中小学教育资源及组卷应用平台
七年级下册期末考试(八年级上学期开学考试)
一.选择题(共21小题)
1.下列计算正确的是( )
A.a2 a3=a6 B.(﹣a2)2=a6
C.a3+a4=a7 D.a2 (a3)4=a14
2.下列多项式相乘,不能用平方差公式计算的是( )
A.(x﹣y)(y+x) B.(x﹣y)(﹣x﹣y)
C.(x﹣y)(﹣x+y) D.(y﹣x)(﹣x﹣y)
3.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是( )
A. B.
C. D.
4.准备一把剪刀和一张正方形纸片,记正方形纸片的边长为a,现在进行以下操作:
(1)从正方形纸片中剪去一个边长为b的小正方形,如图1,再沿线段AB把纸片剪开.
(2)把剪成的两张纸片拼成如图2的长方形.从上述活动中,你可以得到的代数结论是( )
A.a2﹣b2=(a+b)(a﹣b) B.a2+b2=(a+b)(a﹣b)
C.(a+b)2=a2+2ab+b2 D.(a﹣b)2=a2﹣2ab+b2
5.已知a=8131,b=2741,c=961,则a,b,c的大小关系是( )
A.a>b>c B.a>c>b C.a<b<c D.b>c>a
6.如图,ABCD为一长条形纸带,AB∥CD,将ABCD沿EF折叠,A、D两点分别与A′、D′对应,若∠1=2∠2,则∠AEF的度数为( )
A.60° B.65° C.72° D.75°
7.如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于( )
A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:5
8.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是( )
A.50 B.62 C.65 D.68
9.如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是( )
A.γ=2α+β B.γ=α+2β
C.γ=α+β D.γ=180°﹣α﹣β
10.三条公路将A、B、C三个村庄连成一个如图的三角形区域,如果在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,那么这个集贸市场应建的位置是( )
A.三条高线的交点
B.三条中线的交点
C.三条角平分线的交点
D.三边垂直平分线的交点
11.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )
A.150° B.180° C.210° D.225°
12.如图,AB∥EF,设∠C=90°,那么x、y和z的关系是( )
A.y=x+z B.x+y﹣z=90°
C.x+y+z=180° D.y+z﹣x=90°
13.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是( )
A.42°、138° B.都是10°
C.42°、138°或10°、10° D.以上都不对
14.一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=( )
A.90° B.100° C.130° D.180°
15.如图所示,两个正方形的边长分别为a和b,如果a+b=10,ab=20,那么阴影部分的面积是( )
A.10 B.20 C.30 D.40
16.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为( )
A.6 B.8 C.10 D.12
17.如图△ABC中,∠A=96°,延长BC到D,∠ABC与∠ACD的平分线相交于点A1,∠A1BC与∠A1CD的平分线相交于点A2,依此类推,∠A4BC与∠A4CD的平分线相交于点A5,则∠A5的度数为( )
A.19.2° B.8° C.6° D.3°
18.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是( )
A.∠A=∠1+∠2 B.2∠A=∠1+∠2
C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)
19.不论x、y为什么实数,代数式x2+y2+2x﹣4y+7的值( )
A.总不小于2 B.总不小于7
C.可为任何实数 D.可能为负数
20.甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了8km后遇到甲;④乙出发6分钟后追上甲.其中正确的有( )
A.4个 B.3个 C.2个 D.1个
21.在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是( )
A.乙先出发的时间为0.5小时
B.甲的速度是80千米/小时
C.甲出发0.5小时后两车相遇
D.甲到B地比乙到A地早小时
二.填空题(共5小题)
22.若x2+2(m﹣3)x+16是关于x的完全平方式,则m= .
23.已知a2,则 , .
24.已知△ABC的三边长a、b、c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是 .
25.已知:如图所示,在△ABC中,点D,E,F分别为BC,AD,CE的中点,且S△ABC=4cm2,则阴影部分的面积为 cm2.
26.如图,△ABC中,AB=AC,∠BAC=54°,点D为AB中点,且OD⊥AB,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为 度.
三.解答题(共30小题)
27.作图题:(不写作法,但必须保留作图痕迹)
如图:某地有两所大学和两条相交叉的公路,(点M,N表示大学,AO,BO表示公路).现计划修建一座物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等.你能确定仓库P应该建在什么位置吗?在所给的图形中画出你的设计方案.
28.已知(x+y)2=1,(x﹣y)2=49,求x2+y2与xy的值.
29.计算:(a﹣b)2 (b﹣a)3+(a﹣b)4 (b﹣a)
30.(1)已知m+4n﹣3=0,求2m 16n的值.
(2)已知n为正整数,且x2n=4,求(x3n)2﹣2(x2)2n的值.
31.(1)若10x=3,10y=2,求代数式103x+4y的值.
(2)已知:3m+2n﹣6=0,求8m 4n的值.
32.回答下列问题
(1)填空:x2(x)2﹣ =(x)2+
(2)若a5,则a2 ;
(3)若a2﹣3a+1=0,求a2的值.
33.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.
根据图中提供的信息回答下列问题:
(1)小明家到学校的路程是 米.
(2)小明在书店停留了 分钟.
(3)本次上学途中,小明一共行驶了 米.一共用了 分钟.
(4)在整个上学的途中 (哪个时间段)小明骑车速度最快,最快的速度是 米/分.
34.如图,CA=CB,CD=CE,∠ACB=∠DCE=α,AD,BE交于点H,连CH.
(1)求证:△ACD≌△BCE;
(2)求∠AHB;(用含α的式子表示)
(3)求证:HC平分∠AHE.
35.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.
(1)求证:△ABC≌△ADE;
(2)求∠FAE的度数;
(3)求证:CD=2BF+DE.
36.如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF,证明:
(1)CF=EB.
(2)AB=AF+2EB.
37.如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.
(1)说明BE=CF的理由;
(2)如果AB=5,AC=3,求AE、BE的长.
38.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.
(1)求证:△AEC≌△BED;
(2)若∠1=42°,求∠BDE的度数.
39.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.
(1)若△CMN的周长为15cm,求AB的长;
(2)若∠MFN=70°,求∠MCN的度数.
40.如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.
(1)求证:AE=CD;
(2)求证:AE⊥CD;
(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有 (请写序号,少选、错选均不得分).
41.如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P.
(1)如果∠A=80°,求∠BPC的度数;
(2)如图②,作△ABC外角∠MBC,∠NCB的角平分线交于点Q,试探索∠Q、∠A之间的数量关系.
(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的2倍,求∠A的度数.
42.阅读材料:求1+2+22+23+24+…+22013的值.
解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘2得:
2S=2+22+23+24+25+…+22013+22014
将下式减去上式得2S﹣S=22014﹣1
即S=22014﹣1
即1+2+22+23+24+…+22013=22014﹣1
请你仿照此法计算:
(1)1+2+22+23+24+…+210
(2)1+3+32+33+34+…+3n(其中n为正整数).
43.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).
(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;
(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.
44.(本题有3小题,第(1)小题为必答题,满分5分;第(2)、(3)小题为选答题,其中,第(2)小题满分3分,第(3)小题满分6分,请从中任选1小题作答,如两题都答,以第(2)小题评分.)
在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.
(1)当直线MN绕点C旋转到图1的位置时,求证:
①△ADC≌△CEB;②DE=AD+BE;
(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;
(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.
45.如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,
(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;
(2)何时△PBQ是直角三角形?
(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数.
46.(1)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,BD⊥直线l,CE⊥直线l,垂足分别为点D、E.证明:DE=BD+CE.
(2)组员小刘想,如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线l上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,过△ABC的边AB、AC向外作正方形ABDE和正方形ACFG,AH是BC边上的高,延长HA交EG于点I,求证:I是EG的中点.
47.如图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.
(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;
(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;
(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明.
48.如图,在长方形ABCD中,AB=CD=6cm,BC=10cm,点P从点B出发,以2cm/秒的速度沿BC向点C运动,设点P的运动时间为t秒:
(1)PC= cm.(用t的代数式表示)
(2)当t为何值时,△ABP≌△DCP?
(3)当点P从点B开始运动,同时,点Q从点C出发,以v cm/秒的速度沿CD向点D运动,是否存在这样v的值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.
49.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.
小明的思路是:过P作PE∥AB,通过平行线性质来求∠APC.
(1)按小明的思路,易求得∠APC的度数为 度;
(2)问题迁移:如图2,AB∥CD,点P在射线OM上运动,记∠PAB=α,∠PCD=β,当点P在B、D两点之间运动时,问∠APC与α、β之间有何数量关系?请说明理由;
(3)在(2)的条件下,如果点P在B、D两点外侧运动时(点P与点O、B、D三点不重合),请直接写出∠APC与α、β之间的数量关系.
50.如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC上一动点,以DE为一边作等边三角形DEF,连接CF.
【问题解决】
如图1,若点D在边BC上,求证:CE+CF=CD;
【类比探究】
如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.
51.如图,∠AOB=90°,点C、D分别在射线OA、OB上,CE是∠ACD的平分线,CE的反向延长线与∠CDO的平分线交于点F.
(1)当∠OCD=50°(图1),试求∠F.
(2)当C、D在射线OA、OB上任意移动时(不与点O重合)(图2),∠F的大小是否变化?若变化,请说明理由;若不变化,求出∠F.
52.如图,CD是经过∠BCA顶点C的一条直线,CA=CB,E、F分别是直线CD上两点,且∠BEC=∠CFA=α.
(1)若直线CD经过∠BCA的内部,且E、F在射线CD上.
①如图1,若∠BCA=90°,α=90°,则BE CF;
②如图2,若0°<∠BCA<180°,请添加一个关于α与∠BCA关系的条件 ,使①中的结论仍然成立,并说明理由;
(2)如图3,若直线CD经过∠BCA的外部,α=∠BCA,请提出关于EF,BE,AF三条线段数量关系的合理猜想,并简述理由.
