(单元培优卷)第7单元 生活中的负数 单元全真模拟培优卷(含解析)-2025-2026学年四年级上册数学(北师大版)

文档属性

名称 (单元培优卷)第7单元 生活中的负数 单元全真模拟培优卷(含解析)-2025-2026学年四年级上册数学(北师大版)
格式 docx
文件大小 54.4KB
资源类型 试卷
版本资源 北师大版
科目 数学
更新时间 2025-08-04 13:08:46

图片预览

文档简介

/ 让学习更有效 新课备课备考 | 数学学科
2025-2026学年四年级上册数学单元全真模拟培优卷(北师大版)
第7单元 生活中的负数
考试时间:90分钟;试卷总分:100分;
学校: 班级: 姓名: 成绩:
注意事项:
答题前填写好自己的姓名、班级、考号等信息。
请将答案正确填写在答题区域,注意书写工整,格式正确,卷面整洁。
一.选择题(共10小题)
1.一种饼干包装袋上标着:净重(150±5克),表示这种饼干标准的质量是150克,实际每袋最少不少于(  )克.
A.155 B.150 C.145
2.下列不属于相反意义量是(  )
A.晚上9时睡觉与早上9时起床
B.5m和﹣5m
C.地面为起点,地下2层和地上2层
D.零下2℃和零上2℃
3.下列各数中,最接近0的是(  )
A.﹣3 B.﹣1 C.2 D.5
4.以下叙述中,正确的是(  )
A.正数与负数互为相反数
B.表示相反意义的量的两个数互为相反数
C.任何有理数都有相反数
D.一个数的相反数是负数.
5.下列各数中,最大的一个是(  )
A.﹣123 B.﹣213 C.﹣312 D.﹣132
6.数轴上,﹣0.8在3的(  )
A.左边 B.右边 C.无法确定
7.如图,下面说法正确的是(  )
A.a>o>c B.a<o<c C.c<o<a
8.如果收入100元可记作+100元,那么支出200元可记(  )
A.200元 B.+200元 C.﹣200元 D.以上都不对
9.如果气球上升18米,记作+18米,那么下降5米,记作(  )
A.+5米 B.﹣5米 C.+8米 D. 8米
10.某品牌酸奶的外包装上标明:净含量:300mL(±5mL)。随机抽取三种口味的这种酸奶分别称重(如下表),净含量不合格的是(  )的酸奶。
种类 草莓味 香草味 巧克力味
净含量(mL) 301 293 303
A.草莓味 B.香草味 C.巧克力味 D.无法确定
二.填空题(共12小题)
11.如果把平均成绩记为0分,+9分表示比平均成绩   ,比平均成绩少2分记作   .
12.在银行办理业务时,存入1000元记作+1000元,那么从银行取出500元记作   ,如果逆时针旋转90°记作﹣90°,那么顺时针旋转60°记作   .
13.在一次期中数学测验中,某班平均分是85分,把高于平均分的部分记作正数,小明得95分,记作   ,小乐得分记作﹣11分,他实际得分是   分.
14.某校101班五位同学的体重是:小强23kg,小丽21kg,小冬25kg,小兵24kg,小红22kg.如果把他们的平均体重记为0kg,那么这五位同学的体重分别记为:小强   小丽   小冬   小兵   小红   .
15.上海股市昨天收盘点数是2456.82,今天收盘点数是2418.32,今天股市与昨天相比是下降了38.5点,用   表示.
16.某地有一天的最低气温是﹣6℃,最高气温是12℃,这一天的最高气温与最低气温相差    ℃.
17.一袋薯片的标准质量为25克,比标准质量多出2克记为+2,比标准质量少3克记为   .
18.如果体重减少2千克记作﹣2千克,那么+2千克表示    2千克.
19.盈利100元记作+100元,那么亏损120元记作   .
20.官沟小学六(1)班期中考试,全班数学平均分为90分,如果把   用正数表示,把   用负数表示,那么98分记作:   ,87分记作:   .
21.如果益西同学的体重增加10千克记作+10千克,那么他的体重减少2千克应记作   千克.
22.扎西家本月共支出2000元,记作﹣2000元,那么扎西家收入5000元记作   元.
三.判断题(共10小题)
23.如果+300元表示存入300元,则﹣500元表示支出500元.   
24.零下3℃比0℃还要低3℃.   .
