第3章 4.2 力的合成和分解(课件 学案 练习)高中物理人教版(2019)必修 第一册

文档属性

名称 第3章 4.2 力的合成和分解(课件 学案 练习)高中物理人教版(2019)必修 第一册
格式 zip
文件大小 4.5MB
资源类型 教案
版本资源 人教版(2019)
科目 物理
更新时间 2025-07-31 17:20:23

文档简介

第2课时 力的合成和分解
题组一 力的合成
1.已知F1和F2两个力的图示如图所示,下列说法错误的是(  )
A.若F1是F2的一个分力,则另一个分力只存在一种情况
B.若F1是F2的一个分力,则另一个分力的方向应该由C指向B
C.若将F1、F2进行合成,则合成之后的合力大小与F1、F2的大小无关
D.若将F1、F2进行合成,有且仅有一种情况出现
2.如图所示,AB为半圆的一条直径,AO=OB,P点为圆周上的一点,在P点作用了三个共点力F1、F2、F3,已知F2=3 N,则它们的合力为(  )
A.4.5 N B.6 N
C.7.5 N D.9 N
3.如图所示为两个大小不变、夹角θ变化的力的合力的大小F与θ角之间的关系图像(0°≤θ≤360°),下列说法中正确的是(  )
A.这两个分力的大小分别为2 N和6 N
B.这两个分力的大小分别为2 N和8 N
C.合力大小的变化范围是0≤F≤10 N
D.合力大小的变化范围是2 N≤F≤14 N
题组二 力的效果分解法
4.小明想推动家里的衣橱,但使出了很大的力气也推不动,他便想了个妙招,如图所示,用A、B两块木板,搭成一个底角较小的人字形架,然后往中央一站,衣橱居然被推动了!下列说法中正确的是(  )
A.这是不可能的,因为小明根本没有用力去推衣橱
B.这是不可能的,因为无论如何小明的力气也没那么大
C.这有可能,A板对衣橱的推力有可能大于小明的重力
D.这有可能,但A板对衣橱的推力不可能大于小明的重力
5.如图所示,质量为m的物体悬挂在轻质支架上,斜梁OB与竖直方向的夹角为θ。设横梁OA和斜梁OB作用于O点的弹力大小分别为F1和F2,以下结果正确的是(  )
A.F1=mgsin θ B.F2=
C.F1=mgcos θ D.F2=
6.某破冰船成功冲出厚重的密集浮冰区,胜利突围解困。如图为破冰船连线冲破冰层时的破冰原理示意图,若船体向前的推力为F,两侧船体间夹角为60°,OM、ON分别与两侧船体垂直,则沿OM、ON两侧推开冰层的力大小为(  )
A.F B.
C. D.
题组三 力的正交分解法
7.如图所示,把静止在斜面上的物体的重力mg分解为F1、F2两个力,下列说法正确的是(  )
A.F1是斜面作用在物体上使物体下滑的力,F2是物体对斜面的压力
B.物体受到mg、FN、Ff、F1、F2 5个力作用
C.物体受到的合力为mgsin θ
D.物体受到的合力为0
8.甲、乙两人在比较滑的水平地面上拔河,甲身材高瘦,乙身材矮胖,两人力气差不多,体重也差不多,穿相同材料的鞋子,则(  )
A.甲赢的概率大
B.乙赢的概率大
C.力气大的肯定赢
D.两人对绳子的拉力一样大,因此赢的概率相同
9.教室里要挂一个城市文化宣传框,假若粘钩的承重能力足够,以下哪种悬挂方式绳上的拉力最小(  )
10.(多选)某同学为颈椎病人设计的一个牵引装置的示意图如图所示,一根轻绳绕过两个定滑轮和一个动滑轮后两端各挂着一个相同的重物,与动滑轮相连的帆布带拉着病人的颈椎(图中是用手指代替颈椎做实验),整个装置在同一竖直平面内。如果要增大手指所受的拉力,可采取的方法是(  )
A.只增加绳的长度 B.只增加重物的质量
C.只将手指向下移动 D.只将手指向上移动
11.弹跳过程是身体肌肉、骨骼、关节等一系列相关部位动作的过程,屈膝是其中的一个关键动作。如图所示,人屈膝下蹲时,大腿骨、小腿骨对膝关节的作用力大致相等,当膝关节弯曲的角度为θ=120°时,大、小腿部的肌群对膝关节的作用力F的方向水平向后,此时脚掌对地面竖直向下的弹力约为(  )
