第2课时 相互独立事件概率的应用
1.(2024·济宁月考)某电视台夏日水上闯关节目中的前三关的过关率分别为0.8,0.6,0.5,只有通过前一关才能进入下一关,且每关相互独立.一选手参加该节目,则该选手只闯过前两关的概率为( )
A.0.48 B.0.4
C.0.32 D.0.24
2.(2024·杭州月考)甲射击命中目标的概率是,乙命中目标的概率是,丙命中目标的概率是,现在三人同时射击目标,则目标被击中的概率为( )
A. B.
C. D.
3.(2024·舟山月考)某大街在甲、乙、丙三处设有红绿灯,汽车在这三处因遇绿灯而通行的概率分别为,,,则汽车在这三处因遇红灯而停车一次的概率为( )
A. B.
C. D.
4.(2024·南京月考)某工厂师徒二人各加工相同型号的零件2个,是否加工出精品互不影响.已知师傅加工一个零件是精品的概率为,师徒二人各加工2个零件都是精品的概率为,则徒弟加工2个零件都是精品的概率为( )
A. B.
C. D.
5.甲袋中有8个白球,4个红球,乙袋中有6个白球,6个红球,这些小球除颜色外完全相同.从每袋中任取1个球,则取得同色球的概率为( )
A. B.
C. D.
6.某校组织《最强大脑》竞赛,最终A,B两队进入决赛,两队各由三名选手组成,每局两队各派一名选手比赛,除第三局胜者得2分外,其余各局胜者均得1分,负者得0分.假设每局比赛A队选手获胜的概率均为,且各局比赛结果相互独立,比赛结束时A队的得分高于B队的得分的概率为( )
A. B.
C. D.
7.(2024·南平月考)某学校举行乒乓球比赛,采取五局三胜制,甲、乙两位同学角逐冠亚军.若甲发球甲获胜的概率为,乙发球甲获胜的概率为,要求甲先发球后交替进行,则打满3局甲一举夺冠的概率为 .
8.小明去参加法制知识答题比赛,比赛共有A,B,C三道题且每个问题的回答结果相互独立.已知三道题的分值和小明答对每道题的概率如表:
A题分 值:3分 B题分 值:3分 C题分 值:4分
答对的概率 0.6 0.5 0.4
记小明所得总分为X(分),则= .
9.国产杀毒软件进行比赛,每个软件进行四轮考核,每轮考核中能够准确对病毒进行查杀的进入下一轮考核,否则被淘汰.已知某个软件在四轮考核中能够准确杀毒的概率依次是,,,,且各轮考核能否通过互不影响.则该软件至多进入第三轮考核的概率为 .
10.甲、乙、丙三人分别独立解一道题,甲做对的概率是,三人都做对的概率是,三人都做错的概率是.
(1)分别求乙、丙两人各自做对这道题的概率;
(2)求甲、乙、丙三人中恰有一人做对这道题的概率.
11.专家甲独立地破译一个密码成功的概率为,为提高破译概率需增加专家数量,若要达到译出密码的概率为99%(各专家相互独立互不交流),至少需要像甲这样的专家的个数为(参考数据:lg 2=0.301 0,lg 3=0.477 1)( )
A.15 B.16
C.17 D.18
12.如图,已知电路中4个开关闭合的概率都是,且每个开关是否闭合是相互独立的,则灯亮的概率为( )
A. B.
C. D.
13.(2024·湛江月考)在荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一片跳到另一片),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍,如图所示.假设现在青蛙在A片荷叶上,则跳三次之后停在A片荷叶上的概率是 .
14.为刺激消费,逐渐形成以国内大循环为主体,国内、国际双循环相互促进的新发展格局,某市给市民发放面额为100元的旅游消费券,由抽样调查预计老、中、青三类市民持有这种消费券到某旅游景点的消费额及其概率如表:
200元 300元 400元 500元
老年 0.4 0.3 0.2 0.1
中年 0.3 0.4 0.2 0.1
青年 0.3 0.3 0.2 0.2
某天恰好有持有这种消费券的老年人、中年人、青年人各一人到该旅游景点.
(1)求这三人恰有两人的消费额不少于300元的概率;
(2)求这三人的消费总额大于或等于1 300元的概率.