53.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).
(1)上述操作能验证的等式是 ;(请选择正确的一个)
A、a2﹣2ab+b2=(a﹣b)2
B、a2﹣b2=(a+b)(a﹣b)
C、a2+ab=a(a+b)
(2)应用你从(1)选出的等式,完成下列各题:
①已知x2﹣4y2=12,x+2y=4,求x﹣2y的值.
②计算:(1)(1)(1)…(1)(1).
54.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连接EF,AG.求证:EF=FG.
(2)如图2,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.
55.如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
(1)如果AB=AC,∠BAC=90°,
①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为 ,线段CF、BD的数量关系为 ;
②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;
(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.
56.【模型建立】如图1,四边形ABCD是正方形,点M,N分别在边CD,BC上,且∠MAN=45°我们称之为“半角模型”,在解决“半角模型”问题时,旋转是一种常用的方法.如图1,将△ADM绕点A顺时针旋转90°点D与点B重合,得到△ABE,连接MN.
(1)试判断DM,BN,MN之间的数量关系,并写出证明过程.
【模型应用】
(2)如图2,点M,N分别在正方形ABCD的边CD,BC的延长线上,∠MAN=45°,连接MN,请写出MN,DM,BN之间的数量关系,并写出证明过程.
【模型迁移】
(3)如图3,在四边形ABCD中,AB=AD,∠BAD=120°,∠B+∠D=180°,点N,M分别在边BC,CD上,∠MAN=60°,请直接写出线段BN,DM,MN之间的数量关系.
七年级下册期末考试(八年级上学期开学考试)
参考答案与试题解析
一.选择题(共21小题)
题号 1 2 3 4 5 6 7 8 9 10 11
答案 D C A A A C C A A C B
题号 12 13 14 15 16 17 18 19 20 21
答案 B C B C C D B A B D
一.选择题(共21小题)
1.下列计算正确的是( )
A.a2 a3=a6 B.(﹣a2)2=a6
C.a3+a4=a7 D.a2 (a3)4=a14
【分析】根据同底数幂的乘法法则、幂的乘方与积的乘方法则、合并同类项法则分别计算判断即可.
【解答】解:A、a2 a3=a5,故此选项不符合题意;
B、(﹣a2)2=a4,故此选项不符合题意;
C、a3与a4不是同类项,不能合并,故此选项不符合题意;
D、a2 (a3)4=a2 a12=a14,故此选项符合题意;
故选:D.
【点评】本题考查了同底数幂的乘法、幂的乘方与积的乘方、合并同类项,熟练掌握运算法则是解题的关键.
2.下列多项式相乘,不能用平方差公式计算的是( )
A.(x﹣y)(y+x) B.(x﹣y)(﹣x﹣y)
C.(x﹣y)(﹣x+y) D.(y﹣x)(﹣x﹣y)
【分析】平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差,据此进行判断即可.
【解答】解:(x﹣y)(y+x)=(x﹣y)(x+y),它满足两个数的和与这两个数的差相乘的形式,则A不符合题意,
(x﹣y)(﹣x﹣y)=﹣(x﹣y)(x+y),它满足两个数的和与这两个数的差相乘的形式,则B不符合题意,
(x﹣y)(﹣x+y)=﹣(x﹣y)(x﹣y),它不满足两个数的和与这两个数的差相乘的形式,则C符合题意,
(y﹣x)(﹣x﹣y)=﹣(y﹣x)(y+x),它满足两个数的和与这两个数的差相乘的形式,则D不符合题意,
故选:C.
【点评】本题考查平方差及完全平方公式,熟练掌握其表现形式是解题的关键.
3.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是( )
A. B.
C. D.
【分析】根据三角形高线的定义:过三角形的顶点向对边引垂线,顶点和垂足之间的线段叫做三角形的高线解答.
【解答】解:为△ABC中BC边上的高的是A选项.
故选:A.
【点评】本题考查了三角形的角平分线、中线、高线,熟记高线的定义是解题的关键.
4.准备一把剪刀和一张正方形纸片,记正方形纸片的边长为a,现在进行以下操作:
(1)从正方形纸片中剪去一个边长为b的小正方形,如图1,再沿线段AB把纸片剪开.
(2)把剪成的两张纸片拼成如图2的长方形.从上述活动中,你可以得到的代数结论是( )
A.a2﹣b2=(a+b)(a﹣b) B.a2+b2=(a+b)(a﹣b)
C.(a+b)2=a2+2ab+b2 D.(a﹣b)2=a2﹣2ab+b2
【分析】根据两个图形面积相等,即可得出结果.
【解答】解:S图1=a2﹣b2,S图2=(a+b)(a﹣b),
∴a2﹣b2=(a+b)(a﹣b),故A正确.
故选:A.
【点评】本题主要考查了平方差公式与几何图形,熟练掌握该知识点是关键.
5.已知a=8131,b=2741,c=961,则a,b,c的大小关系是( )
A.a>b>c B.a>c>b C.a<b<c D.b>c>a
【分析】先把81,27,9转化为底数为3的幂,再根据幂的乘方,底数不变,指数相乘化简.然后根据指数的大小即可比较大小.
【解答】解:∵a=8131=(34)31=3124
b=2741=(33)41=3123;
c=961=(32)61=3122.
则a>b>c.
故选:A.
【点评】变形为同底数幂的形式,再比较大小,可使计算简便.
6.如图,ABCD为一长条形纸带,AB∥CD,将ABCD沿EF折叠,A、D两点分别与A′、D′对应,若∠1=2∠2,则∠AEF的度数为( )
A.60° B.65° C.72° D.75°
【分析】由题意∠1=2∠2,设∠2=x,易证∠AEF=∠1=∠FEA′=2x,构建方程即可解决问题.
【解答】解:由翻折的性质可知:∠AEF=∠FEA′,
∵AB∥CD,
∴∠AEF=∠1,
∵∠1=2∠2,设∠2=x,则∠AEF=∠1=∠FEA′=2x,
∴5x=180°,
∴x=36°,
∴∠AEF=2x=72°,
故选:C.
【点评】本题考查平行线的性质,翻折变换等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.
7.如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于( )
A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:5
【分析】利用角平分线上的一点到角两边的距离相等的性质,可知三个三角形高相等,底分别是20,30,40,所以面积之比就是2:3:4.
【解答】解:过点O作OD⊥AC于D,OE⊥AB于E,OF⊥BC于F,
∵点O是内心,
∴OE=OF=OD,
∴S△ABO:S△BCO:S△CAO AB OE: BC OF: AC OD=AB:BC:AC=2:3:4,
故选:C.
【点评】本题主要考查了角平分线上的一点到两边的距离相等的性质及三角形的面积公式.做题时应用了三个三角形的高是相等的,这点是非常重要的.
8.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是( )
A.50 B.62 C.65 D.68
【分析】由AE⊥AB,EF⊥FH,BG⊥AG,可以得到∠EAF=∠ABG,而AE=AB,∠EFA=∠AGB,由此可以证明△EFA≌△ABG,所以AF=BG,AG=EF;
同理证得△BGC≌△DHC,GC=DH,CH=BG.
故FH=FA+AG+GC+CH=3+6+4+3=16,然后利用面积的割补法和面积公式即可求出图形的面积.
【解答】解:∵AE⊥AB且AE=AB,EF⊥FH,BG⊥FH,
∴∠EAB=∠EFA=∠BGA=90°,
∵∠EAF+∠BAG=90°,∠ABG+∠BAG=90°,
∴∠EAF=∠ABG,
在△EFA和△AGB中,
,
∴△EFA≌△AGB(AAS),
∴AF=BG,AG=EF.
同理证得△BGC≌△CHD得GC=DH,CH=BG.
故FH=FA+AG+GC+CH=3+6+4+3=16
故S(6+4)×16﹣3×4﹣6×3=50.
故选:A.
【点评】本题考查的是全等三角形的判定的相关知识,是中考常见题型.
9.如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是( )
A.γ=2α+β B.γ=α+2β
C.γ=α+β D.γ=180°﹣α﹣β
【分析】根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.
【解答】解:由折叠得:∠A=∠A',
∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',
∵∠A=α,∠CEA′=β,∠BDA'=γ,
∴∠BDA'=γ=α+α+β=2α+β,
故选:A.
【点评】本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.
10.三条公路将A、B、C三个村庄连成一个如图的三角形区域,如果在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,那么这个集贸市场应建的位置是( )
A.三条高线的交点
B.三条中线的交点
C.三条角平分线的交点
D.三边垂直平分线的交点
【分析】根据角平分线上的点到角的两边的距离相等解答即可.
【解答】解:在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,
根据角平分线的性质,集贸市场应建在∠A、∠B、∠C的角平分线的交点处.
故选:C.
【点评】本题主要考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.
11.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )
A.150° B.180° C.210° D.225°
【分析】根据SAS可证得△ABC≌△EDC,可得出∠BAC=∠DEC,继而可得出答案.
【解答】解:在△ABC与△EDC中,
,
∴△ABC≌△EDC(SAS),
∴∠BAC=∠1,
∠1+∠2=180°.
故选:B.
【点评】本题考查全等图形的知识,比较简单,解答本题的关键是判断出△ABC≌△EDC.
12.如图,AB∥EF,设∠C=90°,那么x、y和z的关系是( )
A.y=x+z B.x+y﹣z=90°
C.x+y+z=180° D.y+z﹣x=90°
【分析】过C作CM∥AB,延长CD交EF于N,根据三角形外角性质求出∠CNE=y﹣z,根据平行线性质得出∠1=x,∠2=∠CNE,代入求出即可.
【解答】解:过C作CM∥AB,延长CD交EF于N,
则∠CDE=∠E+∠CNE,
即∠CNE=y﹣z
∵CM∥AB,AB∥EF,
∴CM∥AB∥EF,
∴∠ABC=x=∠1,∠2=∠CNE,
∵∠BCD=90°,
∴∠1+∠2=90°,
∴x+y﹣z=90°.