A.F B.F
C. D.
12.已知两个力的合力为50 N。分力F1的方向与合力F的方向成30°角,分力F2的大小为30 N,则(  )
A.F1的大小是唯一的
B.F2的方向是唯一的
C.F2有两个可能的方向
D.F2可取任意方向
13.如图所示,水平地面上的物体重力G=100 N,物体与水平地面间的动摩擦因数为0.25。物体在与水平方向成37°角的拉力F=60 N作用下水平向右运动。(已知物体在竖直方向的合力为零。sin 37°=0.6,cos 37°=0.8)求:
(1)物体受到的支持力;
(2)物体受到的合外力。
4.2 力的合成和分解
1.C 已知F2为合力,F1为其中的一个分力,则另外一个分力的大小、方向有且仅有一种情况,A正确;若F1是F2的一个分力,由三角形法则可知两分力要顺连,则另一个分力应该由C指向B,B正确;已知F1、F2为分力,将其合成,则合力F的大小与F1、F2应满足F2=++2F1F2cos α,(α为F1与F2所形成的夹角),合力F的大小与F1、F2的大小有关,C错误;若将F1、F2进行合成,其合力的大小、方向固定,D正确。
2.D 根据几何关系可知,F1和F3垂直,F2在F1和F3为邻边构成的平行四边形的对角线上,以F1、F3为邻边作平行四边形,则合力F13=2F2,故F1、F2、F3的合力F=3F2=9 N,D正确。
3.D 根据图像,在夹角为90°时,根据勾股定理有+=102 N2,在夹角为180°时,令分力F1大于分力F2根据力的合成规律有F1-F2=2 N,解得F1=8 N,F2=6 N,故A、B错误;两个分力的合力的取值范围≤F≤F1+F2,结合上述解得2 N≤F≤14 N,故C错误,D正确。
4.C 由小明所受重力产生的作用效果,小明的重力可分解为沿两个木板方向的分力,由于两个木板夹角接近180°,根据平行四边形定则可知分力远大于小明的重力,C正确。
5.D 重力mg产生两个效果,分别沿OA方向拉横梁OA和沿OB方向压斜梁OB,则分解为如图所示的两个分力F1'和F2'。依题意,F1'=mgtan θ,F2'=,F1=F1'=mgtan θ,F2=F2'=。
6.A 对F进行分解,如图。由图可知,由于沿OM、ON两侧推开冰层的力与两侧船体垂直,则两分力夹角为120°且大小相等,由几何关系可知,沿OM、ON两侧推开冰层的力大小均为F,故选A。
7.D F1是重力的分力,不是斜面作用在物体上使物体下滑的力;F2是重力的分力,不是物体对斜面的压力,故A错误。物体只受重力、支持力和斜面对物体的摩擦力三个力,故B错误。物体处于静止状态,则物体受到的合力为零,故C错误,D正确。
8.A 分别对两个人进行受力分析如图,由受力图可知,在两个人的体重差不多的情况下,甲由于受到的拉力的方向斜向下,所以甲受到的支持力大于其重力,而乙受到的拉力斜向上,所以乙受到的支持力小于其重力,由于二人穿相同材料的鞋子,可知甲与地面之间的最大静摩擦力大于乙与地面之间的最大静摩擦力,所以甲赢的概率大,与二人力气的大小无关。故选A。
9.A 由力的合成法则可知,在合力不变的情况下,两条绳子间的夹角越小,绳子上的拉力就越小,如图所示。故选A。
10.BC 手指所受拉力的大小等于绕过动滑轮的绳子两端的拉力F1、F2的合力F的大小。只增加绳的长度,F1、F2的大小及其夹角不变,则合力F不变,A错误;只增加重物的质量,F1、F2的大小增大,夹角不变,则合力F变大,如图甲所示,B正确;手指向下移动,F1、F2大小不变,夹角变小,则合力F变大,如图乙所示,C正确;同理可知D错误。
11.B 大腿骨、小腿骨对膝关节的作用力大致相等,设大小为F1,当膝关节弯曲的角度为θ=120°时,大、小腿部的肌群对膝关节的作用力F的方向水平向后,则有2F1cos 60°=F,解得F1=F,此时脚掌对地面竖直向下的弹力约为F'=F1sin 60°=F1=F,故B正确。
12.C 由于F2=30 N>Fsin 30°=25 N,且F2<F=50 N,故由力的矢量三角形定则可知,F1可以有两个值,F2有两个可能的方向,如图所示。故选项C正确。
13.(1)64 N,方向竖直向上 (2)32 N,方向水平向右
解析:(1)物体受到四个力作用:重力G、支持力FN、拉力F、摩擦力Ff。
建立直角坐标系如图所示,把力沿坐标轴正交分解。
在竖直方向Fsin 37°+FN-G=0
解得FN=64 N,方向竖直向上。
(2)物体和地面间的摩擦力
Ff=μFN=16 N
在水平方向上有
Fx=Fcos 37°-Ff=60 N×0.8-16 N=32 N
即物体受到的合外力大小为32 N,方向水平向右。
4 / 4第2课时 力的合成和分解
知识点一 力的合成和分解
1.力的合成:求几个力的   的过程。
2.平行四边形定则:在两个力合成时,以表示这两个力的有向线段为邻边作      ,这两个邻边之间的     就代表合力的大小和方向,如图所示。
3.力的分解:求一个力的   的过程。
(1)力的分解也遵从      定则。
(2)一个已知力的分解要根据具体问题来确定,如果没有限制,同一个力可以分解为    对大小、方向不同的分力,如图所示。
4.多个力的合成方法:先求出任意    的合力,再求出这个合力跟      的合力,直到把所有的力都合成进去,最后得到的结果就是这些力的合力。
知识点二 矢量和标量
1.矢量:既有大小又有方向,相加时遵从         的物理量。
2.标量:只有大小,没有方向,相加时遵从      的物理量。
3.三角形定则:把两个矢量    相接,从第一个矢量的始端指向第二个矢量的末端的有向线段就表示合矢量的大小和方向。
【情景思辨】
 根据生活经验,一个人直接用力拉汽车,一般无法将汽车拉动;但用绳索把汽车与固定立柱拴紧,在绳索的中央用较小的、垂直于绳索的水平侧向力F就可以拉动汽车,汽车运动后F的方向保持不变,汽车在运动过程中所受摩擦力大小不变。判断下列说法的正误:
(1)汽车受到绳索的拉力大小等于F。(  )
(2)汽车受到绳索的拉力大于立柱受到绳索的拉力。(  )
(3)匀速拉动汽车的过程中所需拉力F逐渐变大。(  )
要点一 力的合成
1.遵循原则:平行四边形定则。
2.两个力的合成
(1)作图法
(2)计算法
①两分力同向时:合力大小F=F1+F2,方向与F1、F2的方向相同。
②两分力反向时:合力大小F=|F1-F2|,方向与F1、F2中较大的力的方向相同。
③两个力的合力大小范围:|F1-F2|≤F≤F1+F2。
(3)三种特殊情况如下:
类型 作图 合力
分力 垂直 大小:F= 方向:tan θ=
分力 等大 大小:F=2F1cos ,θ=120°时F=F1=F2 方向:沿角平分线
合力与一个分力垂直 大小:F= 方向:sin θ=
3.三个力的合力大小范围
(1)最大值:三个力方向均相同时,三力合力最大,Fm=F1+F2+F3。
(2)最小值
①若一个力在另外两个力的和与差之间,则它们的合力的最小值为零。
②若一个力不在另外两个力的和与差之间,则它们的合力的最小值等于三个力中最大的力减去另外两个力的和。
【典例1】 上海市的杨浦大桥是我国自行设计建造的双塔双索面叠合梁斜拉桥,如图甲所示。挺拔高耸的208 m主塔似一把利剑直刺苍穹,塔的两侧32对钢索连接主梁,呈扇面展开,如巨型琴弦,正弹奏着巨龙腾飞的奏鸣曲。假设斜拉桥中某对钢索与竖直方向的夹角都是30°,如图乙所示,每根钢索中的拉力都是3×104 N,那么它们对塔柱形成的合力有多大?方向如何?