15.(2024·宁波质检)某单位举办闯关答题比赛,共分两轮,每轮共有4类题型,选手从前往后逐类回答,若中途回答错误,立马淘汰,若全部回答正确,就能获得一枚复活币并进行下一轮答题,两轮都通过就可以获得奖金.选手在第一轮闯关获得的复活币,系统会在下一轮答题中自动使用,即下一轮重新进行闯关答题时,在某一类题型中回答错误,自动复活一次,视为答对该类题型.若某选手每轮的4类题型的通过率均分别为,,,,则该选手进入第二轮答题的概率为 ;该选手最终获得奖金的概率为 .
16.设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.
(1)求同一工作日至少3人需使用设备的概率;
(2)实验室计划购买k台设备供甲、乙、丙、丁使用.若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k的最小值.
第2课时 相互独立事件概率的应用
1.D 由题意可知该选手只闯过前两关,第三关没闯过,由相互独立事件的概率可知P=0.8×0.6×(1-0.5)=0.24,故该选手只闯过前两关的概率为0.24.
2.D 若三人均未击中目标,则概率为××=,∴目标被击中的概率为P=1-=.故选D.
3.D 设汽车分别在甲、乙、丙三处通行为事件A,B,C,则P(A)=,P(B)=,P(C)=.因遇红灯停车一次即为事件BC+AC+AB,故概率P=(1-)××+×(1-)×+××(1-)=.
4.B 记师傅加工2个零件都是精品的概率为P(A),则P(A)=×=,徒弟加工2个零件都是精品的概率为P(B),则师徒二人各加工2个零件都是精品的概率为P(AB)=P(A)·P(B)=,求得P(B)=,故徒弟加工2个零件都是精品的概率为.
5.C 设从甲袋中任取1个球,事件A为“取得白球”,则事件为“取得红球”;从乙袋中任取1个球,事件B为“取得白球”,则事件为“取得红球”.∵事件A与B相互独立,∴事件与相互独立,∴从每袋中任取1个球,取得同色球的概率为P(AB∪)=P(AB)+P()=P(A)P(B)+P()P()=×+×=.
6.C 比赛结束时A队的得分高于B队的得分包含三种情况:①A全胜;②第一局A胜,第二局B胜,第三局A胜;③第一局B胜,第二局A胜,第三局A胜.所以比赛结束时A队的得分高于B队的得分的概率P=()3+××+××=.故选C.
7. 解析:发球顺序是:甲、乙、甲,所以打满3局甲一举夺冠的概率为××=.
8. 解析:由已知得P(X=3)=0.6×0.5×0.6+0.4×0.5×0.6=0.3,P(X=10)=0.6×0.5×0.4=0.12,所以=.
9. 解析:设事件Ai(i=1,2,3,4)表示“该软件能通过第i轮考核”,由已知得P(A1)=,P(A2)=,P(A3)=,P(A4)=,设事件C表示“该软件至多进入第三轮”,则P(C)=P(+A1+A1A2)=P()+P(A1)+P(A1A2)=+×+××=.
10.解:(1)设甲、乙、丙三人各自做对这道题分别为事件A,B,C,
则P(A)=,由题意得
解得或
所以乙、丙两人各自做对这道题的概率分别为和或和.
(2)设“甲、乙、丙三人中恰有一人做对这道题”为事件D,
则P(D)=P(A)P()P()+P()·P(B)P()+P()P()P(C)
=++=.
所以甲、乙、丙三人中恰有一人做对这道题的概率为.
11.C 设需要像甲这样的专家x个, 要达到译出密码的概率为99%,则≤,则xlg ≤lg ,即x≥=≈16.01,故至少需要17个像甲这样的专家.
12.C 记“A开关闭合”“B开关闭合”“C开关闭合”“D开关闭合”分别为事件A,B,C,D,则题图中含开关的三条线路同时断开的概率为P()P()[1-P(AB)]=××(1-×)=,所以灯亮的概率为1-=.故选C.
13. 解析:由题意知逆时针方向跳的概率为,顺时针方向跳的概率为,青蛙跳三次要回到A片荷叶只有两条途径:第一条:A→B→C→A,P1=××=;第二条:A→C→B→A,P2=××=,所以跳三次之后停在A片荷叶上的概率P=P1+P2=+=.