25.数字﹣2.05和2.50,在数轴上的位置,2.50离0更近些。    
26.0比所有的负数大,比所有的正数小.   .
27.比3小的整数只有3个。    
28.气温﹣2℃比气温﹣5℃冷。    
29.温度只分为零上温度和零下温度.   
30.0℃表示没有温度.    .
31.所有的零上温度高于零下温度.   
32.带“﹣”的都是负数.   
四.应用题(共6小题)
33.据统计,高度每上升1千米,气温大约降低6℃,现在地面的温度是26℃.山顶的高度是4000米,山顶的气温大约是多少?
34.某产品的包装上标明质量是100±5克实际测量时,测得产品的实际质量是104克,这件产品合格吗?请说明理由.
35.哈尔滨﹣8℃、北京﹣2℃、南京8℃、上海9℃
(1)北京与南京,哪座城市温度高?北京与哈尔滨,哪座城市温度高?北京与上海,哪座城市温度低?
(2)在这四座城市中,温度最低的城市是哪一座?温度最高的城市是哪一座?
(3)把四座城市的温度从高到低排一下吧.
36.一个学习小组各人的体重如下:
小明46千克,小芳38千克,张强40千克,王兰32千克:
姓名 小明 小芳 张强 王兰
体重(千克) 46 38 40 32
记作(千克)
(1)求4人的平均体重.
(2)以平均体重为标准,超过平均体重的部分记为正,不足平均体重的部分记为负,请用正、负数表示他们的体重情况.
37.唱歌比赛4位评委通过打分决定选手是否进决赛.规定10分满分,把6分记为0分,超过的用正数表示,不足的用负数表示.如果总分达到25分可以晋级.5号选手小明得分情况如下:一号评委+2,二号评委0,三号评委﹣1,四号评委+3.请问:小明的最后总分是多少?能否晋级?
38.我是小小记账员。某超市每个月的成本是100万元,去年下半年收入分别如下:7月份104万元、8月份97万元、9月份100万元、10月份108万元、11月份99万元、12月份115万元。
(1)如果盈利用正数表示,亏本用负数表示,请完成下列统计表。
月份 7月 8月 9月 10月 11月 12月
收支情况
(2)哪个月盈利最多?哪个月亏损最多?
参考答案及试题解析
一.选择题(共10小题)
1.【考点】正、负数的运算.
【答案】C
【思路分析】净重(150±5克),表示这种饼干标准的质量是150克,实际每袋最多不多于150+5克,最少不少于150﹣5克.
【解答】解:净重(150±5克),表示最少不少于:150﹣5=145(克).
故选:C.
【名师点评】此题首先要知道以谁为标准,规定超出标准的为正,低于标准的为负,由此用正负数解答问题.
2.【考点】负数的意义及其应用.
【答案】A
【思路分析】此题主要用正负数来表示具有意义相反的两种量:向东记为负,则向西就记为正;上升记为正,则下降就记为负;气温下降记为负,则气温上升就记为正;选1米为标准记为0,高出部分记为正,则不足部分就记为负;直接得出结论即可.
【解答】解:A、晚上9时睡觉与早上9时起床不是具有相反意义的量,故选项错误;
B、5m和﹣5m是具有相反意义的量,故选项正确;
C、地面为起点,地下2层和地上2层是具有相反意义的量,故选项正确;
D、零下2℃和零上2℃是具有相反意义的量,故选项正确.
故选:A.
【名师点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.
3.【考点】正、负数大小的比较.
【答案】B
【思路分析】画数轴,根据各数到0的距离即可判断.
【解答】解:数轴如下:
通过数轴可以看出:﹣1最接近0;
故选:B.
【名师点评】此题应根据数轴进行解答.
4.【考点】负数的意义及其应用.
【答案】C
【思路分析】分别对每个说法进行判断即可得出答案.
【解答】解:A、正数2与负数﹣1不是互为相反数,故选项错误;
B、上升5米和下降3米,表示相反意义的量的两个数不是互为相反数,故选项错误;
C、任何有理数都有相反数,故选项正确;
D、﹣2的相反数是正数2,不是负数,故选项错误.
故选:C.
【名师点评】本题考查相反数的知识,属于基础题,注意概念的掌握,及特殊例子的记忆.
5.【考点】正、负数大小的比较.
【答案】A
【思路分析】根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.