 
尝试解答
1.三个力F1=5 N,F2=8 N,F3=15 N作用在同一个质点上,其合力大小范围正确的是(  )
A.2 N≤F≤28 N
B.0≤F≤28 N
C.12 N≤F≤28 N
D.13 N≤F≤28 N
要点二 力的效果分解法
【探究】
如图所示,某同学设计了一个小实验,他将细绳的一端系在手指上,细绳的另一端系在直杆的A端,杆的左端顶在掌心,组成一个“三角支架”。在杆的A端悬挂重物,并保持静止。请思考:
(1)通过实验该同学会有什么感受?
(2)重物的重力产生了什么效果?
(3)重物的重力应该怎样分解?
【归纳】
1.根据力的作用效果进行分解的基本思路
2.常见的效果分解法实例
实例 分析
拉力F一方面使物体沿水平地面前进,另一方面向上提物体,因此拉力F可分解为水平向前的力F1和竖直向上的力F2,F1=Fcos θ,F2=Fsin θ
重力产生两个效果:一是使物体具有沿斜面下滑的趋势,二是使物体压紧斜面,F1=mgsin α,F2=mgcos α。注意:F2不是物体对斜面的压力
重力产生两个效果:一是使球压紧挡板,二是使球压紧斜面,F1=mgtan α,F2=
用斧头劈柴时,力F产生的作用效果为垂直于两个侧面向外挤压接触面,F1=F2=F
重力产生的作用效果为拉紧AO、BO两段绳,F1=F2=
重力产生两个效果:一是拉AB杆,二是压BC杆,F1=mgtan α,F2=
【典例2】 如图所示,一个重为100 N的小球被夹在竖直的墙壁和A点之间,已知球心O与A点的连线与竖直方向成θ角,且θ=60°,所有接触点和面均不计摩擦。试求小球对墙面的压力F1和对A点压力F2。
尝试解答
2.在日常生活中,力的分解有着广泛的应用,如图甲用斧子把木桩劈开,已知斧子的两个侧面之间的夹角为2θ,斧子对木桩施加一个向下的力F时,产生了大小相等的两个侧向分力F1、F2,由图乙可得下列关系正确的是(  )
A.F1=F2= B.F1=F2=
C.F1=F2= D.F1=F2=
要点三 力的正交分解法
1.正交分解:把力沿着两个相互垂直的方向分解。
2.坐标轴的选取原则:为计算方便,应使尽量多的力落在坐标轴上。
3.应用:一般用于三个及以上力的合成,正交分解的目的是求合力。
4.一般步骤
(1)建立坐标系:选取合适的方向建立直角坐标系。
(2)正交分解各力:将不在坐标轴上的力分别分解到x轴和y轴上,并求出各分力的大小,如图所示。
(3)分别求出x轴和y轴上的合力:
Fx=F1x+F2x+…
Fy=F1y+F2y+…
(4)求合力:合力大小F=,合力方向与x轴的夹角tan φ=。
特别提醒
  正交分解的方向不一定沿力的作用效果的方向。
【典例3】 在同一平面内共点的四个力F1、F2、F3、F4的大小依次为19 N、40 N、30 N和15 N,方向如图所示,求它们的合力。
尝试解答
3.在力学问题中,有时需要用一个力等效代替多个力,有时需要用两个力等效代替一个力。某物体受大小为100 N的一个力F的作用,现用F1、F2两个力等效替代这个力。其中F1方向与F方向的夹角为37°,F2方向与F方向的夹角为53°。已知sin 37°=0.6,sin 53°=0.8,则关于F1、F2的大小的下列结果正确的是(  )
A.F1=60 N,F2=80 N
B.F1=80 N,F2=60 N
C.F1=60 N,F2=60 N
D.F1=80 N,F2=80 N
4.(2021·广东高考3题)唐代《耒耜经》记载了曲辕犁相对直辕犁的优势之一是起土省力,设牛用大小相等的拉力F通过耕索分别拉两种犁,F与竖直方向的夹角分别为α和β,α<β,如图所示,忽略耕索质量,耕地过程中,下列说法正确的是(  )
A.耕索对曲辕犁拉力的水平分力比对直辕犁的大
B.耕索对曲辕犁拉力的竖直分力比对直辕犁的大
C.曲辕犁匀速前进时,耕索对犁的拉力小于犁对耕索的拉力
D.直辕犁加速前进时,耕索对犁的拉力大于犁对耕索的拉力
1.(多选)关于力的合成和分解,下列说法正确的是(  )
A.合力与分力是等效替代关系,同时作用在物体上
B.力的分解的本质就是用同时作用于物体的几个力产生的效果代替一个力的作用效果
C.斜面上的物体的重力可以分解成下滑力和对斜面的正压力
D.某个力与其他几个力使物体发生的形变相同,这个力就是那几个力的合力
2.将重为G的小球竖直向上抛出,小球在运动过程中受到的阻力大小始终为f、小球竖直上升过程中所受合力大小为F1,竖直下降过程中所受合力大小为F2,关于小球受到的合力大小和方向,下列说法正确的是(  )
A.F1>F2,合力方向始终向下
B.F1<F2,合力方向始终向下
C.F1>F2,合力方向先向上后向下
D.F1<F2,合力方向先向上后向下
3.如图所示,一物体受到两个力作用,其中F1=10 N,F2=20 N,F1与x轴正方向的夹角为45°,F2沿y轴负方向,则这两个力的合力大小与方向分别为(  )
A.20 N方向沿x轴正方向
B.20 N方向沿y轴正方向
C.10 N方向与x轴正方向夹角为45°
D.10 N方向与x轴负方向夹角为45°