故选:B.
【点评】本题考查了平行线的性质和三角形外角性质的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,题目比较好,难度适中.
13.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是( )
A.42°、138° B.都是10°
C.42°、138°或10°、10° D.以上都不对
【分析】根据两边分别平行的两个角相等或互补列方程求解.
【解答】解:如图1,∵AB∥EF,
∴∠3=∠2,
∵BC∥DE,
∴∠3=∠1,
∴∠1=∠2.
如图2,∵AB∥EF,
∴∠3+∠2=180°,
∵BC∥DE,
∴∠3=∠1,
∴∠1+∠2=180°
∴如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.
设另一个角为x,则这一个角为4x﹣30°,
(1)两个角相等,则x=4x﹣30°,
解得x=10°,
4x﹣30°=4×10°﹣30°=10°;
(2)两个角互补,则x+(4x﹣30°)=180°,
解得x=42°,
4x﹣30°=4×42°﹣30°=138°.
所以这两个角是42°、138°或10°、10°.
故选:C.
【点评】本题主要运用两边分别平行的两个角相等或互补,学生容易忽视互补的情况而导致出错.
14.一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=( )
A.90° B.100° C.130° D.180°
【分析】法一:设围成的小三角形为△ABC,分别用∠1、∠2、∠3表示出△ABC的三个内角,再利用三角形的内角和等于180°列式整理即可得解.
法二:易得∠1+∠2+∠3=540°﹣120°﹣180°﹣90°=150°,由此解决问题即可.
【解答】解:法一:如图,∠BAC=180°﹣90°﹣∠1=90°﹣∠1,
∠ABC=180°﹣60°﹣∠3=120°﹣∠3,
∠ACB=180°﹣60°﹣∠2=120°﹣∠2,
在△ABC中,∠BAC+∠ABC+∠ACB=180°,
∴90°﹣∠1+120°﹣∠3+120°﹣∠2=180°,
∴∠1+∠2=150°﹣∠3,
∵∠3=50°,
∴∠1+∠2=150°﹣50°=100°.
法二:图中∠1+∠2+∠3+小三角形的三个内角再加两个等边三角形的两个内角,再加正方形的一个内角,总和为180°*3=540°,减去三角形的三个内角之和180°,再减去两个三角形的内角60°*2=120°,再减去正方形的内角90°,则易得∠1+∠2+∠3=540°﹣120°﹣180°﹣90°=150°,而∠3=50°,所以∠1+∠2=100°.
故选:B.
【点评】本题考查了三角形的内角和定理、等边三角形的性质和正方形的性质,用∠1、∠2、∠3表示出△ABC的三个内角是解题的关键,也是本题的难点.
15.如图所示,两个正方形的边长分别为a和b,如果a+b=10,ab=20,那么阴影部分的面积是( )
A.10 B.20 C.30 D.40
【分析】观察图形,阴影部分除了在正方形中,还以正方形边长为直角边构造三角形,因此阴影部分可看作由不同三角形组成,每个阴影部分都与其所在三角形有关系,由此可逐个分析:首先令直线BF与直线CD的交点为O(如图),则可看出△BDO与△EFO、△BGF有关,用△BCD与 ECGF的面积和减去△BGF的面积可得阴影部分△BDO与△EFO的面积,阴影部分△DEF和△CGF的面积可依据正方形的边长a与b各自求出.至此,阴影部分面积可计和求出,然后利用已知条件进行完全平方公式再代入计算数值.
【解答】解:首先令直线BF与直线CD的交点为O;
则S△BDO+S△EFO=S△BDC+S ECGF﹣S△BGF=a a÷2+b b﹣(a+b) b÷2;①
S△DEF=底EF 高DE÷2=b (a﹣b)÷2; ②
S△CGF=底CG 高GF÷2=b b÷2; ③
∴阴影部分面积=①+②+③
=a2÷2+b2﹣(ab+b2)÷2+(ab﹣b2)÷2+b2÷2
={a2+2b2﹣(ab+b2 )+(ab﹣b2)+b2}÷2
=(a2+b2)÷2,④
由已知 a+b=10,ab=20,构造完全平方公式:
( a+b)2=102,
解得a2+b2+2ab=100,
a2+b2=100﹣2 20,
化简=60代入④式,
得60÷2=30,
∴S阴影部分=30.
方法2:∵CF∥BD,
∴△BDF的面积=△BCD的面积,
∴阴影部分的面积=△BCD的面积+△CGF的面积(a2+b2),
∵a+b=10,ab=20,
∴(a2+b2)(a+b)2﹣ab=50﹣20=30;
故选:C.
【点评】本题考查了几何图形关系,即阴影部分面积与三角形面积和正方形面积的关系,同时考查了完全平方公式的运用和符号计算变化.
16.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为( )
A.6 B.8 C.10 D.12
【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.
【解答】解:连接AD,
∵△ABC是等腰三角形,点D是BC边的中点,
∴AD⊥BC,
∴S△ABCBC AD4×AD=16,解得AD=8,
∵EF是线段AC的垂直平分线,
∴点C关于直线EF的对称点为点A,
∴AD的长为CM+MD的最小值,
∴△CDM的周长最短=CM+MD+CD=ADBC=84=8+2=10.
故选:C.
【点评】本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.
17.如图△ABC中,∠A=96°,延长BC到D,∠ABC与∠ACD的平分线相交于点A1,∠A1BC与∠A1CD的平分线相交于点A2,依此类推,∠A4BC与∠A4CD的平分线相交于点A5,则∠A5的度数为( )
A.19.2° B.8° C.6° D.3°
【分析】利用角平分线的定义和三角形内角与外角的性质计算.
【解答】解:∵∠ABC与∠ACD的平分线相交于点A1,
∴∠ABC=2∠A1BC,∠A1CD∠ACD
根据三角形的外角的性质得,∠A1CD(∠ABC+∠A)(2∠A1BC+∠A)=∠A1BC∠A,
根据三角形的外角的性质得,∠A1CD=∠A1BC+∠A1,
∴∠A1∠A
同理:∠A2∠A1,
∴∠A2∠A1∠A∠A
同理:∠A3∠A
∠A4∠A,
∠A5∠A96°=3°,
故选:D.
【点评】此题主要考查角平分线的定义和三角形内角与外角的性质,有点难度.
18.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是( )
A.∠A=∠1+∠2 B.2∠A=∠1+∠2
C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)
【分析】根据四边形的内角和为360°及翻折的性质,就可求出2∠A=∠1+∠2这一始终保持不变的性质.
【解答】解:2∠A=∠1+∠2,
理由:∵在四边形ADA′E中,∠A+∠A′+∠ADA′+∠AEA′=360°,
则2∠A+180°﹣∠2+180°﹣∠1=360°,
∴可得2∠A=∠1+∠2.
故选:B.
【点评】本题主要考查四边形的内角和及翻折的性质特点,解决本题的关键是熟记翻折的性质.
19.不论x、y为什么实数,代数式x2+y2+2x﹣4y+7的值( )
A.总不小于2 B.总不小于7
C.可为任何实数 D.可能为负数
【分析】要把代数式x2+y2+2x﹣4y+7进行拆分重组凑完全平方式,来判断其值的范围.具体如下:
【解答】解:x2+y2+2x﹣4y+7=(x2+2x+1)+(y2﹣4y+4)+2=(x+1)2+(y﹣2)2+2,
∵(x+1)2≥0,(y﹣2)2≥0,
∴(x+1)2+(y﹣2)2+2≥2,
∴x2+y2+2x﹣4y+7≥2.
故选:A.
【点评】主要利用拆分重组的方法凑完全平方式,把未知数都凑成完全平方式,就能判断该代数式的值的范围.要求掌握完全平方公式,并会熟练运用.
20.甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了8km后遇到甲;④乙出发6分钟后追上甲.其中正确的有( )
A.4个 B.3个 C.2个 D.1个
【分析】观察函数图象可知,函数的横坐标表示时间,纵坐标表示路程,然后根据图象上特殊点的意义进行解答.
【解答】解:①乙在28分时到达,甲在40分时到达,所以乙比甲提前了12分钟到达;故①正确;
②根据甲到达目的地时的路程和时间知:甲的平均速度=1015(千米/时);故②正确;
④设乙出发x分钟后追上甲,则有:x(18+x),解得x=6,故④正确;
③由④知:乙第一次遇到甲时,所走的距离为:66(km),故③错误;
所以正确的结论有三个:①②④,
故选:B.
【点评】读函数的图象时首先要理解横纵坐标表示的含义,理解问题叙述的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.
21.在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是( )
A.乙先出发的时间为0.5小时
B.甲的速度是80千米/小时
C.甲出发0.5小时后两车相遇
D.甲到B地比乙到A地早小时
【分析】根据已知图象分别分析甲、乙两车的速度,进而分析得出答案.
【解答】解:A、由图象横坐标可得,乙先出发的时间为0.5小时,正确,不合题意;
B、∵乙先出发0.5小时,两车相距70km,
∴乙车的速度为:(100﹣70)÷0.5=60(km/h),
故乙行驶全程所用时间为:1(小时),
由最后时间为1.75小时,可得乙先到达A地,
故甲车整个过程所用时间为:1.75﹣0.5=1.25(小时),
故甲车的速度为:80(km/h),
故B选项正确,不合题意;
C、由以上所求可得,甲出发0.5小时后行驶距离为:40km,
乙车行驶的距离为:60km,40+60=100,故两车相遇,
故C选项正确,不合题意;
D、由以上所求可得,乙到A地比甲到B地早:1.75﹣1(小时),
故此选项错误,符合题意.
故选:D.
【点评】本题考查了利用函数的图象解决实际问题,解决本题的关键正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.
二.填空题(共5小题)
22.若x2+2(m﹣3)x+16是关于x的完全平方式,则m= ﹣1或7 .