14.解:(1)设三人中恰有两人的消费额不少于300元的概率为P1,
则P1=(0.7)2×0.4+2×0.3×0.7×0.6=0.448.
(2)消费总额为1 500元的概率是0.1×0.1×0.2=0.002,
消费总额为1 400元的概率是(0.1)2×0.2+2×(0.2)2×0.1=0.01,
消费总额为1 300元的概率是(0.1)2×0.3+0.3×0.1×0.2+0.1×0.4×0.2+(0.2)3+2×(0.2)2×0.1=0.033,
0.002+0.01+0.033=0.045,
所以消费总额大于或等于1 300元的概率是0.045.
15. 解析:选手进入第二轮答题,则第一轮中答题全部正确,概率为×××=,第二轮通过的概率为+×××+×××+×××+×××=++++=,该选手最终获得奖金的概率为×=.
16.解:记Ai表示事件:同一工作日乙、丙中恰有i人需使用设备,i=0,1,2.
B表示事件:甲需使用设备.
C表示事件:丁需使用设备.
D表示事件:同一工作日至少3人需使用设备.
E表示事件:同一工作日4人需使用设备.
F表示事件:同一工作日需使用设备的人数大于k.
(1)D=A1BC+A2B+A2C,P(B)=0.6,P(C)=0.4,P(A1)=2×0.5×0.5=0.5,
P(A2)=0.5×0.5=0.25,
所以P(D)=P(A1BC+A2B+A2C)=P(A1BC)+P(A2B)+P(A2C)=P(A1)P(B)P(C)+P(A2)P(B)+P(A2)P()P(C)=0.31.
(2)由(1)知,若k=2,
则P(F)=0.31>0.1.
又E=BCA2,
所以P(E)=P(BCA2)=P(B)·P(C)P(A2)=0.06.
若k=3,则P(F)=0.06<0.1.
所以k的最小值为3.
3 / 3第2课时 相互独立事件概率的应用
题型一 相互独立事件乘法公式的应用
【例1】 (2024·淄博月考)在奥运知识有奖问答竞赛中,甲、乙、丙三人同时回答一道有关奥运知识的问题,已知甲答对这道题的概率是,甲、乙两人都回答错误的概率是,乙、丙两人都回答正确的概率是.设每人回答问题正确与否相互独立.
(1)求乙答对这道题的概率;
(2)求甲、乙、丙三人中,至少有一人答对这道题的概率.
通性通法
用相互独立事件的乘法公式解题的步骤
(1)用恰当的字母表示题中有关事件;
(2)根据题设条件,分析事件间的关系;
(3)将需要计算概率的事件表示为所设事件的乘积或若干个事件的乘积之和(相互乘积的事件之间必须满足相互独立);
(4)利用乘法公式计算概率.
【跟踪训练】
甲、乙、丙三人打靶,他们的命中率分别为p1,p2,,若三人同时射击一个目标,甲、丙击中目标而乙没有击中目标的概率为,乙击中目标而丙没有击中目标的概率为.设事件A表示“甲击中目标”,事件B表示“乙击中目标”,事件C表示“丙击中目标”.已知A,B,C是相互独立事件.
(1)求p1,p2;
(2)写出事件A∪B∪C包含的所有互斥事件,并求事件A∪B∪C发生的概率.
题型二 相互独立事件的综合应用
【例2】 一次数学考试有4道填空题,共20分,每道题完全答对得5分,否则得0分.在试卷命题时,设计第一道题使考生都能完全答对,后三道题能答对的概率分别为p,,,且每道题答对与否相互独立.
(1)当p=时,求考生填空题得20分的概率;
(2)若考生填空题得10分与得15分的概率相等,求p的值.
通性通法
求较复杂事件的概率的一般步骤
(1)列出题中所涉及的各个事件,并且用适当的符号表示;
(2)厘清事件之间的关系(两个事件是互斥还是对立,或者是相互独立),列出关系式;
(3)根据事件之间的关系准确选取概率公式进行计算;
(4)当直接计算符合条件的事件的概率较复杂时,可先间接地计算其对立事件的概率,再求出符合条件的事件的概率.