【解答】解:因为312>213>132>123,
所以﹣312<﹣213<﹣132<﹣123;
故选:A.
【名师点评】此题主要考查了实数的大小的比较,考查了实数的大小比较.在数轴上表示的两个有理数,右边的数总比左边的数大;正数>零,负数<零,正数>一切负数;两个负数,绝对值大的反而小.
6.【考点】数轴的认识.
【答案】A
【思路分析】在数轴上表示的两个数,右边的数总比左边的数大,依此即可求解.
【解答】解:数轴上,﹣0.8在3的左边.
故选:A.
【名师点评】考查了数轴的认识.解答此题要明确:数轴上的点表示的数,右边的数总比左边的数大.
7.【考点】数轴的认识.
【答案】B
【思路分析】在数轴上表示的两个数,右边的数总比左边的数大.依此即可求解.
【解答】解:观察数轴可知:a<0<c.
故选:B.
【名师点评】考查了数轴的认识.解答此题要明确:数轴上的点表示的数,右边的数总比左边的数大.
8.【考点】负数的意义及其应用.
【答案】C
【思路分析】用正负数来表示具有意义相反的两种量:收入记为正,则支出就记为负,由此直接得出结论即可.
【解答】解:如果收入100元记作+100元,那么支出200元记作﹣200元.
故选:C.
【名师点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.
9.【考点】负数的意义及其应用.
【答案】B
【思路分析】此题主要用正负数来表示具有意义相反的两种量:上升记为正,则下降就记为负,直接得出结论即可.
【解答】解:如果气球上升18米,记作+18米,那么下降5米,记作﹣5米;
故选:B.
【名师点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.
10.【考点】负数的意义及其应用.
【答案】B
【思路分析】净含量:300mL(±5mL)是指净含量在300+5=305(毫升)和300﹣5=295(毫升)之间算合格。据此判断。
【解答】解:300+5=305(毫升)
300﹣5=295(毫升)
因此合格净含量应在295~305毫升之间。
293<295
所以净含量不合格的是香草味的酸奶。
故选:B。
【名师点评】此题主要考查正负数的意义,关键是先求出合格净含量的范围。
二.填空题(共12小题)
11.【考点】负数的意义及其应用.
【答案】见试题解答内容
【思路分析】因为把平均成绩记为0分,即以平均成绩为标准,超出的记为正,不足的记为负,由此解决问题.
【解答】解:如果把平均成绩记为0分,+9分表示比平均成绩多9分,比平均成绩少2分记作﹣2分;
故答案为:多9分,﹣2分.
【名师点评】此题首先要知道以谁为标准,规定超出标准的为正,低于标准的为负,由此用正负数解答问题.
12.【考点】负数的意义及其应用.
【答案】见试题解答内容
【思路分析】此题主要用正负数来表示具有意义相反的两种量:存入银行记为正,则从银行取出就记为负,逆时针旋转为负,顺时针旋转为正,直接得出结论即可.
【解答】解:在银行办理业务时,存入1000元记作+1000元,那么从银行取出500元记作﹣500元,如果逆时针旋转90°记作﹣90°,那么顺时针旋转60°记作+60°;
故答案为:﹣500元,+60°.
【名师点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.
13.【考点】负数的意义及其应用.
【答案】见试题解答内容
【思路分析】此题主要用正负数来表示具有意义相反的两种量:选平均分85分为标准记为0分,超出部分为正,低于的部分为负,直接得出结论即可.
【解答】解:选平均分85分为标准记为0分,超过部分为正,不足的部分为负,
则:小明得95分,超出平均分10分,记作+10分;
小乐得分记作﹣11分,低于平均分11分,他实际得分是:85﹣11=74(分).
故答案为:+10分,74分.
【名师点评】此题首先要知道以谁为标准,规定超出标准的为正,低于标准的为负,由此用正负数解答问题.
14.【考点】负数的意义及其应用.
【答案】见试题解答内容
【思路分析】因为把他们的平均体重记为0,即以平均体重为标准,首先算出平均体重,超出的记为正,不足的记为负,由此解决问题.
【解答】解:(23+21+25+24+22)÷5=23(千克),
把他们的平均体重记为0,超出的记为正,不足的记为负,那么这5名同学的体重分别记为:小强0,小丽﹣2,小冬+2,小兵+1,小红﹣1;
故答案为:0,﹣2,+2,+1,﹣1.