【分析】直接利用完全平方式得出2(m﹣3)=±8,进而求出答案.
【解答】解:∵x2+2(m﹣3)x+16是关于x的完全平方式,
∴2(m﹣3)=±8,
解得:m=﹣1或7,
故答案为:﹣1或7.
【点评】此题主要考查了完全平方式,正确掌握完全平方式的基本形式是解题关键.
23.已知a2,则 2 , 0 .
【分析】已知a2,两边分别平方可求得,再进行求解即可得出答案.
【解答】解:∵a2,两边平方得:2,
∴对其两边进行平方得;2,
∵()()=(a)(a)×2,
∵2=2﹣2=0,
∴a0,
故(a)(a)×2=0.
故答案为:2,0.
【点评】本题考查了完全平方公式,难度适中,关键是熟练灵活运用完全平方公式进行解题.
24.已知△ABC的三边长a、b、c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是 2b﹣2c .
【分析】先根据三角形三边关系判断出a+b﹣c与b﹣a﹣c的符号,再把要求的式子进行化简,即可得出答案.
【解答】解:∵△ABC的三边长分别是a、b、c,
∴a+b>c,b﹣a<c,
∴a+b﹣c>0,b﹣a﹣c<0,
∴|a+b﹣c|﹣|b﹣a﹣c|=a+b﹣c﹣(﹣b+a+c)=a+b﹣c+b﹣a﹣c=2b﹣2c;
故答案为:2b﹣2c
【点评】此题考查了三角形三边关系,用到的知识点是三角形的三边关系、绝对值、整式的加减,关键是根据三角形的三边关系判断出a+b﹣c与,b﹣a﹣c的符号.
25.已知:如图所示,在△ABC中,点D,E,F分别为BC,AD,CE的中点,且S△ABC=4cm2,则阴影部分的面积为 1 cm2.
【分析】易得△ABD,△ACD为△ABC面积的一半,同理可得△BEC的面积等于△ABC面积的一半,那么阴影部分的面积等于△BEC的面积的一半.
【解答】解:∵D为BC中点,根据同底等高的三角形面积相等,
∴S△ABD=S△ACDS△ABC4=2(cm2),
同理S△BDE=S△CDES△BCE2=1(cm2),
∴S△BCE=2(cm2),
∵F为EC中点,
∴S△BEFS△BCE2=1(cm2).
故答案为1.
【点评】此题考查了三角形中线的性质,解答此题的关键是知道同底等高的三角形面积相等.
26.如图,△ABC中,AB=AC,∠BAC=54°,点D为AB中点,且OD⊥AB,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为 108 度.
【分析】连接OB、OC,根据角平分线的定义求出∠BAO,根据等腰三角形两底角相等求出∠ABC,再根据线段垂直平分线上的点到线段两端点的距离相等可得OA=OB,根据等边对等角可得∠ABO=∠BAO,再求出∠OBC,然后判断出点O是△ABC的外心,根据三角形外心的性质可得OB=OC,再根据等边对等角求出∠OCB=∠OBC,根据翻折的性质可得OE=CE,然后根据等边对等角求出∠COE,再利用三角形的内角和定理列式计算即可得解.
【解答】解:法一:如图,连接OB、OC,
∵∠BAC=54°,AO为∠BAC的平分线,
∴∠BAO∠BAC54°=27°,
又∵AB=AC,
∴∠ABC(180°﹣∠BAC)(180°﹣54°)=63°,
∵DO是AB的垂直平分线,
∴OA=OB,
∴∠ABO=∠BAO=27°,
∴∠OBC=∠ABC﹣∠ABO=63°﹣27°=36°,
∵AO为∠BAC的平分线,AB=AC,
∴△AOB≌△AOC(SAS),
∴OB=OC,
∴点O在BC的垂直平分线上,
又∵DO是AB的垂直平分线,
∴点O是△ABC的外心,
∴∠OCB=∠OBC=36°,
∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,
∴OE=CE,
∴∠COE=∠OCB=36°,
在△OCE中,∠OEC=180°﹣∠COE﹣∠OCB=180°﹣36°﹣36°=108°.
法二:证明点O是△ABC的外心,推出∠BOC=108°,根据OB=OC,推出∠OCE=36°可得结论.
故答案为:108.
【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,综合性较强,难度较大,作辅助线,构造出等腰三角形是解题的关键.
三.解答题(共30小题)
27.作图题:(不写作法,但必须保留作图痕迹)
如图:某地有两所大学和两条相交叉的公路,(点M,N表示大学,AO,BO表示公路).现计划修建一座物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等.你能确定仓库P应该建在什么位置吗?在所给的图形中画出你的设计方案.
【分析】先连接MN,根据线段垂直平分线的性质作出线段MN的垂直平分线DE,再作出∠AOB的平分线OF,DE与OF相交于P点,则点P即为所求.
【解答】解:如图所示:
(1)连接MN,分别以M、N为圆心,以大于MN为半径画圆,两圆相交于DE,连接DE,则DE即为线段MN的垂直平分线;
(2)以O为圆心,以任意长为半径画圆,分别交OA、OB于G、H,再分别以G、H为圆心,以大于GH为半径画圆,两圆相交于F,连接OF,则OF即为∠AOB的平分线(或∠AOB的外角平分线);
(3)DE与OF相交于点P,则点P即为所求.
【点评】本题考查的是线段的垂直平分线及角平分线的作法及性质,熟知此知识是解答此题的关键.
28.已知(x+y)2=1,(x﹣y)2=49,求x2+y2与xy的值.
【分析】已知等式利用完全平方公式化简,相加减即可求出所求式子的值.
【解答】解:∵(x+y)2=x2+y2+2xy=1①,(x﹣y)2=x2+y2﹣2xy=49②,
∴①+②得:2(x2+y2)=50,即x2+y2=25;
①﹣②得:4xy=﹣48,即xy=﹣12.
【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.
29.计算:(a﹣b)2 (b﹣a)3+(a﹣b)4 (b﹣a)
【分析】首先根据偶次幂的性质变成同底数幂,再计算同底数幂的乘法,最后合并同类项即可.
【解答】解:原式=(b﹣a)2 (b﹣a)3+(b﹣a)4 (b﹣a),
=(b﹣a)5+(b﹣a)5,
=2(b﹣a)5.
【点评】此题主要考查了合并同类项法则以及同底数幂的乘除运算和积的乘方运算,正确掌握运算法则是解题关键.
30.(1)已知m+4n﹣3=0,求2m 16n的值.
(2)已知n为正整数,且x2n=4,求(x3n)2﹣2(x2)2n的值.
【分析】(1)先根据幂的乘方变形,再根据同底数幂的乘法进行计算,最后代入求出即可;
(2)先根据幂的乘方法则将原式化为x2n的幂的形式然后代入进行计算即可.
【解答】解:(1)∵m+4n﹣3=0
∴m+4n=3
原式=2m 24n
=2m+4n
=23
=8.
(2)原式=(x2n)3﹣2(x2n)2,
=43﹣2×42,
=32,
【点评】本题考查了幂的乘方,同底数幂的乘法.运用整体代入法是解题的关键.
31.(1)若10x=3,10y=2,求代数式103x+4y的值.
(2)已知:3m+2n﹣6=0,求8m 4n的值.
【分析】(1)直接利用同底数幂的乘法运算法则将原式变形求出答案;
(2)直接利用同底数幂的乘法运算法则将原式变形求出答案.
【解答】解:(1)∵10x=3,10y=2,
∴代数式103x+4y=(10x)3×(10y)4
=33×24
=432;
(2)∵3m+2n﹣6=0,
∴3m+2n=6,
∴8m 4n=23m 22n=23m+2n=26=64.
【点评】此题主要考查了同底数幂的乘法运算以及幂的乘方运算,正确掌握运算法则是解题关键.
32.回答下列问题
(1)填空:x2(x)2﹣ 2 =(x)2+ 2
(2)若a5,则a2 23 ;
(3)若a2﹣3a+1=0,求a2的值.
【分析】(1)根据完全平方公式进行解答即可;
(2)根据完全平方公式进行解答;
(3)先根据a2﹣3a+1=0求出a3,然后根据完全平方公式求解即可.
【解答】解:(1)2、2.
(2)23.
(3)∵a=0时方程不成立,
∴a≠0,
∵a2﹣3a+1=0
两边同除a得:a﹣30,
移项得:a3,
∴a2(a)2﹣2=7.
【点评】本题考查了完全平方公式,解答本题的关键在于熟练掌握完全平方公式.
33.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.
根据图中提供的信息回答下列问题:
(1)小明家到学校的路程是 1500 米.
(2)小明在书店停留了 4 分钟.
(3)本次上学途中,小明一共行驶了 2700 米.一共用了 14 分钟.
(4)在整个上学的途中 12分钟至14分钟 (哪个时间段)小明骑车速度最快,最快的速度是 450 米/分.
【分析】(1)因为y轴表示路程,起点是家,终点是学校,故小明家到学校的路程是1500米;(2)与x轴平行的线段表示路程没有变化,观察图象分析其对应时间即可.
(3)共行驶的路程=小明家到学校的距离+折回书店的路程×2.(4)观察图象分析每一时段所行路程,然后计算出各时段的速度进行比较即可.
【解答】解:(1)∵y轴表示路程,起点是家,终点是学校,
∴小明家到学校的路程是1500米.
(2)由图象可知:小明在书店停留了4分钟.
(3)1500+600×2=2700(米)
即:本次上学途中,小明一共行驶了 2700米.一共用了 14分钟.
(4)折回之前的速度=1200÷6=200(米/分)
折回书店时的速度=(1200﹣600)÷2=300(米/分),
从书店到学校的速度=(1500﹣600)÷2=450(米/分)
经过比较可知:小明在从书店到学校的时候速度最快
即:在整个上学的途中 从12分钟到14分钟小明骑车速度最快,最快的速度是 450 米/分
【点评】本题考查了函数的图象及其应用,解题的关键是理解函数图象中x轴、y轴表示的量及图象上点的坐标的意义.