【跟踪训练】
(2024·开封月考)11分制乒乓球比赛,每赢1球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.已知甲、乙两位同学进行11分制乒乓球比赛,双方10∶10平后,甲先发球,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.
(1)求事件“两人又打了2个球比赛结束”的概率;
(2)求事件“两人又打了4个球比赛结束且甲获胜”的概率.
题型三 统计与事件相互独立性的综合应用
【例3】 2022年3月5日,第十三届全国人民代表大会第五次会议在北京人民大会堂开幕,会议报告指出,2021年,国内生产总值和居民人均可支配收入明显增长,某地为了解居民可支配收入情况,随机抽取100人,经统计,这100人去年可支配收入(单位:万元)均在区间[4.5,10.5]内,按[4.5,5.5),[5.5,6.5),[6.5,7.5),[7.5,8.5),[8.5,9.5),[9.5,10.5]分成6组,所得频率分布直方图如图所示,若上述居民可支配收入数据的第60百分位数为8.1.
(1)求a,b的值,并估计这100位居民可支配收入的平均值(同一组中的数据用该组区间的中点值作代表);
(2)在100位居民中随机抽取甲、乙、丙3人,若每次抽取的结果互不影响,求抽取的3人中至少有2人去年可支配收入在[7.5,8.5)内的概率.
通性通法
求统计与事件相互独立性综合问题的步骤
(1)由统计图表及文字叙述厘清问题中所涉及的事件,对应该事件的数据,并用字母表示;
(2)研析各事件的相互关系(互斥、对立、相互独立)以及和事件、积事件等;
(3)利用事件间的关系及相应的概率公式求解.
提醒 (1)注意公式的正用和逆用;(2)只有明确了两事件具有的关系后,才能使用相应的概率公式.
【跟踪训练】
某学校为了解高一新生的体质健康状况,对学生的体质进行了测试.现从男、女生中各随机抽取20人,把他们的测试数据按照《国家学生体质健康标准》整理成下表.规定:总分≥60体质健康为合格.
等级 总分 男生人数 男生平均分 女生人数 女生平均分
优秀 [90,100] 5 91.3 2 91
良好 [80,89.9] 4 83.9 4 84.1
及格 [60,79.9] 8 70 11 70.2
不及格 60以下 3 49.6 3 49.1
总计 — 20 — 20 —
(1)从样本中随机选取一名学生,求这名学生体质健康等级是合格的概率;
(2)从男生样本和女生样本中各随机选取一人,求恰有一人的体质健康等级是优秀的概率.
1.从高中应届生中选飞行员,已知这批学生体形合格的概率为,视力合格的概率为,其他综合标准合格的概率为,三项标准互不影响,从中任选一学生,则三项均合格的概率为( )
A. B. C. D.
2.某单位入职面试中有三道题目,有三次答题机会,一旦某次答对抽到的题目,则面试通过,否则就一直抽题到第3次为止.若求职者小王答对每道题目的概率都是0.7,则他最终通过面试的概率为( )
A.0.7 B.0.91
C.0.973 D.0.981
3.(多选)将两个质地均匀且四面分别标有1,2,3,4的正四面体各掷一次,记事件A=“第一个四面体向下的一面为偶数”;事件 B=“第二个四面体向下的一面为奇数”;事件C=“两个四面体向下的一面均为奇数或者均为偶数”.则下列结论正确的是( )
A.P(A)= B.P(AB)=
C.P(ABC)= D.P(B)=
4.某农户要种植甲、乙两种蔬菜,需要先播种培育成苗,然后再进行移栽.已知甲、乙两种蔬菜培育成苗的概率分别为0.5,0.6,移栽后成活的概率分别为0.6,0.8,则恰好有一种蔬菜能培育成苗且移栽成活的概率为 .
第2课时 相互独立事件概率的应用
【典型例题·精研析】
【例1】 解:(1)记甲、乙、丙3人独自答对这道题分别为事件A,B,C,
设乙答对这道题的概率P(B)=x,
由于每人回答问题正确与否是相互独立的,因此A,B,C是相互独立事件.
由题意,并根据相互独立事件同时发生的概率公式,
得P()=P()P()=( 1-)×(1-x)=,
解得x=,
所以乙答对这道题的概率为P(B)=.