【名师点评】此题首先要知道以谁为标准,规定超出标准的为正,低于标准的为负,由此用正负数解答问题.
15.【考点】负数的意义及其应用.
【答案】见试题解答内容
【思路分析】此题主要用正负数来表示具有意义相反的两种量:以昨天的收盘点数为标准,超过部分为正,不足的部分为负,直接得出结论即可.
【解答】解:今天股市与昨天相比是下降了38.5点,记作﹣38.5
故答案为:﹣38.5.
【名师点评】此题首先要知道以谁为标准,规定超出标准的为正,低于标准的为负,由此用正负数解答问题.
16.【考点】正、负数的运算.
【答案】见试题解答内容
【思路分析】这是一道有关温度的正负数的运算题目,最高气温与最低气温二者之差,即求这一天的温差,列式为12﹣(﹣6),计算即可.
【解答】解:12﹣(﹣6)=12+6=18(℃);
答:这一天最高气温与最低气温相差18摄氏度.
故答案为:18.
【名师点评】本题考查零上温度与零下温度之差的题目,列式容易出错.
17.【考点】正、负数的运算.
【答案】见试题解答内容
【思路分析】根据负数的意义,可得比标准质量多记为“+”,则比标准质量少记为“﹣”,据此解答即可.
【解答】解:一袋薯片的标准质量为25克,比标准质量多出2克+2,比标准质量少3克记为﹣3.
故答案为:﹣3.
【名师点评】此题主要考查了负数的意义及其应用,要熟练掌握,解答此题的关键是要明确:比标准质量多记为“+”,则比标准质量少记为“﹣”.
18.【考点】负数的意义及其应用.
【答案】见试题解答内容
【思路分析】此题主要用正负数来表示具有意义相反的两种量:体重减少记为负,则记为正的就是体重增加,直接得出结论即可.
【解答】解:如果体重减少2千克记作﹣2千克,那么+2千克表示体重增加2千克.
故答案为:体重增加.
【名师点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.
19.【考点】负数的意义及其应用.
【答案】见试题解答内容
【思路分析】此题主要用正负数来表示具有意义相反的两种量:盈利记为正,则亏损就记为负,直接得出结论即可.
【解答】解:盈利100元记作+100元,那么亏损120元记作﹣120元;
故答案为:﹣120元.
【名师点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.
20.【考点】负数的意义及其应用.
【答案】见试题解答内容
【思路分析】此题主要用正负数来表示具有意义相反的两种量:选全班数学平均分为标准记为0,超过部分为正,不足的部分为负,直接得出结论即可.
【解答】解:官沟小学六(1)班期中考试,全班数学平均分为90分,如果把 高于平均分的部分用正数表示,把低于平均分的部分用负数表示,那么98分记作:+8分,87分记作:﹣3分;
故答案为:高于平均分的部分,低于平均分的部分,+8分,﹣3分.
【名师点评】此题首先要知道以谁为标准,规定超出标准的为正,低于标准的为负,由此用正负数解答问题.
21.【考点】负数的意义及其应用.
【答案】见试题解答内容
【思路分析】此题主要用正负数来表示具有意义相反的两种量:体重增加就记为正,则体重减少记为负,直接得出结论即可.
【解答】解:如果益西同学的体重增加10千克记作+10千克,那么他的体重减少2千克应记作﹣2千克.
故答案为:﹣2.
【名师点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.
22.【考点】负数的意义及其应用.
【答案】见试题解答内容
【思路分析】此题主要用正负数来表示具有意义相反的两种量:支出记为负,则收入就记为正,由此直接得出结论即可.
【解答】解:扎西家本月共支出2000元,记作﹣2000元,那么扎西家收入5000元记作+5000元.
故答案为:+5000.
【名师点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.
三.判断题(共10小题)
23.【考点】负数的意义及其应用.
【答案】见试题解答内容
【思路分析】此题主要用正负数来表示具有意义相反的两种量:存入记为正,则支出就记为负,直接得出结论即可.
【解答】解:如果+300元表示存入300元,则﹣500元表示支出500元,说法正确;
故答案为:√.
【名师点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.
24.【考点】正、负数大小的比较.
【答案】见试题解答内容
【思路分析】这是一道有关温度的运算题目,零下3℃比零下0℃低3℃.