4.(2023·广东高考2题)如图所示,可视为质点的机器人通过磁铁吸附在船舷外壁面检测船体。壁面可视为斜面,与竖直方向夹角为θ。船和机器人保持静止时,机器人仅受重力G、支持力FN、摩擦力Ff和磁力F的作用,磁力垂直壁面。下列关系式正确的是(  )
A.Ff=G B.F=FN
C.Ff=Gcos θ D.F=Gsin θ
第2课时 力的合成和分解
【基础知识·准落实】
知识点一
1.合力 2.平行四边形 对角线 3.分力 (1)平行四边形 (2)无数 4.两个力 第三个力
知识点二
1.平行四边形定则 2.算术法则 3.首尾
情景思辨
(1)× (2)× (3)√
【核心要点·快突破】
要点一
知识精研
【典例1】 5.2×104 N 方向竖直向下
解析:把两根钢索的拉力看成沿钢索方向的两个分力,以它们为邻边画出一个平行四边形,其对角线就表示它们的合力。由对称性可知,合力方向一定沿塔柱竖直向下。下面用两种方法计算这个合力的大小。
方法一:作图法(如图1所示)
自O点引两根有向线段OA和OB,它们跟竖直方向的夹角都为30°。取单位长度为1×104 N,则OA和OB的长度都是3个单位长度。量得对角线OC长为5.2个单位长度,所以合力的大小为F=5.2×1×104 N=5.2×104 N。
方法二:计算法(如图2所示)
根据这个平行四边形是一个菱形,连接AB,交OC于D,则AB与OC互相垂直平分,即AB垂直于OC,且AD=DB、OD=OC。对于直角三角形AOD,∠AOD=30°,而OD=OC,则有F=2F1cos 30°=2×3×104× N≈5.2×104 N。
素养训练
1.A 三个共点力的最大值等于三个力之和Fmax=F1+F2+F3=28 N, F1、F2两个力的合力最大为F12=F1+F2=13 N,F3大于13 N,所以三个力最小值是Fmin=F3-F12=2 N,故合力范围为2 N≤F≤28 N,故选A。
要点二
知识精研
【探究】 提示:(1)该同学会感受到手指被绳拉紧、掌心被杆压紧。
(2)重物重力的作用效果有两个,一是拉紧细绳,二是使杆压紧掌心。
(3)重力可分解为沿细绳方向的力F1和沿杆方向的力F2,如图所示,由三角函数得F1=,F2=Gtan θ。
【典例2】 100 N,方向垂直于墙壁向右 200 N,沿OA方向
解析:小球的重力产生两个作用效果:压紧墙壁和A点,作出重力及它的两个分力F1'和F2',使它们构成平行四边形,如图所示。小球对墙面的压力F1=F1'=Gtan 60°=100 N,方向垂直于墙壁向右;小球对A点的压力F2=F2'==200 N,方向沿OA方向。
素养训练
2.A 根据力的平行四边形定则,力F与它的两个分力如图所示,由几何关系知F1=F2=,故A正确。
要点三
知识精研
【典例3】 38.2 N,方向与F1的夹角为45°斜向上
解析:如图甲所示,建立直角坐标系,把各个力分解到两个坐标轴上,并求出x轴和y轴上的合力Fx和Fy,有Fx=F1+F2cos 37°-F3cos 37°=27 N,
Fy=F2sin 37°+F3sin 37°-F4=27 N。
因此,如图乙所示,合力F=≈38.2 N,
tan φ==1,
即合力的大小约为38.2 N,方向与F1的夹角为45°斜向上。
素养训练
3.B 进行力的分解时,已知两分力的方向与合力的大小,可以确定有唯一解,如图可得F1=Fcos 37°=80 N,F2=Fsin 37°=60 N,故选B。
4.B 将拉力F正交分解如图所示,则在x方向可得出Fx曲=Fsin α,
Fx直=Fsin β,在y方向可得出Fy曲=Fcos α,Fy直=Fcos β,由题知α<β,则sin α < sin β,cos α > cos β,可得到Fx曲 < Fx直,Fy曲 > Fy直,A错误,B正确;无论是加速还是匀速,耕索对犁的拉力与犁对耕索的拉力是一对相互作用力,它们大小相等,方向相反,C、D错误。
【教学效果·勤检测】
1.BD 合力与分力是等效替代关系,不同时作用在物体上,A错误;力的分解的本质是力的等效替代,就是用同时作用于物体的几个力产生的效果代替一个力的作用效果,B正确;放在斜面上的物体受到的重力可分解成沿斜面的分力和垂直斜面的分力,但垂直斜面的力不是对斜面的正压力,C错误;如果一个力与几个力的作用效果相同,则这一个力就是那几个力的合力,D正确。
2.A 小球向上运动时,受向下的重力、阻力,合力向下,大小为F1=G+f,小球向下运动时,受向下的重力、向上的阻力,合力向下,大小为F2=G-f,所以F1>F2,故B、C、D错误,A正确。
3.C 正交分解F1,x轴两个力的合力为Fx=F1cos 45°=10 N,y轴两个力的合力为Fy=F2-F1cos 45°=10 N,沿y轴负方向。故这两个力的合力大小F==10 N,方向与x轴正方向夹角为45°。故选C。
4.C 将重力沿斜面和垂直于斜面方向分解,如图所示,沿斜面方向,由平衡条件得Ff=Gcos θ,故A错误,C正确;垂直斜面方向F=Gsin θ+FN,故B、D错误。
7 / 7(共76张PPT)
第2课时 力的合成和分解
目 录
01.
基础知识·准落实
02.
核心要点·快突破
03.
教学效果·勤检测
04.