(2)设“甲、乙、丙三人中,至少有一人答对这道题”为事件M,设丙答对这道题的概率P(C)=y.
由(1),并根据相互独立事件同时发生的概率公式,
得P(BC)=P(B)P(C)=×y=,
解得y=.
甲、乙、丙三人都回答错误的概率为P()=P()P()P()=( 1-)×( 1-)×( 1-)=.
因为事件“甲、乙、丙三人都回答错误”与事件“甲、乙、丙三人中,至少有一人答对这道题”是对立事件,
所以所求事件概率为P(M)=1-=.
跟踪训练
解:(1)由题意知P(A)=p1,P(B)=p2,P(C)=,
A,B,C为相互独立事件,
所以甲、丙击中目标而乙没有击中目标的概率P(AC)=P(A)P()P(C)=p1(1-p2)=,
乙击中目标而丙没有击中目标的概率P(B)=P(B)P()=p2=,
解得p1=,p2=.
(2)事件A∪B∪C包含的互斥事件有:ABC,BC,AC,AB,C,B,A,
P(A∪B∪C)=1-P()=1-××=1-=.
【例2】 解:设考生填空题得20分、15分、10分分别为事件A,B,C.
(1)考生填空题得20分的概率P(A)=××=.
(2)P(B)=p××(1-)+p×(1-)×+(1-p)××=p+,
P(C)=p×(1-)×(1-)+(1-p)××(1-)+(1-p)×(1-)×=-p.
由P(B)=P(C),解得p=.
跟踪训练
解:(1)设双方10∶10平后的第k个球甲获胜为事件Ak(k=1,2,3,…),又打了X个球比赛结束,
则P(X=2)=P(A1A2)+P()=P(A1)·P(A2)+P()P()=0.5×0.4+0.5×0.6=0.5.
(2)P(X=4且甲获胜)=P(A1A3A4)+P(A2A3A4)
=P(A1)P()P(A3)P(A4)+P()P(A2)·P(A3)P(A4)
=0.5×0.6×0.5×0.4+0.5×0.4×0.5×0.4=0.1.
【例3】 解:(1)由频率分布直方图,可得
0.05+0.12+a+b+0.2+0.08=1,
则a+b=0.55, ①
因为居民收入数据的第60百分位数为8.1,
所以0.05+0.12+a+(8.1-7.5)×b=0.6,
则a+0.6b=0.43, ②
将①与②联立,解得
所以平均值为0.05×5+0.12×6+0.25×7+0.3×8+0.2×9+0.08×10=7.72.
(2)根据题意,设事件A,B,C分别为甲、乙、丙在[7.5,8.5)内,则P(A)=P(B)=P(C)=0.3.
①“抽取的3人中有2人在[7.5,8.5)内”为事件AB∪AC∪BC,且AB与AC与BC两两互斥,根据概率的加法公式和相互独立的定义,得
P1=P(AB∪AC∪BC)
=0.3×0.3×(1-0.3)+0.3×(1-0.3)×0.3+(1-0.3)×0.3×0.3
=0.189.
②“抽取的3人中有3人在[7.5,8.5)内”为事件ABC,由相互独立的定义,得
P2=P(ABC)=P(A)P(B)P(C)=0.3×0.3×0.3=0.027.
所以抽取的3人中至少有2人去年可支配收入在[7.5,8.5)内的概率为
P1+P2=0.189+0.027=0.216.
跟踪训练
解:(1)样本中体质健康等级是合格的学生人数为5+2+4+4+8+11=34,
样本总数为20+20=40,
所以这名学生体质健康等级是合格的概率为=.
(2)设事件A为“从男生样本中随机选出一人,其体质健康等级是优秀”,事件B为“从女生样本中随机选出一人,其体质健康等级是优秀”,
则P(A)==,P(B)==.
因为A,B为相互独立事件,所以所求概率为
P(A+B)=P(A)+P(B)=P(A)[1-P(B)]+[1-P(A)]P(B)=×( 1-)+( 1-)×=.
随堂检测
1.B 由题意知三项标准互不影响,∴P=××=.
2.C 由题意知,小王最终通过面试的概率为P=0.7+0.3×0.7+0.3×0.3×0.7=0.973.
