】错误
【解析】【解答】 我看到一个物体的一面是正方形,这个物体可能是正方体,也可能是长方体,原题说法错误。
故答案为:错误。
【分析】正方体的6个面都是正方形,特殊的长方体有两个面是正方形,看到一个物体的一面是正方形,这个物体可能是正方体,也可能是长方体,据此判断。
12.【答案】错误
【解析】【解答】 从正面看到的形状为 。原说法错误。
故答案为:错误。
【分析】观察物体时,从正面看,前面的物体会挡住后面对物体;从上面看,上面的物体会挡住下面的物体;
从上面看到的形状为。
13.【答案】错误
【解析】【解答】解:用4个同样大的正方体摆物体,从上面看是 。一共有3种不同的摆法。
故答案为:错误。
【分析】有3种不同的摆法,最下面一层是3个正方体,另外一个放在这3个正方体任何一个的上面。
14.【答案】错误
【解析】【解答】解:一堆积木从正面看是 ,从左面看是 ,至少需要3个小方块。原题说法错误。
故答案为:错误。
【分析】根据从左面看到的图形可知,这堆积木共2排,后排中间1个,前排左右各1个,所以至少需要3个小方块。
15.【答案】错误
【解析】【解答】解:这个几何体至少需要4个小正方体。
故答案为:错误。
【分析】这个图形是从上面看到的,所以可以只摆一层正方形,第二行摆2个正方形,中间空一个正方形的位置,第一行有一个正方形,摆在第二行空的位置的上面,第三行有一个正方形,摆在第二行空的位置的下面,所以至少可以摆4个。
16.【答案】3
【解析】【解答】解:从不同的位置观察长方体,每次最多能看到长方体的3个面。
故答案为:3。
【分析】从不同的位置观察长方体,每次最多能看到长方体的3个面,每次最少能看到长方体的1个面。
17.【答案】6
【解析】【解答】解:如图:
搭一个这样的几何体,最少需要6个小正方体。
故答案为:6。
【分析】根据从不同方向看到的图形,倒推出来搭成这样的立体图形最少需要的小正方体数量。
18.【答案】3
【解析】【解答】解:从不同位置观察一个正方体,一次最多能看到3个面。
故答案为:3。
【分析】如果从上面四个顶点的某个顶点处的斜上方观察这个正方体,就能看到正方体的上面和两个侧面,最多能看到3个面。
19.【答案】3;相同
【解析】【解答】 观察正方体时,最多能看到3个面,每个面都是完全相同的。
故答案为:3;相同。
【分析】此题主要考查了观察物体的知识,观察正方体时,最多能看到3个面,每个面都是完全相同的正方形。
20.【答案】4;3
【解析】【解答】解:图中共有4个小正方体。从前面看到3个小正方形。
故答案为:4;3。
【分析】图中共有小正方体的个数=下面一层的个数+上面一层的个数;从前面看到下面一层两个小正方形,上面一层一个小正方形, 共3个小正方形。
21.【答案】5
【解析】【解答】解:至少需要5个小正方体。
故答案为:5。
【分析】如图所示:,所以至少需要5个正方体。
22.【答案】3
【解析】【解答】解:妙想用4个正方体搭立体图形,从上面看到的形状是
,有3种搭法。
故答案为:3。
【分析】这三种搭法分别是:下面一层3个并列的正方体,上面一层一个正方体,并且可以在下面一层任何一个的上面,共有3种搭法。
23.【答案】6
【解析】【解答】解:搭成这个几何体至少用6个小正方体。
故答案为:6。
【分析】这个几何体有两层,下面一层4个小正方体搭成正方形,上面一层两个小正方体在下面一层的前面两个的上面,或者后面两个的上面。
24.【答案】解:
【解析】【分析】从前面看,看到两层,下面一层3个正方形,上面一层1个正方形,并且右侧对齐;
从上面看,看到三层,中间一层3个正方形,上面、下面一层各有1个正方形,并且右侧对齐;
从左面看,看到两层,下面一层3个正方形,上面一层1个正方形,并且中间对齐。
25.【答案】
【解析】【分析】根据题意可知从正面看有两层,上面一层两个正方形,在两端,下面一层三个正方形,并且左右对齐;
从左面看有两层,上面一层两个正方形,在左起第一和第三的位置,下面一层四个正方形,并且左端对齐;
从上面看有四层,从上面数第一层一个正方形,第二层一个正方形,第三层三个正方形,并且右端对齐;第四层一个正方形和第三层的左端对齐。
26.【答案】解:连线如下:
【解析】【分析】从正面看到的是下层两个正方形,上层靠左一个正方形;从右侧面看到的是下层两个正方形,上层靠右一个正方形;从上面看到的是上层两个正方形,下层靠右一个正方形。
27.【答案】(1)两种
(2)③④
【解析】【解答】解:(1)有两种不同的搭法,如图:
即和。
(2)根据(1)可知, 从左面看,该几何体只有两行,不可能看到3行,所以 从左面看,不可能看到的图形是 ③④。
故答案为:(2)③④。
【分析】(1)由5 个小正方体搭建,从上面看是,所以第一层有4个小正方体。从前面看是,所以一共有2层,且第2层只有1个小正方体,该小正方体可以搭在最左侧的任意1个小正方体上,即和,所以一共有两种搭法;
(2)根据(1)题的结果解答即可。
28.【答案】
【解析】【解答】小鸟在立体图形的上方,所以图B是小鸟看到的.小猫在立体图形的左面,所以图C是小猫看到的.熊猫在立体图形的正面,所以图A是熊猫看到的.
【分析】从前面、侧面、后面三个角度观察同一个物体,看到的物体的形状一般是不同的,所处的观察点不同,看到的物体的形状一般也是不同的.
29.【答案】(1)解:3×3×3
=9×3
=27(平方厘米)
答:从左面看,他所看到的图形面积是27平方厘米。
(2)解:2+3=5(个)
答:他至少需要再摆上5个小正方体。
【解析】【分析】(1)从左面观察几何体,看到的图形是,小正方形的边长是3厘米,正方形的面积=边长×边长 ,先求出1个正方形的面积,然后乘3即可;
(2)从前面观察这个立体图形,下面一层有3个正方形,上面一层有1个正方形居中,如图:摆成这样的立体图形时,所用的小正方体个数最少,且从前面看是一个大正方形,分别求出每层添加的小正方体个数,然后相加即可。
30.【答案】解:要搭成这样的立体图形最少需要5个小正方体,最多有7个小正方体.
【解析】【分析】从不同的位置观察同一个物体,通常看到的图形是不同的,根据观察到的图形判断每种图形正方体的个数,可以发现最少需要5个正方体,最多需要7个正方体.
31.【答案】解:根据从正面看到的图可以判断这个图形有2层,第一层起码有3个,第二层起码有1个;根据从左面看到的图可以判断第一层起码有4个,第二层还是起码有1个;根据从上面看到的图可以判断第一层起码有2排,第一排起码有3个,第二排起码有1个。综上可得正方体排列的最少个数:,1+2+1+1=5(个).
【解析】【分析】从上面看到的图形是物体的摆放位置,结合从正面看到的图形和从左面看到的图形,分析出每个位置摆放的小正方体的个数。
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)