课时训练·提素能
基础知识·准落实
梳理归纳 自主学习
01
知识点一 力的合成和分解
1. 力的合成:求几个力的 的过程。
2. 平行四边形定则
:在两个力合成时,以表示这两个力的有向线段为邻边作
,这两个邻边之间的 就代表合力的大小和方向,
如图所示。
合力 
平行四
边形 
对角线 
3. 力的分解:求一个力的 的过程。
(1)力的分解也遵从 定则。
(2)一个已知力的分解要根据具体问题来确定,如果没有限制,
同一个力可以分解为 对大小、方向不同的分力,如
图所示。
分力 
平行四边形 
无数 
4. 多个力的合成方法:先求出任意 的合力,再求出这个合
力跟 的合力,直到把所有的力都合成进去,最后得到
的结果就是这些力的合力。
两个力 
第三个力 
知识点二 矢量和标量
1. 矢量:既有大小又有方向,相加时遵从 的
物理量。
2. 标量:只有大小,没有方向,相加时遵从 的物理量。
3. 三角形定则:把两个矢量 相接,从第一个矢量的始端指向
第二个矢量的末端的有向线段就表示合矢量的大小和方向。
平行四边形定则 
算术法则 
首尾 
【情景思辨】
根据生活经验,一个人直接用力拉汽车,一般无法将汽车拉动;但用
绳索把汽车与固定立柱拴紧,在绳索的中央用较小的、垂直于绳索的
水平侧向力F就可以拉动汽车,汽车运动后F的方向保持不变,汽车在
运动过程中所受摩擦力大小不变。判断下列说法的正误:
(1)汽车受到绳索的拉力大小等于F。 ( × )
(2)汽车受到绳索的拉力大于立柱受到绳索的拉力。 ( × )
(3)匀速拉动汽车的过程中所需拉力F逐渐变大。 ( √ )
×
×

核心要点·快突破
互动探究 深化认知
02
要点一 力的合成
1. 遵循原则:平行四边形定则。
2. 两个力的合成
(1)作图法
①两分力同向时:合力大小F=F1+F2,方向与F1、F2的方向
相同。
②两分力反向时:合力大小F=|F1-F2|,方向与F1、F2中
较大的力的方向相同。
③两个力的合力大小范围:|F1-F2|≤F≤F1+F2。
(2)计算法
(3)三种特殊情况如下:
类型 作图 合力
分力 垂直
分力 等大
类型 作图 合力
合力与一
个分力垂

3. 三个力的合力大小范围
(1)最大值:三个力方向均相同时,三力合力最大,Fm=F1+F2
+F3。
(2)最小值
①若一个力在另外两个力的和与差之间,则它们的合力的最
小值为零。
②若一个力不在另外两个力的和与差之间,则它们的合力的
最小值等于三个力中最大的力减去另外两个力的和。
【典例1】 上海市的杨浦大桥是我国自行设计建造的双塔双索面叠合梁斜拉桥,如图甲所示。挺拔高耸的208 m主塔似一把利剑直刺苍穹,塔的两侧32对钢索连接主梁,呈扇面展开,如巨型琴弦,正弹奏着巨龙腾飞的奏鸣曲。假设斜拉桥中某对钢索与竖直方向的夹角都是30°,如图乙所示,每根钢索中的拉力都是3×104 N,那么它们对塔柱形成的合力有多大?方向如何?
答案:5.2×104 N 
方向竖直向下
解析:把两根钢索的拉力
看成沿钢索方向的两个分
力,以它们为邻边画出一
个平行四边形,其对角线
就表示它们的合力。由对
称性可知,合力方向一定
沿塔柱竖直向下。下面用
两种方法计算这个合力的
大小。
方法一:作图法(如图1所示)
自O点引两根有向线段OA和OB,它们跟竖直方向的夹角都为30°。取单位长度为1×104 N,则OA和OB的长度都是3个单位长度。量得对角线OC长为5.2个单位长度,所以合力的大小为F=5.2×1×104 N=5.2×104 N。
方法二:计算法(如图2所示)
根据这个平行四边形是一个菱形,连接AB,交OC于D,则AB与OC互相垂直平分,即AB垂直于OC,且AD=DB、OD=OC。对于直角三角形AOD,∠AOD=30°,而OD=OC,则有F=2F1cos 30°=2×3×104× N≈5.2×104 N。
1. 三个力F1=5 N,F2=8 N,F3=15 N作用在同一个质点上,其合力
大小范围正确的是(  )
A. 2 N≤F≤28 N B. 0≤F≤28 N
C. 12 N≤F≤28 N D. 13 N≤F≤28 N
解析: 三个共点力的最大值等于三个力之和Fmax=F1+F2+F3
=28 N, F1、F2两个力的合力最大为F12=F1+F2=13 N,F3大于
13 N,所以三个力最小值是Fmin=F3-F12=2 N,故合力范围为2
N≤F≤28 N,故选A。
要点二 力的效果分解法
  
【探究】
如图所示,某同学设计了一个小实验,他将细绳的一端系在手指上,
细绳的另一端系在直杆的A端,杆的左端顶在掌心,组成一个“三角
支架”。在杆的A端悬挂重物,并保持静止。请思考:
(1)通过实验该同学会有什么感受?
提示:该同学会感受到手指被绳拉紧、掌心被杆压紧。
(2)重物的重力产生了什么效果?
提示:重物重力的作用效果有两个,一是拉紧细绳,二是
使杆压紧掌心。
(3)重物的重力应该怎样分解?