34.如图,CA=CB,CD=CE,∠ACB=∠DCE=α,AD,BE交于点H,连CH.
(1)求证:△ACD≌△BCE;
(2)求∠AHB;(用含α的式子表示)
(3)求证:HC平分∠AHE.
【分析】(1)由CA=CB,CD=CE,∠ACB=∠DCE=α,利用SAS,即可证明△ACD≌△BCE;
(2)由△ACD≌△BCE,可得∠CAD=∠CBE,继而求得∠AHB=∠ACB=α;
(3)首先作CM⊥AD于M,CN⊥BE于N,由△ACD≌△BCE,可得CM=CN,即可证得HC平分∠AHE.
【解答】(1)证明:∵∠ACB=∠DCE=α,
∴∠ACB+∠BCD=∠DCE+∠BCD,
即∠ACD=∠BCE,
在△ACD和△BCE中,
,
∴△ACD≌△BCE(SAS);
(2)解:∵△ACD≌△BCE,
∴∠CAD=∠CBE,
又∵∠CAD+∠AOC=∠CBE+∠BOH,
∴∠AHB=∠ACB=α;
(3)证明:过点C作CM⊥AD于M,CN⊥BE于N,
∵△ACD≌△BCE,
∴AD=BE,
∴CM=CN,
∴HC平分∠AHE.
【点评】此题考查了全等三角形的判定与性质以及角平分线的定义.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
35.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.
(1)求证:△ABC≌△ADE;
(2)求∠FAE的度数;
(3)求证:CD=2BF+DE.
【分析】(1)根据题意和题目中的条件可以找出△ABC≌△ADE的条件;
(2)根据(1)中的结论和等腰直角三角形的定义可以得到∠FAE的度数;
(3)根据题意和三角形全等的知识,作出合适的辅助线即可证明结论成立.
【解答】证明:(1)∵∠BAD=∠CAE=90°,
∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,
∴∠BAC=∠DAE,
在△BAC和△DAE中,
,
∴△BAC≌△DAE(SAS);
(2)∵∠CAE=90°,AC=AE,
∴∠E=45°,
由(1)知△BAC≌△DAE,
∴∠BCA=∠E=45°,
∵AF⊥BC,
∴∠CFA=90°,
∴∠CAF=45°,
∴∠FAE=∠FAC+∠CAE=45°+90°=135°;
(3)延长BF到G,使得FG=FB,
∵AF⊥BG,
∴∠AFG=∠AFB=90°,
在△AFB和△AFG中,
,
∴△AFB≌△AFG(SAS),
∴AB=AG,∠ABF=∠G,
∵△BAC≌△DAE,
∴AB=AD,∠CBA=∠EDA,CB=ED,
∴AG=AD,∠ABF=∠CDA,
∴∠G=∠CDA,
∵∠GCA=∠DCA=45°,
在△CGA和△CDA中,
,
∴△CGA≌△CDA(AAS),
∴CG=CD,
∵CG=CB+BF+FG=CB+2BF=DE+2BF,
∴CD=2BF+DE.
【点评】本题考查全等三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
36.如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF,证明:
(1)CF=EB.
(2)AB=AF+2EB.
【分析】(1)根据角平分线的性质“角的平分线上的点到角的两边的距离相等”,可得点D到AB的距离=点D到AC的距离即CD=DE.再根据Rt△CDF≌Rt△EDB,得CF=EB;
(2)利用角平分线性质证明Rt△ADC≌Rt△ADE,AC=AE,再将线段AB进行转化.
【解答】证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,
∴DE=DC,
在Rt△CDF和Rt△EDB中,
,
∴Rt△CDF≌Rt△EDB(HL).
∴CF=EB;
(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,
∴CD=DE.
在Rt△ADC与Rt△ADE中,
,
∴Rt△ADC≌Rt△ADE(HL),
∴AC=AE,
∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.
【点评】本题主要考查平分线的性质,由已知能够注意到点D到AB的距离=点D到AC的距离,即CD=DE,是解答本题的关键.
37.如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.
(1)说明BE=CF的理由;
(2)如果AB=5,AC=3,求AE、BE的长.
【分析】(1)连接BD,CD,由AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,根据角平分线的性质,即可得DE=DF,又由DG⊥BC且平分BC,根据线段垂直平分线的性质,可得BD=CD,继而可证得Rt△BED≌Rt△CFD,则可得BE=CF;
(2)首先证得△AED≌△AFD,即可得AE=AF,然后设BE=x,由AB﹣BE=AC+CF,即可得方程5﹣x=3+x,解方程即可求得答案.
【解答】(1)证明:连接BD,CD,
∵AD平分∠BAC,DE⊥AB,DF⊥AC,
∴DE=DF,∠BED=∠CFD=90°,
∵DG⊥BC且平分BC,
∴BD=CD,
在Rt△BED与Rt△CFD中,
,
∴Rt△BED≌Rt△CFD(HL),
∴BE=CF;
(2)解:在△AED和△AFD中,
,
∴△AED≌△AFD(AAS),
∴AE=AF,
设BE=x,则CF=x,
∵AB=5,AC=3,AE=AB﹣BE,AF=AC+CF,
∴5﹣x=3+x,
解得:x=1,
∴BE=1,AE=AB﹣BE=5﹣1=4.
【点评】此题考查了角平分线的性质、线段垂直平分线的性质以及全等三角形的判定与性质.此题难度适中,解题的关键是准确作出辅助线,利用方程思想与数形结合思想求解.
38.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.
(1)求证:△AEC≌△BED;
(2)若∠1=42°,求∠BDE的度数.
【分析】(1)根据全等三角形的判定即可判断△AEC≌△BED;
(2)由(1)可知:EC=ED,∠C=∠BDE,根据等腰三角形的性质即可知∠C的度数,从而可求出∠BDE的度数;
【解答】(1)证明:∵AE和BD相交于点O,
∴∠AOD=∠BOE.
在△AOD和△BOE中,
∠A=∠B,∴∠BEO=∠2.
又∵∠1=∠2,
∴∠1=∠BEO,
∴∠AEC=∠BED.
在△AEC和△BED中,
,
∴△AEC≌△BED(ASA).
解:(2)∵△AEC≌△BED,
∴EC=ED,∠C=∠BDE.
在△EDC中,
∵EC=ED,∠1=42°,
∴∠C=∠EDC=69°,
∴∠BDE=∠C=69°.
【点评】本题考查全等三角形,解题的关键是熟练运用全等三角形的性质与判定,本题属于中等题型.
39.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.
(1)若△CMN的周长为15cm,求AB的长;
(2)若∠MFN=70°,求∠MCN的度数.
【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AM=CM,BN=CN,然后求出△CMN的周长=AB;
(2)根据三角形的内角和定理列式求出∠MNF+∠NMF,再求出∠A+∠B,根据等边对等角可得∠A=∠ACM,∠B=∠BCN,然后利用三角形的内角和定理列式计算即可得解.
【解答】解:(1)∵DM、EN分别垂直平分AC和BC,
∴AM=CM,BN=CN,
∴△CMN的周长=CM+MN+CN=AM+MN+BN=AB,
∵△CMN的周长为15cm,
∴AB=15cm;
(2)∵∠MFN=70°,
∴∠MNF+∠NMF=180°﹣70°=110°,
∵∠AMD=∠NMF,∠BNE=∠MNF,
∴∠AMD+∠BNE=∠MNF+∠NMF=110°,
∴∠A+∠B=90°﹣∠AMD+90°﹣∠BNE=180°﹣110°=70°,
∵AM=CM,BN=CN,
∴∠A=∠ACM,∠B=∠BCN,
∴∠MCN=180°﹣2(∠A+∠B)=180°﹣2×70°=40°.
【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,三角形的内角和定理,(2)整体思想的利用是解题的关键.
40.如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.
(1)求证:AE=CD;
(2)求证:AE⊥CD;
(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有 ② (请写序号,少选、错选均不得分).
【分析】(1)欲证明AE=CD,只要证明△ABE≌△CBD;
(2)由△ABE≌△CBD,推出∠BAE=∠BCD,由∠NMC=180°﹣∠BCD﹣∠CNM,∠ABC=180°﹣∠BAE﹣∠ANB,又∠CNM=∠ANB,∠ABC=90°,可得∠NMC=90°;
(3)结论:②;作BK⊥AE于K,BJ⊥CD于J.利用角平分线的判定定理证明即可;
【解答】(1)证明:∵∠ABC=∠DBE,
∴∠ABC+∠CBE=∠DBE+∠CBE,
即∠ABE=∠CBD,
在△ABE和△CBD中,
,
∴△ABE≌△CBD,
∴AE=CD.
(2)∵△ABE≌△CBD,
∴∠BAE=∠BCD,
∵∠NMC=180°﹣∠BCD﹣∠CNM,∠ABC=180°﹣∠BAE﹣∠ANB,
又∠CNM=∠ANB,
∵∠ABC=90°,
∴∠NMC=90°,
∴AE⊥CD.
(3)结论:②
理由:作BK⊥AE于K,BJ⊥CD于J.
∵△ABE≌△CBD,
∴AE=CD,S△ABE=S△CDB,
∴ AE BK CD BJ,
∴BK=BJ,∵作BK⊥AE于K,BJ⊥CD于J,
∴BM平分∠AMD.
不妨设①成立,则△CBM≌△EBM,则AB=BD,显然不可能,故①错误.
故答案为②.
【点评】本题考查全等三角形的判定和性质、等腰直角三角形的性质、角平分线的性质定理等知识,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线解决问题.
41.如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P.
(1)如果∠A=80°,求∠BPC的度数;
(2)如图②,作△ABC外角∠MBC,∠NCB的角平分线交于点Q,试探索∠Q、∠A之间的数量关系.