【解答】解:0﹣(﹣3)=3(℃);
答:零下3℃比零下0℃低3℃.
故答案为:√.
【名师点评】本题考查零下温度之差的题目,注意列式,列式容易出错.
25.【考点】数轴的认识.
【答案】×
【思路分析】在数轴上,﹣2.05与0相差2.05个单位长度,而2.50与0相差2.50个单位长度,﹣2.05更接近0。
【解答】解:在数轴上,﹣2.05与0相差2.05个单位长度,而2.50与0相差2.50个单位长度,﹣2.05更接近0;所以在数轴上的位置,2.50离0更近些说法错误。
故答案为:×。
【名师点评】本题也可以计算出﹣2.05与0的差,以及0与2.50的差,比较差的大小即可判断。
26.【考点】正、负数大小的比较.
【答案】见试题解答内容
【思路分析】我们知道,正数大于0和一切负数,0又大于一切负数.由此不难判断本题答案.
【解答】解:由分析可知:0比所有的负数大,比所有的正数小;
故答案为:√.
【名师点评】本题主要是考查正、负数的大小比较.正数大于0和一切负数,0又大于一切负数.
27.【考点】负数的意义及其应用.
【答案】×
【思路分析】比3小的整数包含负数,因此有无数个,据此判断。
【解答】解:比3小的整数有无数个,
故原题说法错误。
故答案为:×。
【名师点评】此题主要考查了正、负数的意义,要熟练掌握。
28.【考点】正、负数大小的比较.
【答案】×
【思路分析】气温高于0℃记作正,则低于0℃就记作负。﹣2℃和﹣5℃都是零下,直接比较负数的大小即可。
【解答】解:﹣2>﹣5
因此气温﹣2℃比气温﹣5℃暖和。
故原题说法错误。
故答案为:×。
【名师点评】此题主要考查了负数的意义,要熟练掌握。
29.【考点】负数的意义及其应用.
【答案】见试题解答内容
【思路分析】0摄氏度以上称为零上几摄氏度,0摄氏度以下称为零下几摄氏度,所以0摄氏度不是没有温度,而是零上温度和零下温度的分界点,据此解答即可.
【解答】解:0摄氏度是表示零上温度和零下温度的分界点,
所以温度分为零上温度、0摄氏度和零下温度.
原题说法错误;
故答案为:×.
【名师点评】此题考查了温度的意义.
30.【考点】0的认识.
【答案】×
【思路分析】0虽然表示一个也没有,但给它加上单位,尤其是摄氏度这个单位,它就改变了它的含义.
【解答】解:0的意义是一个也没有,但加上单位摄氏度,它就是温度中的一个值,也是天气中零上和零下的分界点,
故此题错误.
【名师点评】此题考查了学生对0的意义理解.
31.【考点】负数的意义及其应用.
【答案】见试题解答内容
【思路分析】根据负数必小于0,正数都大于0即可解答.
【解答】解:因为负数必小于0,正数都大于0,
所以零上温度高于零下温度,
原题说法正确.
故答案为:√.
【名师点评】本题考查的是正、负数大小比较,解答此题的关键是熟知比较的法则,即正数都大于0; 负数都小于0; 正数大于一切负数; 两个负数,绝对值大的反而小.
32.【考点】负数的意义及其应用.
【答案】见试题解答内容
【思路分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,据此可以得到答案.
【解答】解:带“﹣”的不一定都是负数,如“﹣(﹣3)”,
所以说;带“﹣”的都是负数是错误的,
故答案为:×.
【名师点评】此题考查了正数和负数的知识点,解题的关键是理解“正”和“负”的相对性.
四.应用题(共6小题)
33.【考点】表内乘加、乘减;整数、小数复合应用题.
【答案】见试题解答内容
【思路分析】根据高度每增加1千米,气温大约降低6℃,先求得高度是4000米时下降的度数,再确定出山顶温度即可.
【解答】解:4000米=4千米
26﹣6×4
=26﹣24
=2(℃)
答:山顶的气温大约是2℃.
【名师点评】解本题的关键是求出4000米时下降的度数.
34.【考点】负数的意义及其应用.
【答案】见试题解答内容
【思路分析】100±5表示合格范围在100﹣5和100+5之间,即95﹣105,在这个范围里的为合格,在这个范围之外的为不合格,根据这个标准判断即可.