提示:重力可分解为沿细绳方向的
力F1和沿杆方向的力F2,如图所示,由三
角函数得F1=,F2=Gtan θ。
【归纳】
1. 根据力的作用效果进行分解的基本思路
2. 常见的效果分解法实例
实例 分析
拉力F一方面使物体沿水平地面前进,另一方面向上提
物体,因此拉力F可分解为水平向前的力F1和竖直向上
的力F2,F1=Fcos θ,F2=Fsin θ
重力产生两个效果:一是使物体具有沿斜面下滑的趋
势,二是使物体压紧斜面,F1=mgsin α,F2=mgcos
α。注意:F2不是物体对斜面的压力
实例 分析
实例 分析
实例 分析
【典例2】 如图所示,一个重为100 N的小球被夹在竖直的墙壁和
A点之间,已知球心O与A点的连线与竖直方向成θ角,且θ=60°,
所有接触点和面均不计摩擦。试求小球对墙面的压力F1和对A点压
力F2。
答案:100 N,方向垂直于墙壁向右 200 N,沿OA方向
解析:小球的重力产生两个作用效果:压紧墙壁
和A点,作出重力及它的两个分力F1'和F2',使它
们构成平行四边形,如图所示。小球对墙面的压
力F1=F1'=Gtan 60°=100 N,方向垂直于墙
壁向右;小球对A点的压力F2=F2'==200
N,方向沿OA方向。
2. 在日常生活中,力的分解有着广泛的应用,如图甲用斧子把木桩劈
开,已知斧子的两个侧面之间的夹角为2θ,斧子对木桩施加一个向
下的力F时,产生了大小相等的两个侧向分力F1、F2,由图乙可得
下列关系正确的是(  )
解析: 根据力的平行四边形定则,力F与它
的两个分力如图所示,由几何关系知F1=F2=
,故A正确。
要点三 力的正交分解法
1. 正交分解:把力沿着两个相互垂直的方向分解。
2. 坐标轴的选取原则:为计算方便,应使尽量多的力落在坐标轴上。
3. 应用:一般用于三个及以上力的合成,正交分解的目的是求合力。
4. 一般步骤
(1)建立坐标系:选取合适的方向建立直角坐标系。
(2)正交分解各力:将不在坐标轴上的力分别分解到x轴和y轴
上,并求出各分力的大小,如图所示。
(3)分别求出x轴和y轴上的合力:
Fx=F1x+F2x+…
Fy=F1y+F2y+…
(4)求合力:合力大小F=,合力方向与x轴的夹角tan φ
=。
特别提醒
  正交分解的方向不一定沿力的作用效果的方向。
【典例3】 在同一平面内共点的四个力F1、F2、F3、F4的大小依次为
19 N、40 N、30 N和15 N,方向如图所示,求它们的合力。
答案:38.2 N,方向与F1的夹角为45°斜向上
解析:如图甲所示,建立直角
坐标系,把各个力分解到两个
坐标轴上,并求出x轴和y轴上
的合力Fx和Fy,有Fx=F1+
F2cos 37°-F3cos 37°=27 N,
Fy=F2sin 37°+F3sin 37°-F4=27 N。
因此,如图乙所示,合力F=≈38.2 N,tan φ==1,
即合力的大小约为38.2 N,方向与F1的夹角为45°斜向上。
3. 在力学问题中,有时需要用一个力等效代替多个力,有时需要用两
个力等效代替一个力。某物体受大小为100 N的一个力F的作用,现
用F1、F2两个力等效替代这个力。其中F1方向与F方向的夹角为
37°,F2方向与F方向的夹角为53°。已知sin 37°=0.6,sin 53°
=0.8,则关于F1、F2的大小的下列结果正确的是(  )
A. F1=60 N,F2=80 N
B. F1=80 N,F2=60 N
C. F1=60 N,F2=60 N
D. F1=80 N,F2=80 N
解析: 进行力的分解时,已知两分力的方向与
合力的大小,可以确定有唯一解,如图可得F1=
Fcos 37°=80 N,F2=Fsin 37°=60 N,故选B。
4. (2021·广东高考3题)唐代《耒耜经》记载了曲辕犁相对直辕犁的
优势之一是起土省力,设牛用大小相等的拉力F通过耕索分别拉两
种犁,F与竖直方向的夹角分别为α和β,α<β,如图所示,忽略耕
索质量,耕地过程中,下列说法正确的是(  )
A. 耕索对曲辕犁拉力的水平分力比对直辕犁的大
B. 耕索对曲辕犁拉力的竖直分力比对直辕犁的大
C. 曲辕犁匀速前进时,耕索对犁的拉力小于犁对耕索的拉力
D. 直辕犁加速前进时,耕索对犁的拉力大于犁对耕索的拉力
解析: 将拉力F正交分解如图所示,
则在x方向可得出Fx曲=Fsin α,
Fx直=Fsin β,在y方向可得出Fy曲=Fcos α,Fy直=Fcos
β,由题知α<β,则sin α < sin β,cos α > cos β,可
得到Fx曲 < Fx直,Fy曲 > Fy直,A错误,B正确;无论
是加速还是匀速,耕索对犁的拉力与犁对耕索的拉力
是一对相互作用力,它们大小相等,方向相反,C、D
错误。
教学效果·勤检测
强化技能 查缺补漏
03
1. (多选)关于力的合成和分解,下列说法正确的是(  )
A. 合力与分力是等效替代关系,同时作用在物体上
B. 力的分解的本质就是用同时作用于物体的几个力产生的效果代替
一个力的作用效果
C. 斜面上的物体的重力可以分解成下滑力和对斜面的正压力
D. 某个力与其他几个力使物体发生的形变相同,这个力就是那几个
力的合力
解析: 合力与分力是等效替代关系,不同时作用在物体上,A
错误;力的分解的本质是力的等效替代,就是用同时作用于物体的
几个力产生的效果代替一个力的作用效果,B正确;放在斜面上的
物体受到的重力可分解成沿斜面的分力和垂直斜面的分力,但垂直
斜面的力不是对斜面的正压力,C错误;如果一个力与几个力的作
用效果相同,则这一个力就是那几个力的合力,D正确。
2. 将重为G的小球竖直向上抛出,小球在运动过程中受到的阻力大小
始终为f、小球竖直上升过程中所受合力大小为F1,竖直下降过程
中所受合力大小为F2,关于小球受到的合力大小和方向,下列说法
正确的是(  )