(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的2倍,求∠A的度数.
【分析】(1)运用三角形的内角和定理及角平分线的定义,首先求出∠PBC+∠PCB,进而求出∠BPC即可解决问题;
(2)根据三角形的外角性质分别表示出∠MBC与∠BCN,再根据角平分线的性质可求得∠CBQ+∠BCQ,最后根据三角形内角和定理即可求解;
(3)在△BQE中,由于∠Q=90°∠A,求出∠E∠A,∠EBQ=90°,所以如果△BQE中,存在一个内角等于另一个内角的2倍,那么分四种情况进行讨论:①∠EBQ=2∠E=90°;②∠EBQ=2∠Q=90°;③∠Q=2∠E;④∠E=2∠Q;分别列出方程,求解即可.
【解答】(1)解:∵∠A=80°.
∴∠ABC+∠ACB=100°,
∵点P是∠ABC和∠ACB的平分线的交点,
∴∠P=180°(∠ABC+∠ACB)=180°100°=130°,
(2)∵外角∠MBC,∠NCB的角平分线交于点Q,
∴∠QBC+∠QCB(∠MBC+∠NCB)
(360°﹣∠ABC﹣∠ACB)
(180°+∠A)
=90°∠A
∴∠Q=180°﹣(90°∠A)=90°∠A;
(3)延长BC至F,
∵CQ为△ABC的外角∠NCB的角平分线,
∴CE是△ABC的外角∠ACF的平分线,
∴∠ACF=2∠ECF,
∵BE平分∠ABC,
∴∠ABC=2∠EBC,
∵∠ECF=∠EBC+∠E,
∴2∠ECF=2∠EBC+2∠E,
即∠ACF=∠ABC+2∠E,
又∵∠ACF=∠ABC+∠A,
∴∠A=2∠E,即∠E∠A;
∵∠EBQ=∠EBC+∠CBQ
∠ABC∠MBC
(∠ABC+∠A+∠ACB)=90°.
如果△BQE中,存在一个内角等于另一个内角的2倍,那么分四种情况:
①∠EBQ=2∠E=90°,则∠E=45°,∠A=2∠E=90°;
②∠EBQ=2∠Q=90°,则∠Q=45°,∠E=45°,∠A=2∠E=90°;
③∠Q=2∠E,则90°∠A=∠A,解得∠A=60°;
④∠E=2∠Q,则∠A=2(90°∠A),解得∠A=120°.
综上所述,∠A的度数是90°或60°或120°.
【点评】本题是三角形综合题,考查了三角形内角和定理、外角的性质,角平分线定义等知识;灵活运用三角形的内角和定理、外角的性质进行分类讨论是解题的关键.
42.阅读材料:求1+2+22+23+24+…+22013的值.
解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘2得:
2S=2+22+23+24+25+…+22013+22014
将下式减去上式得2S﹣S=22014﹣1
即S=22014﹣1
即1+2+22+23+24+…+22013=22014﹣1
请你仿照此法计算:
(1)1+2+22+23+24+…+210
(2)1+3+32+33+34+…+3n(其中n为正整数).
【分析】(1)设S=1+2+22+23+24+…+210,两边乘以2后得到关系式,与已知等式相减,变形即可求出所求式子的值;
(2)同理即可得到所求式子的值.
【解答】解:(1)设S=1+2+22+23+24+…+210,
将等式两边同时乘2得:2S=2+22+23+24+…+210+211,
将下式减去上式得:2S﹣S=211﹣1,即S=211﹣1,
则1+2+22+23+24+…+210=211﹣1;
(2)设S=1+3+32+33+34+…+3n①,
两边同时乘3得:3S=3+32+33+34+…+3n+3n+1②,
②﹣①得:3S﹣S=3n+1﹣1,即S(3n+1﹣1),
则1+3+32+33+34+…+3n(3n+1﹣1).
【点评】此题考查了同底数幂的乘法,弄清题中的技巧是解本题的关键.
43.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).
(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;
(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.
【分析】(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;
(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.
【解答】解:(1)当t=1时,AP=BQ=1,BP=AC=3,
又∠A=∠B=90°,
在△ACP和△BPQ中,
,
∴△ACP≌△BPQ(SAS).
∴∠ACP=∠BPQ,
∴∠APC+∠BPQ=∠APC+∠ACP=90°.
∴∠CPQ=90°,
即线段PC与线段PQ垂直.
(2)存在,
理由:①若△ACP≌△BPQ,
则AC=BP,AP=BQ,
则,
解得;
②若△ACP≌△BQP,
则AC=BQ,AP=BP,
则,
解得:;
综上所述,存在或,使得△ACP与△BPQ全等.
【点评】本题主要考查了全等三角形的判定与性质,两边及其夹角分别对应相等的两个三角形全等.在解题时注意分类讨论思想的运用.
44.(本题有3小题,第(1)小题为必答题,满分5分;第(2)、(3)小题为选答题,其中,第(2)小题满分3分,第(3)小题满分6分,请从中任选1小题作答,如两题都答,以第(2)小题评分.)
在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.
(1)当直线MN绕点C旋转到图1的位置时,求证:
①△ADC≌△CEB;②DE=AD+BE;
(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;
(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.
【分析】(1)根据已知可利用AAS证明①△ADC≌△CEB,由此可证②DE=AD+BE;
(2)根据已知可利用AAS证明△ADC≌△CEB,由此可证DE=AD﹣BE;
(3)根据已知可利用AAS证明△ADC≌△CEB,由此可证DE=BE﹣AD.
【解答】证明:(1)①∵∠ADC=∠ACB=∠BEC=90°,
∴∠CAD+∠ACD=90°,∠BCE+∠CBE=90°,∠ACD+∠BCE=90°.
∴∠CAD=∠BCE.
∵AC=BC,
∴△ADC≌△CEB(AAS).
②∵△ADC≌△CEB,
∴CE=AD,CD=BE.
∴DE=CE+CD=AD+BE.
解:(2)∵∠ADC=∠CEB=∠ACB=90°,
∴∠ACD=∠CBE.
又∵AC=BC,
∴△ACD≌△CBE(AAS).
∴CE=AD,CD=BE.
∴DE=CE﹣CD=AD﹣BE.
(3)当MN旋转到图3的位置时,AD、DE、BE所满足的等量关系是DE=BE﹣AD(或AD=BE﹣DE,BE=AD+DE等).
∵∠ADC=∠CEB=∠ACB=90°,
∴∠ACD=∠CBE,
又∵AC=BC,
∴△ACD≌△CBE(AAS),
∴AD=CE,CD=BE,
∴DE=CD﹣CE=BE﹣AD.
【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,再根据全等三角形对应边相等得出结论.
45.如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,
(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;
(2)何时△PBQ是直角三角形?
(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数.
【分析】(1)因为点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,所以AP=BQ.AB=AC,∠B=∠CAP=60°,因而运用边角边定理可知△ABQ≌△CAP.再用全等三角形的性质定理及三角形的角间关系、三角形的外角定理,可求得∠CMQ的度数.
(2)设时间为t,则AP=BQ=t,PB=4﹣t.分别就①当∠PQB=90°时;②当∠BPQ=90°时利用直角三角形的性质定理求得t的值.
(3)首先利用边角边定理证得△PBC≌△QCA,再利用全等三角形的性质定理得到∠BPC=∠MQC.再运用三角形角间的关系求得∠CMQ的度数.
【解答】解:(1)∠CMQ=60°不变.
∵等边三角形中,AB=AC,∠B=∠CAP=60°
又由条件得AP=BQ,
在△ABQ和△CAP中,
,
∴△ABQ≌△CAP(SAS),
∴∠BAQ=∠ACP,
∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°.
(2)设时间为t,则AP=BQ=t,PB=4﹣t
①当∠PQB=90°时,
∵∠B=60°,
∴PB=2BQ,得4﹣t=2t,t;
②当∠BPQ=90°时,
∵∠B=60°,
∴BQ=2BP,得t=2(4﹣t),t;
∴当第秒或第秒时,△PBQ为直角三角形.
(3)∠CMQ=120°不变.
∵在等边三角形中,BC=AC,∠ABC=∠ACB=60°
∴∠PBC=∠ACQ=120°,
又由条件得BP=CQ,
在△PBC和△QCA中,
,
∴△PBC≌△QCA(SAS)
∴∠BPC=∠MQC
又∵∠PCB=∠MCQ,
∴∠CMQ=∠PBC=180°﹣60°=120°
【点评】此题是一个综合性很强的题目.本题考查等边三角形的性质、全等三角形的判定与性质、直角三角形的性质.难度很大,有利于培养同学们钻研和探索问题的精神.
46.(1)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,BD⊥直线l,CE⊥直线l,垂足分别为点D、E.证明:DE=BD+CE.
(2)组员小刘想,如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线l上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,过△ABC的边AB、AC向外作正方形ABDE和正方形ACFG,AH是BC边上的高,延长HA交EG于点I,求证:I是EG的中点.
【分析】(1)由条件可证明△ABD≌△CAE,可得DA=CE,AE=BD,可得DE=BD+CE;
(2)由条件可知∠BAD+∠CAE=180°﹣α,且∠DBA+∠BAD=180°﹣α,可得∠DBA=∠CAE,结合条件可证明△ABD≌△CAE,同(1)可得出结论;
(3)由条件可知EM=AH=GN,可得EM=GN,结合条件可证明△EMI≌△GNI,可得出结论I是EG的中点.
【解答】解:(1)如图1,
∵BD⊥直线l,CE⊥直线l,
∴∠BDA=∠CEA=90°,
∵∠BAC=90°,
∴∠BAD+∠CAE=90°
∵∠BAD+∠ABD=90°,
∴∠CAE=∠ABD
在△ADB和△CEA中,
,
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE;
(2)DE=BD+CE.