3.AB 由题意知P(A)==,故A正确;∵P(B)==,事件A与B相互独立,∴P(AB)=×=,故B正确,D错误;∵事件AB与事件C为互斥事件,∴P(ABC)=0,故C错误.
4.0.492 解析:记“甲种蔬菜能培育成苗且移栽成活”为事件A,“乙种蔬菜能培育成苗且移栽成活”为事件B,则P(A)=0.5×0.6=0.3,P(B)=0.6×0.8=0.48,P()=0.7,P()=0.52,故恰好有一种蔬菜能培育成苗且移栽成活的概率为P(A)+P(B)=P(A)P()+P()P(B)=0.3×0.52+0.7×0.48=0.492.
3 / 3(共63张PPT)
第2课时 相互独立事件概率的应用
目录
典型例题·精研析
01
知能演练·扣课标
02
典型例题·精研析
01
课堂互动 关键能力提升
题型一 相互独立事件乘法公式的应用
【例1】 (2024·淄博月考)在奥运知识有奖问答竞赛中,甲、乙、
丙三人同时回答一道有关奥运知识的问题,已知甲答对这道题的概率
是 ,甲、乙两人都回答错误的概率是 ,乙、丙两人都回答正确的
概率是 .设每人回答问题正确与否相互独立.
(1)求乙答对这道题的概率;
解:记甲、乙、丙3人独自答对这道题分别为事件A,B,C,
设乙答对这道题的概率P(B)=x,
由于每人回答问题正确与否是相互独立的,因此A,B,C是相
互独立事件.
由题意,并根据相互独立事件同时发生的概率公式,
得P( )=P( )P( )=( 1- )×(1-x)= ,
解得x= ,
所以乙答对这道题的概率为P(B)= .
(2)求甲、乙、丙三人中,至少有一人答对这道题的概率.
解:设“甲、乙、丙三人中,至少有一人答对这道题”为事件
M,设丙答对这道题的概率P(C)=y.
由(1),并根据相互独立事件同时发生的概率公式,
得P(BC)=P(B)P(C)= ×y= ,
解得y= .
甲、乙、丙三人都回答错误的概率为P( )=P( )P
( )P( )=( 1- )×( 1- )×( 1- )= .
因为事件“甲、乙、丙三人都回答错误”与事件“甲、乙、丙
三人中,至少有一人答对这道题”是对立事件,
所以所求事件概率为P(M)=1- = .
通性通法
用相互独立事件的乘法公式解题的步骤
(1)用恰当的字母表示题中有关事件;
(2)根据题设条件,分析事件间的关系;
(3)将需要计算概率的事件表示为所设事件的乘积或若干个事件的
乘积之和(相互乘积的事件之间必须满足相互独立);
(4)利用乘法公式计算概率.
【跟踪训练】
甲、乙、丙三人打靶,他们的命中率分别为p1,p2, ,若三人同时
射击一个目标,甲、丙击中目标而乙没有击中目标的概率为 ,乙击
中目标而丙没有击中目标的概率为 .设事件A表示“甲击中目标”,
事件B表示“乙击中目标”,事件C表示“丙击中目标”.已知A,
B,C是相互独立事件.
(1)求p1,p2;
解:由题意知P(A)=p1,P(B)=p2,P(C)= ,
A,B,C为相互独立事件,
所以甲、丙击中目标而乙没有击中目标的概率P(A C)=P
(A)P( )P(C)= p1(1-p2)= ,
乙击中目标而丙没有击中目标的概率P(B )=P(B)P
( )= p2= ,
解得p1= ,p2= .
(2)写出事件A∪B∪C包含的所有互斥事件,并求事件A∪B∪C
发生的概率.
解:事件A∪B∪C包含的互斥事件有:ABC, BC,A C,
AB , C, B ,A ,
P(A∪B∪C)=1-P( )=1- × × =1- = .
题型二 相互独立事件的综合应用
【例2】 一次数学考试有4道填空题,共20分,每道题完全答对
得5分,否则得0分.在试卷命题时,设计第一道题使考生都能完全
答对,后三道题能答对的概率分别为p, , ,且每道题答对与否
相互独立.
(1)当p= 时,求考生填空题得20分的概率;
解:设考生填空题得20分、15分、10分分别为事件A,B,C.
考生填空题得20分的概率P(A)= × × = .