A. F1>F2,合力方向始终向下
B. F1<F2,合力方向始终向下
C. F1>F2,合力方向先向上后向下
D. F1<F2,合力方向先向上后向下
解析: 小球向上运动时,受向下的重力、阻力,合力向下,
大小为F1=G+f,小球向下运动时,受向下的重力、向上的阻
力,合力向下,大小为F2=G-f,所以F1>F2,故B、C、D错
误,A正确。
3. 如图所示,一物体受到两个力作用,其中F1=10 N,F2=20 N,
F1与x轴正方向的夹角为45°,F2沿y轴负方向,则这两个力的合力
大小与方向分别为(  )
A. 20 N方向沿x轴正方向
B. 20 N方向沿y轴正方向
解析: 正交分解F1,x轴两个力的合力为Fx=F1cos 45°=10
N,y轴两个力的合力为Fy=F2-F1cos 45°=10 N,沿y轴负方向。
故这两个力的合力大小F==10 N,方向与x轴正方向
夹角为45°。故选C。
4. (2023·广东高考2题)如图所示,可视为质点的机器人通过磁铁吸
附在船舷外壁面检测船体。壁面可视为斜面,与竖直方向夹角为
θ。船和机器人保持静止时,机器人仅受重力G、支持力FN、摩擦
力Ff和磁力F的作用,磁力垂直壁面。下列关系式正确的是
(  )
A. Ff=G B. F=FN
C. Ff=Gcos θ D. F=Gsin θ
解析: 将重力沿斜面和垂直于斜面方向分
解,如图所示,沿斜面方向,由平衡条件得Ff=
Gcos θ,故A错误,C正确;垂直斜面方向F=
Gsin θ+FN,故B、D错误。
04
课时训练·提素能
分层达标 素养提升
题组一 力的合成
1. 已知F1和F2两个力的图示如图所示,下列说法错误的是(  )
A. 若F1是F2的一个分力,则另一个分力只存在一种情况
B. 若F1是F2的一个分力,则另一个分力的方向应该由C
指向B
C. 若将F1、F2进行合成,则合成之后的合力大小与F1、
F2的大小无关
D. 若将F1、F2进行合成,有且仅有一种情况出现
1
2
3
4
5
6
7
8
9
10
11
12
13
解析: 已知F2为合力,F1为其中的一个分力,则另外一个分力
的大小、方向有且仅有一种情况,A正确;若F1是F2的一个分力,
由三角形法则可知两分力要顺连,则另一个分力应该由C指向B,B
正确;已知F1、F2为分力,将其合成,则合力F的大小与F1、F2应
满足F2=++2F1F2cos α,(α为F1与F2所形成的夹角),合
力F的大小与F1、F2的大小有关,C错误;若将F1、F2进行合成,其
合力的大小、方向固定,D正确。
1
2
3
4
5
6
7
8
9
10
11
12
13
2. 如图所示,AB为半圆的一条直径,AO=OB,P点为圆周上的一
点,在P点作用了三个共点力F1、F2、F3,已知F2=3 N,则它们的
合力为(  )
A. 4.5 N B. 6 N
C. 7.5 N D. 9 N
解析: 根据几何关系可知,F1和F3垂直,F2在F1和F3为邻边构
成的平行四边形的对角线上,以F1、F3为邻边作平行四边形,则合
力F13=2F2,故F1、F2、F3的合力F=3F2=9 N,D正确。
1
2
3
4
5
6
7
8
9
10
11
12
13
3. 如图所示为两个大小不变、夹角θ变化的力的合力的大小F与θ角之
间的关系图像(0°≤θ≤360°),下列说法中正确的是(  )
A. 这两个分力的大小分别为2 N和6 N
B. 这两个分力的大小分别为2 N和8 N
C. 合力大小的变化范围是0≤F≤10 N
D. 合力大小的变化范围是2 N≤F≤14 N
1
2
3
4
5
6
7
8
9
10
11
12
13
解析: 根据图像,在夹角为90°时,根据勾股定理有+
=102 N2,在夹角为180°时,令分力F1大于分力F2根据力的合成规
律有F1-F2=2 N,解得F1=8 N,F2=6 N,故A、B错误;两个分
力的合力的取值范围≤F≤F1+F2,结合上述解得2
N≤F≤14 N,故C错误,D正确。
1
2
3
4
5
6
7
8
9
10
11
12
13
题组二 力的效果分解法
4. 小明想推动家里的衣橱,但使出了很大的力气也推不动,他便想了
个妙招,如图所示,用A、B两块木板,搭成一个底角较小的人字
形架,然后往中央一站,衣橱居然被推动了!下列说法中正确的是
(  )
A. 这是不可能的,因为小明根本没有用力去推衣橱
B. 这是不可能的,因为无论如何小明的力气也没那么大
C. 这有可能,A板对衣橱的推力有可能大于小明的重力
D. 这有可能,但A板对衣橱的推力不可能大于小明的重力
1
2
3
4
5
6
7
8
9
10
11
12
13
解析: 由小明所受重力产生的作用效果,小明的重力可分解为
沿两个木板方向的分力,由于两个木板夹角接近180°,根据平行
四边形定则可知分力远大于小明的重力,C正确。
1
2
3
4
5
6
7
8
9
10
11
12
13
5. 如图所示,质量为m的物体悬挂在轻质支架上,斜梁OB与竖直方向
的夹角为θ。设横梁OA和斜梁OB作用于O点的弹力大小分别为F1和
F2,以下结果正确的是(  )
A. F1=mgsin θ
C. F1=mgcos θ
1
2
3
4
5
6
7
8
9
10
11
12
13
解析:D 重力mg产生两个效果,分别沿OA方向拉
横梁OA和沿OB方向压斜梁OB,则分解为如图所示
的两个分力F1'和F2'。依题意,F1'=mgtan θ,F2'=
,F1=F1'=mgtan θ,F2=F2'=。
1
2
3
4
5
6
7
8
9
10
11
12
13
6. 某破冰船成功冲出厚重的密集浮冰区,胜利突围解困。如图为破冰
船连线冲破冰层时的破冰原理示意图,若船体向前的推力为F,两
侧船体间夹角为60°,OM、ON分别与两侧船体垂直,则沿OM、
ON两侧推开冰层的力大小为(  )