如图2,
证明如下:
∵∠BDA=∠BAC=α,
∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,
∴∠DBA=∠CAE,
在△ADB和△CEA中.
.
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE
(3)如图3,
过E作EM⊥HI于M,GN⊥HI的延长线于N.
∴∠EMI=GNI=90°
由(1)和(2)的结论可知EM=AH=GN
∴EM=GN
在△EMI和△GNI中,
,
∴△EMI≌△GNI(AAS),
∴EI=GI,
∴I是EG的中点.
【点评】本题主要考查全等三角形的判定和性质,由条件证明三角形全等得到BD=AE、CE=AD是解题的关键.
47.如图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.
(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;
(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;
(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明.
【分析】此题三个小题的解题思路是一致的,过P作直线l1、l2的平行线,利用平行线的性质得到和∠1、∠2相等的角,然后结合这些等角和∠3的位置关系,来得出∠1、∠2、∠3的数量关系.
【解答】证明:(1)过P作PQ∥l1,
∵l1∥l2,
∴PQ∥l1∥l2,
由两直线平行,内错角相等,可得:
∠1=∠QPE、∠2=∠QPF;
∵∠3=∠QPE+∠QPF,
∴∠3=∠1+∠2.
(2)关系:∠3=∠2﹣∠1;
过P作直线PQ∥l1,
∵l1∥l2,
∴PQ∥l1∥l2,
则:∠1=∠QPE、∠2=∠QPF;
∵∠3=∠QPF﹣∠QPE,
∴∠3=∠2﹣∠1.
(3)关系:∠3=360°﹣∠1﹣∠2.
过P作PQ∥l1,
∵l1∥l2,
∴PQ∥l1∥l2,
同(1)可证得:∠3=∠CEP+∠DFP;
∵∠CEP+∠1=180°,∠DFP+∠2=180°,
∴∠CEP+∠DFP+∠1+∠2=360°,
即∠3=360°﹣∠1﹣∠2.
【点评】此题主要考查的是平行线的性质,能够正确地作出辅助线,是解决问题的关键.
48.如图,在长方形ABCD中,AB=CD=6cm,BC=10cm,点P从点B出发,以2cm/秒的速度沿BC向点C运动,设点P的运动时间为t秒:
(1)PC= (10﹣2t) cm.(用t的代数式表示)
(2)当t为何值时,△ABP≌△DCP?
(3)当点P从点B开始运动,同时,点Q从点C出发,以v cm/秒的速度沿CD向点D运动,是否存在这样v的值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.
【分析】(1)根据P点的运动速度可得BP的长,再利用BC﹣BP即可得到CP的长;
(2)当△ABP≌△DCP时,根据三角形全等的条件可得当BP=CP时,进而得出答案;
(3)此题主要分两种情况①当△ABP≌△QCP时;②当△ABP≌△PCQ时,然后分别计算出t的值,进而得到v的值.
【解答】解:(1)点P从点B出发,以2cm/秒的速度沿BC向点C运动,点P的运动时间为t秒时,BP=2t,
则PC=(10﹣2t)cm;
故答案为:(10﹣2t);
(2)当△ABP≌△DCP时,
则BP=CP=5,
故2t=5,
解得:t=2.5;
(3)①如图1,当△ABP≌△QCP,则BA=CQ,PB=PC,
∵PB=PC,
∴BP=PCBC=5,
2t=5,
解得:t=2.5,
BA=CQ=6,
v×2.5=6,
解得:v=2.4(cm/秒).
②如图2,当△ABP≌△PCQ,则BP=CQ,AB=PC.
∵AB=6,
∴PC=6,
∴BP=10﹣6=4,
2t=4,
解得:t=2,
CQ=BP=4,
v×2=4,
解得:v=2;
综上所述:当v=2.4cm/秒或2cm/秒时△ABP与△PQC全等.
【点评】此题主要考查了全等三角形的判定,关键是掌握全等三角形全等的条件,找准对应边.
49.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.
小明的思路是:过P作PE∥AB,通过平行线性质来求∠APC.
(1)按小明的思路,易求得∠APC的度数为 110 度;
(2)问题迁移:如图2,AB∥CD,点P在射线OM上运动,记∠PAB=α,∠PCD=β,当点P在B、D两点之间运动时,问∠APC与α、β之间有何数量关系?请说明理由;
(3)在(2)的条件下,如果点P在B、D两点外侧运动时(点P与点O、B、D三点不重合),请直接写出∠APC与α、β之间的数量关系.
【分析】(1)过P作PE∥AB,通过平行线性质求∠APC即可;
(2)过P作PE∥AB交AC于E,推出AB∥PE∥DC,根据平行线的性质得出∠α=∠APE,∠β=∠CPE,即可得出答案;
(3)分两种情况:P在BD延长线上;P在DB延长线上,分别画出图形,根据平行线的性质得出∠α=∠APE,∠β=∠CPE,即可得出答案.
【解答】(1)解:过点P作PE∥AB,
∵AB∥CD,
∴PE∥AB∥CD,
∴∠A+∠APE=180°,∠C+∠CPE=180°,
∵∠PAB=130°,∠PCD=120°,
∴∠APE=50°,∠CPE=60°,
∴∠APC=∠APE+∠CPE=110°.
(2)∠APC=α+β,
理由:如图2,过P作PE∥AB交AC于E,
∵AB∥CD,
∴AB∥PE∥CD,
∴α=∠APE,β=∠CPE,
∴∠APC=∠APE+∠CPE=α+β;
(3)如图所示,当P在BD延长线上时,
∠CPA=α﹣β;
如图所示,当P在DB延长线上时,
∠CPA=β﹣α.
【点评】本题主要考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,解题时注意分类思想的运用.
50.如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC上一动点,以DE为一边作等边三角形DEF,连接CF.
【问题解决】
如图1,若点D在边BC上,求证:CE+CF=CD;
【类比探究】
如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.
【分析】【问题解决】在CD上截取CH=CE,易证△CEH是等边三角形,得出EH=EC=CH,证明△DEH≌△FEC(SAS),得出DH=CF,即可得出结论;
【类比探究】过D作DG∥AB,交AC的延长线于点G,由平行线的性质易证∠GDC=∠DGC=60°,得出△GCD为等边三角形,则DG=CD=CG,证明△EGD≌△FCD(SAS),得出EG=FC,即可得出FC=CD+CE.
【解答】【问题解决】证明:在CD上截取CH=CE,如图1所示:
∵△ABC是等边三角形,
∴∠ECH=60°,
∴△CEH是等边三角形,
∴EH=EC=CH,∠CEH=60°,
∵△DEF是等边三角形,
∴DE=FE,∠DEF=60°,
∴∠DEH+∠HEF=∠FEC+∠HEF=60°,
∴∠DEH=∠FEC,
在△DEH和△FEC中,
,
∴△DEH≌△FEC(SAS),
∴DH=CF,
∴CD=CH+DH=CE+CF,
∴CE+CF=CD;
【类比探究】解:线段CE,CF与CD之间的等量关系是FC=CD+CE;理由如下:
∵△ABC是等边三角形,
∴∠A=∠B=60°,
过D作DG∥AB,交AC的延长线于点G,如图2所示:
∵GD∥AB,
∴∠GDC=∠B=60°,∠DGC=∠A=60°,
∴∠GDC=∠DGC=60°,
∴△GCD为等边三角形,
∴DG=CD=CG,∠GDC=60°,
∵△EDF为等边三角形,
∴ED=DF,∠EDF=∠GDC=60°,
∴∠EDG=∠FDC,
在△EGD和△FCD中,
,
∴△EGD≌△FCD(SAS),
∴EG=FC,
∴FC=EG=CG+CE=CD+CE.
【点评】本题考查了等边三角形的判定与性质、全等三角形的判定与性质、平行线的性质等知识;作辅助线构建等边三角形是解题的关键.
51.如图,∠AOB=90°,点C、D分别在射线OA、OB上,CE是∠ACD的平分线,CE的反向延长线与∠CDO的平分线交于点F.
(1)当∠OCD=50°(图1),试求∠F.
(2)当C、D在射线OA、OB上任意移动时(不与点O重合)(图2),∠F的大小是否变化?若变化,请说明理由;若不变化,求出∠F.
【分析】(1)根据三角形的内角和是180°,可求∠CDO=40°,所以∠CDF=20°,又由平角定义,可求∠ACD=130°,所以∠ECD=65°,又根据三角形的外角等于与它不相邻的两内角之和,可求∠ECD=∠F+∠CDF,∠F=45度.
(2)同理可证,∠F=45度.
【解答】解:(1)∵∠AOB=90°,∠OCD=50°,
∴∠CDO=40°.
∵CE是∠ACD的平分线,DF是∠CDO的平分线,
∴∠ECD=65°,∠CDF=20°.
∵∠ECD=∠F+∠CDF,
∴∠F=45°.
(2)不变化,∠F=45°.
∵∠AOB=90°,
∴∠CDO=90°﹣∠OCD,∠ACD=180°﹣∠OCD.
∵CE是∠ACD的平分线,DF是∠CDO的平分线,
∴∠ECD=90°∠OCD,∠CDF=45°∠OCD.
∵∠ECD=∠F+∠CDF,
∴∠F=45°.
【点评】本题考查了三角形的外角等于与它不相邻的两内角之和,以及三角形的内角和是180°的定理.题目难度由浅入深,由特例到一般,是学生练习提高的必备题.
52.如图,CD是经过∠BCA顶点C的一条直线,CA=CB,E、F分别是直线CD上两点,且∠BEC=∠CFA=α.
(1)若直线CD经过∠BCA的内部,且E、F在射线CD上.
①如图1,若∠BCA=90°,α=90°,则BE = CF;
②如图2,若0°<∠BCA<180°,请添加一个关于α与∠BCA关系的条件 α+∠BCA=180° ,使①中的结论仍然成立,并说明理由;
(2)如图3,若直线CD经过∠BCA的外部,α=∠BCA,请提出关于EF,BE,AF三条线段数量关系的合理猜想,并简述理由.