【解答】解:合格范围是在100﹣5和100+5之间,即在95﹣105之间的为合格,在这个范围之外的为不合格,因为104属于这个范围里,所以这件产品为合格产品.
答:这件产品合格.
【名师点评】此题主要用正负数来表示具有相反意义的两种量,根据题干条件找出合格范围并进行判断.
35.【考点】正、负数大小的比较.
【答案】见试题解答内容
【思路分析】(1)首先应了解正负数比较原则:两个正数比较,较大的数大;正数大于所有负数,如:8℃>﹣2℃℃>﹣2℃;两个负数相比较,数值大的负数较小,如﹣2℃>﹣8℃.
(2)几个正、负数比较大小,可以借助数轴比较它们的大小,在数轴上,从左到右的顺序就是数从小到大的顺序;也可不借助数轴比较,正数的大小比较简单,负数可先别看负号,看负号后面的数,大的填上负号反而小,小的填上负号反而大.因此﹣8<﹣2<8<9,哈尔滨温度最低,上海温度最高.
(3)利用数轴先比较几个数的大小,在数轴上,从左到右的顺序就是数从小到大的顺序;也可不借助数轴比较,正数的大小比较简单,负数可先别看负号,看负号后面的数,大的填上负号反而小,小的填上负号反而大.然后把温度符号添上就对了.
【解答】解:(1)8℃>﹣2℃;﹣2℃>﹣8℃;9℃>﹣2℃.
答:北京与南京比,南京的温度高;北京与哈尔滨比,北京温度高;北京与上海比,上海温度高.
(2)因为﹣8℃<﹣2℃<8℃<9℃,所以,哈尔滨温度最低,上海温度最高.
(3)9℃>8℃>﹣2℃>﹣8℃
【名师点评】本题主要考查正负数的大小比较.
36.【考点】负数的意义及其应用;平均数的含义及求平均数的方法.
【答案】见试题解答内容
【思路分析】(1)根据题意,把他们4人的各自的体重加起来再除以人数4,就可以求出他们的平均体重;
(2)把这5人的平均体重记为0,求出每个人的体重与平均体重的差,高于平均体重记为“+”,低于平均体重记为“﹣”,解答即可.
【解答】解:(1)(46+38+40+32)÷4
=156÷4
=39(千克);
答:求4人的平均体重39千克.
(2)46﹣39=7,
38﹣39=﹣1,
40﹣39=1,
32﹣39=﹣7,
填表如下:
姓名 小明 小芳 张强 王兰
体重(千克) 46 38 40 32
记作(千克) 7 ﹣1 1 ﹣7
【名师点评】此题考查了体重和÷人数=平均体重这一关系;正、负数的意义及其应用.正、负数的和等于平均数0.
37.【考点】负数的意义及其应用.
【答案】见试题解答内容
【思路分析】+2相当于6+2=8分,0相当于6分,﹣1相当于6﹣1=5分,+3相当于6+3=9分,她的总分是8+6+5+9=28分;然后和25分进行比较即可得出结论.
【解答】解:(6+2)+(6+0)+[(6+(﹣1)]+[6+(+3)]
=8+6+5+9
=28(分)
28>25
答:小明的最后总分是28分,她可以晋级.
【名师点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负;同时也考查了正负数的计算.
38.【考点】正、负数的运算.
【答案】(1)+4;﹣3;0;+8;﹣1;+15
(2)12月;8月。
【思路分析】(1)此题主要用正负数来表示具有意义相反的两种量:选100万元为标准记为0,超过部分为正,不足的部分为负,直接得出结论即可。
(2)将所有的正数比较大小,谁最大,就盈利的最多,将所有的负数比较大小,谁最小就亏损的最多。
【解答】解:(1)104﹣100=4(万元)
100﹣97=3(万元)
100﹣100=0(万元)
108﹣100=8(万元)
100﹣99=1(万元)
115﹣100=15(万元)
因此:
月份 7月 8月 9月 10月 11月 12月
收支情况 +4 ﹣3 0 +8 ﹣1 +15
(2)+15>+8>+4﹣1>﹣3
答:12月盈利最多,8月亏损最多。
故答案为:(1)+4;﹣3;0;+8;﹣1;+15
(2)12月;8月。
【名师点评】此题首先要知道以谁为标准,规定超出标准的为正,低于标准的为负,由此用正负数解答问题。
21世纪教育网(www.21cnjy.com)