A. F
1
2
3
4
5
6
7
8
9
10
11
12
13
解析: 对F进行分解,如图。由图可知,由
于沿OM、ON两侧推开冰层的力与两侧船体垂
直,则两分力夹角为120°且大小相等,由几何
关系可知,沿OM、ON两侧推开冰层的力大小
均为F,故选A。
1
2
3
4
5
6
7
8
9
10
11
12
13
题组三 力的正交分解法
7. 如图所示,把静止在斜面上的物体的重力mg分解为F1、F2两个力,
下列说法正确的是(  )
A. F1是斜面作用在物体上使物体下滑的力,F2是
物体对斜面的压力
B. 物体受到mg、FN、Ff、F1、F2 5个力作用
C. 物体受到的合力为mgsin θ
D. 物体受到的合力为0
1
2
3
4
5
6
7
8
9
10
11
12
13
解析: F1是重力的分力,不是斜面作用在物体上使物体下滑的
力;F2是重力的分力,不是物体对斜面的压力,故A错误。物体只
受重力、支持力和斜面对物体的摩擦力三个力,故B错误。物体处
于静止状态,则物体受到的合力为零,故C错误,D正确。
1
2
3
4
5
6
7
8
9
10
11
12
13
8. 甲、乙两人在比较滑的水平地面上拔河,甲身材高瘦,乙身材矮
胖,两人力气差不多,体重也差不多,穿相同材料的鞋子,则
(  )
A. 甲赢的概率大
B. 乙赢的概率大
C. 力气大的肯定赢
D. 两人对绳子的拉力一样大,因此赢的概率相同
1
2
3
4
5
6
7
8
9
10
11
12
13
解析: 分别对两个人进行受力分析如
图,由受力图可知,在两个人的体重差不
多的情况下,甲由于受到的拉力的方向斜
向下,所以甲受到的支持力大于其重力,
而乙受到的拉力斜向上,所以乙受到的支
持力小于其重力,由于二人穿相同材料的
鞋子,可知甲与地面之间的最大静摩擦力大于乙与地面之间的最大静摩擦力,所以甲赢的概率大,与二人力气的大小无关。故选A。
1
2
3
4
5
6
7
8
9
10
11
12
13
9. 教室里要挂一个城市文化宣传框,假若粘钩的承重能力足够,以下
哪种悬挂方式绳上的拉力最小(  )
1
2
3
4
5
6
7
8
9
10
11
12
13
解析: 由力的合成法则可知,在合力不变的
情况下,两条绳子间的夹角越小,绳子上的拉力
就越小,如图所示。故选A。
1
2
3
4
5
6
7
8
9
10
11
12
13
10. (多选)某同学为颈椎病人设计的一个牵引装置的示意图如图所
示,一根轻绳绕过两个定滑轮和一个动滑轮后两端各挂着一个相
同的重物,与动滑轮相连的帆布带拉着病人的颈椎(图中是用手
指代替颈椎做实验),整个装置在同一竖直平面内。如果要增大
手指所受的拉力,可采取的方法是(  )
A. 只增加绳的长度 B. 只增加重物的质量
C. 只将手指向下移动 D. 只将手指向上移动
1
2
3
4
5
6
7
8
9
10
11
12
13
解析: 手指所受拉力的
大小等于绕过动滑轮的绳子两
端的拉力F1、F2的合力F的大
小。只增加绳的长度,F1、F2
的大小及其夹角不变,则合力
F不变,A错误;只增加重物
的质量,F1、F2的大小增大,夹角不变,则合力F变大,如图甲所示,B正确;手指向下移动,F1、F2大小不变,夹角变小,则合力F变大,如图乙所示,C正确;同理可知D错误。
1
2
3
4
5
6
7
8
9
10
11
12
13
11. 弹跳过程是身体肌肉、骨骼、关节等一系列相关部位动作的过
程,屈膝是其中的一个关键动作。如图所示,人屈膝下蹲时,大
腿骨、小腿骨对膝关节的作用力大致相等,当膝关节弯曲的角度
为θ=120°时,大、小腿部的肌群对膝关节的作用力F的方向水平
向后,此时脚掌对地面竖直向下的弹力约为(  )
A. F
1
2
3
4
5
6
7
8
9
10
11
12
13
解析: 大腿骨、小腿骨对膝关节的作用力大致相等,设大小
为F1,当膝关节弯曲的角度为θ=120°时,大、小腿部的肌群对
膝关节的作用力F的方向水平向后,则有2F1cos 60°=F,解得F1
=F,此时脚掌对地面竖直向下的弹力约为F'=F1sin 60°=F1
=F,故B正确。
1
2
3
4
5
6
7
8
9
10
11
12
13
12. 已知两个力的合力为50 N。分力F1的方向与合力F的方向成30°
角,分力F2的大小为30 N,则(  )
A. F1的大小是唯一的 B. F2的方向是唯一的
C. F2有两个可能的方向 D. F2可取任意方向
解析: 由于F2=30 N>Fsin 30°=25
N,且F2<F=50 N,故由力的矢量三角形定
则可知,F1可以有两个值,F2有两个可能的
方向,如图所示。故选项C正确。
1
2
3
4
5
6
7
8
9
10
11
12
13
13. 如图所示,水平地面上的物体重力G=100 N,物体与水平地面间
的动摩擦因数为0.25。物体在与水平方向成37°角的拉力F=60 N
作用下水平向右运动。(已知物体在竖直方向的合力为零。sin
37°=0.6,cos 37°=0.8)求:
(1)物体受到的支持力;
答案:64 N,方向竖直向上 
1
2
3
4
5
6
7
8
9
10
11
12
13
解析:物体受到四个力作用:重力
G、支持力FN、拉力F、摩擦力Ff。
建立直角坐标系如图所示,把力沿坐标轴
正交分解。
在竖直方向Fsin 37°+FN-G=0
解得FN=64 N,方向竖直向上。
1
2
3
4
5
6
7
8
9
10
11
12
13
(2)物体受到的合外力。
答案:32 N,方向水平向右
解析:物体和地面间的摩擦力
Ff=μFN=16 N
在水平方向上有
Fx=Fcos 37°-Ff=60 N×0.8-16 N=32 N
即物体受到的合外力大小为32 N,方向水平向右。
1
2
3
4
5
6
7
8
9
10
11
12
13
谢谢观看!