【分析】(1)①由∠BCA=90°,∠BEC=∠CFA=α=90°,可得∠CBE=∠ACF,从而可证△BCE≌△CAF,故BE=CF.
②若BE=CF,则可使得△BCE≌△CAF.根据题目已知条件添加条件,再使得一对角相等,△BCE≌△CAF便可得证.
(2)题干已知条件可证△BCE≌△CAF,故BE=CF,EC=FA,从而可证明EF=BE+AF.
【解答】解:(1)①∵∠BEC=∠CFA=α=90°,
∴∠BCE+∠CBE=180°﹣∠BEC=90°.
又∵∠BCA=∠BCE+∠ACF=90°,
∴∠CBE=∠ACF.
在△BCE和△CAF中,
∴△BCE≌△CAF(AAS).
∴BE=CF.
②α+∠BCA=180°,理由如下:
∵∠BEC=∠CFA=α,
∴∠BEF=180°﹣∠BEC=180°﹣α.
又∵∠BEF=∠EBC+∠BCE,
∴∠EBC+∠BCE=180°﹣α.
又∵α+∠BCA=180°,
∴∠BCA=180°﹣α.
∴∠BCA=∠BCE+∠ACF=180°﹣α.
∴∠EBC=∠FCA.
在△BCE和△CAF中,
∴△BCE≌△CAF(AAS).
∴BE=CF.
(2)EF=BE+AF,理由如下:
∵∠BCA=α,
∴∠BCE+∠ACF=180°﹣∠BCA=180°﹣α.
又∵∠BEC=α,
∴∠EBC+∠BCE=180°﹣∠BEC=180°﹣α.
∴∠EBC=∠FCA.
在△BEC和△CFA中,
∴△BEC≌△CFA(AAS).
∴BE=CF,EC=FA.
∴EF=EC+CF=FA+BE,即EF=BE+AF.
【点评】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.
53.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).
(1)上述操作能验证的等式是 B ;(请选择正确的一个)
A、a2﹣2ab+b2=(a﹣b)2
B、a2﹣b2=(a+b)(a﹣b)
C、a2+ab=a(a+b)
(2)应用你从(1)选出的等式,完成下列各题:
①已知x2﹣4y2=12,x+2y=4,求x﹣2y的值.
②计算:(1)(1)(1)…(1)(1).
【分析】(1)根据两个图形中阴影部分的面积相等,即可列出等式;
(2)①把x2﹣4y2利用(1)的结论写成两个式子相乘的形式,然后把x+2y=4代入即可求解;
②利用(1)的结论化成式子相乘的形式即可求解.
【解答】解:(1)第一个图形中阴影部分的面积是a2﹣b2,第二个图形的面积是(a+b)(a﹣b),
则a2﹣b2=(a+b)(a﹣b).
故答案是B;
(2)①∵x2﹣4y2=(x+2y)(x﹣2y),
∴12=4(x﹣2y)
得:x﹣2y=3;
②原式=(1)(1)(1)(1)(1)(1)…(1)(1)(1)(1)
.
【点评】本题主要考查了平方差公式的几何表示,表示出图形阴影部分面积是解题的关键.
54.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连接EF,AG.求证:EF=FG.
(2)如图2,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.
【分析】(1)证△ADG≌△ABE,△FAE≌△FAG,根据全等三角形的性质求出即可;
(2)过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.通过证明△ABM≌△ACE(SAS)推知全等三角形的对应边AM=AE、对应角∠BAM=∠CAE;然后由等腰直角三角形的性质和∠MAN=45°得到∠MAN=∠EAN=45°,所以△MAN≌△EAN(SAS),故全等三角形的对应边MN=EN;最后由勾股定理得到EN2=EC2+NC2即MN2=BM2+NC2.
【解答】(1)证明:在正方形ABCD中,
∠ABE=∠ADG,AD=AB,
在△ABE和△ADG中,
∴△ABE≌△ADG(SAS),
∴∠BAE=∠DAG,AE=AG,
∴∠EAG=90°,
在△FAE和△FAG中,
,
∴△FAE≌△FAG(SAS),
∴EF=FG;
(2)解:如图,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.
∵AB=AC,∠BAC=90°,
∴∠B=∠ACB=45°.
∵CE⊥BC,
∴∠ACE=∠B=45°.
在△ABM和△ACE中,
∴△ABM≌△ACE(SAS).
∴AM=AE,∠BAM=∠CAE.
∵∠BAC=90°,∠MAN=45°,
∴∠BAM+∠CAN=45°.
于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.
在△MAN和△EAN中,
∴△MAN≌△EAN(SAS).
∴MN=EN.
在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.
∴MN2=BM2+NC2.
∵BM=1,CN=3,
∴MN2=12+32,
∴MN
【点评】本题主要考查正方形的性质,全等三角形的判定和性质、等腰直角三角形的性质以及勾股定理的综合应用.
55.如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
(1)如果AB=AC,∠BAC=90°,
①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为 垂直 ,线段CF、BD的数量关系为 相等 ;
②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;
(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.
【分析】(1)当点D在BC的延长线上时①的结论仍成立.由正方形ADEF的性质可推出△DAB≌△FAC,所以CF=BD,∠ACF=∠ABD.结合∠BAC=90°,AB=AC,得到∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.
(2)当∠ACB=45°时,过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,可推出∠ACB=∠AGC,所以AC=AG,由(1)①可知CF⊥BD.
【解答】证明:(1)①正方形ADEF中,AD=AF,
∵∠BAC=∠DAF=90°,
∴∠BAD=∠CAF,
又∵AB=AC,
∴△DAB≌△FAC,
∴CF=BD,∠B=∠ACF,
∴∠ACB+∠ACF=90°,即CF⊥BD.
②当点D在BC的延长线上时①的结论仍成立.
由正方形ADEF得AD=AF,∠DAF=90度.
∵∠BAC=90°,
∴∠DAF=∠BAC,
∴∠DAB=∠FAC,
又∵AB=AC,
∴△DAB≌△FAC,
∴CF=BD,∠ACF=∠ABD.
∵∠BAC=90°,AB=AC,
∴∠ABC=45°,
∴∠ACF=45°,
∴∠BCF=∠ACB+∠ACF=90度.
即CF⊥BD.
(2)当∠ACB=45°时,CF⊥BD(如图).
理由:过点A作AG⊥AC交CB的延长线于点G,
则∠GAC=90°,
∵∠ACB=45°,∠AGC=90°﹣∠ACB,
∴∠AGC=90°﹣45°=45°,
∴∠ACB=∠AGC=45°,
∴AC=AG,
∵∠DAG=∠FAC(同角的余角相等),AD=AF,
∴△GAD≌△CAF,
∴∠ACF=∠AGC=45°,
∠BCF=∠ACB+∠ACF=45°+45°=90°,即CF⊥BC.
【点评】本题考查三角形全等的判定和直角三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
56.【模型建立】如图1,四边形ABCD是正方形,点M,N分别在边CD,BC上,且∠MAN=45°我们称之为“半角模型”,在解决“半角模型”问题时,旋转是一种常用的方法.如图1,将△ADM绕点A顺时针旋转90°点D与点B重合,得到△ABE,连接MN.
(1)试判断DM,BN,MN之间的数量关系,并写出证明过程.
【模型应用】
(2)如图2,点M,N分别在正方形ABCD的边CD,BC的延长线上,∠MAN=45°,连接MN,请写出MN,DM,BN之间的数量关系,并写出证明过程.
【模型迁移】
(3)如图3,在四边形ABCD中,AB=AD,∠BAD=120°,∠B+∠D=180°,点N,M分别在边BC,CD上,∠MAN=60°,请直接写出线段BN,DM,MN之间的数量关系.
【分析】(1)首先利用SAS证明△EAN≌△MAN,得EN=MN,从而得出答案;
(2)在BC上取BE=MD.连接AE,首先由△ABE≌△ADM(SAS),得AE=AM,∠BAE=∠MAD,再利用SAS证明△EAN≌△MAN,得EN=MN,即可证明结论;
(3)将△ABN绕点A逆时针旋转120°得△ADE,由旋转的性质得点E、D、C共线,由(1)同理可得△EAM≌△NAM(SAS),得EM=MN,从而解决问题.
【解答】解:(1)MN=DM+BN.证明如下:
由旋转,可知:AE=AM,BE=DM,∠EAM=90°.∠ABE=∠D=90°,
∴点E、B、C共线,
∵∠MAN=45°,
∴∠EAN=∠EAM﹣∠MAN=45°=∠MAN.
在△EAN和△MAN中,
,
∴△EAN≌△MAN(SAS).
∴EN=MN,
∵EN=BE+BN,
∴MN=DM+BN;
(2)MN=BN﹣DM.证明如下:
在BC上取BE=MD.连接AE,
∵AB=AD,∠B=∠ADM,
∴△ABE≌△ADM(SAS),
∴AE=AM,∠BAE=∠MAD,
∵∠MAN=45°,
∴∠EAN=∠EAM﹣∠MAN=45°=∠MAN.
在△EAN和△MAN中,
,
∴△EAN≌△MAN(SAS),
∴EN=MN,
∵EN=BN﹣BE,
∴MN=BN﹣DM;
(3)将△ABN绕点A逆时针旋转120°得△ADE,
∴∠B=∠ADE,AN=AE,BN=DE,
∴∠B+∠ADC=180°,
∴∠ADE+∠ADC=180°,
∴点E、D、C共线,
由(1)同理可得△EAM≌△NAM(SAS),
∴EM=MN,
∴MN=DM+BN.
【点评】本题是四边形综合题,主要考查了正方形的性质,旋转的性质,全等三角形的判定与性质,利用旋转构造全等三角形是解题的关键.
第1页(共1页)