(2)若考生填空题得10分与得15分的概率相等,求p的值.
解:P(B)=p× ×(1- )+p×(1- )× +(1-
p)× × = p+ ,
P(C)=p×(1- )×(1- )+(1-p)× ×(1-
)+(1-p)×(1- )× = - p.
由P(B)=P(C),解得p= .
通性通法
求较复杂事件的概率的一般步骤
(1)列出题中所涉及的各个事件,并且用适当的符号表示;
(2)厘清事件之间的关系(两个事件是互斥还是对立,或者是相互
独立),列出关系式;
(3)根据事件之间的关系准确选取概率公式进行计算;
(4)当直接计算符合条件的事件的概率较复杂时,可先间接地计算
其对立事件的概率,再求出符合条件的事件的概率.
【跟踪训练】
(2024·开封月考)11分制乒乓球比赛,每赢1球得1分,当某局打成
10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结
束.已知甲、乙两位同学进行11分制乒乓球比赛,双方10∶10平后,
甲先发球,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概
率为0.4,各球的结果相互独立.
(1)求事件“两人又打了2个球比赛结束”的概率;
解:设双方10∶10平后的第k个球甲获胜为事件Ak(k=1,2,
3,…),又打了X个球比赛结束,
则P(X=2)=P(A1A2)+P( )=P(A1)·P(A2)
+P( )P( )=0.5×0.4+0.5×0.6=0.5.
(2)求事件“两人又打了4个球比赛结束且甲获胜”的概率.
解:P(X=4且甲获胜)=P(A1 A3A4)+P( A2A3A4)
=P(A1)P( )P(A3)P(A4)+P( )P(A2)·P
(A3)P(A4)
=0.5×0.6×0.5×0.4+0.5×0.4×0.5×0.4=0.1.
题型三 统计与事件相互独立性的综合应用
【例3】 2022年3月5日,第十三届全国人民代表大会第五次会议在
北京人民大会堂开幕,会议报告指出,2021年,国内生产总值和居民
人均可支配收入明显增长,某地为了解居民可支配收入情况,随机抽
取100人,经统计,这100人去年可支配收
入(单位:万元)均在区间[4.5,10.5]内,
按[4.5,5.5),[5.5,6.5),
[6.5,7.5),[7.5,8.5),[8.5,9.5),
[9.5,10.5]分成6组,所得频率分布直方图
如图所示,若上述居民可支配收入数据的第
60百分位数为8.1.
(1)求a,b的值,并估计这100位居民可支配收入的平均值(同一
组中的数据用该组区间的中点值作代表);
解:由频率分布直方图,可得
0.05+0.12+a+b+0.2+0.08=1,
则a+b=0.55, ①
因为居民收入数据的第60百分位数为8.1,
所以0.05+0.12+a+(8.1-7.5)×b=0.6,
则a+0.6b=0.43, ②
将①与②联立,解得
所以平均值为0.05×5+0.12×6+0.25×7+0.3×8+0.2×9+
0.08×10=7.72.
(2)在100位居民中随机抽取甲、乙、丙3人,若每次抽取的结果互
不影响,求抽取的3人中至少有2人去年可支配收入在[7.5,
8.5)内的概率.
解:根据题意,设事件A,B,C分别为甲、乙、丙在[7.5,
8.5)内,则P(A)=P(B)=P(C)=0.3.
①“抽取的3人中有2人在[7.5,8.5)内”为事件AB ∪A
C∪ BC,且AB 与A C与 BC两两互斥,根据概率的加法
公式和相互独立的定义,得
P1=P(AB ∪A C∪ BC)
=0.3×0.3×(1-0.3)+0.3×(1-0.3)×0.3+(1-
0.3)×0.3×0.3
=0.189.
②“抽取的3人中有3人在[7.5,8.5)内”为事件ABC,由相互
独立的定义,得
P2=P(ABC)=P(A)P(B)P(C)=0.3×0.3×0.3=
0.027.
所以抽取的3人中至少有2人去年可支配收入在[7.5,8.5)内的
概率为
P1+P2=0.189+0.027=0.216.
通性通法
求统计与事件相互独立性综合问题的步骤
(1)由统计图表及文字叙述厘清问题中所涉及的事件,对应该事件
的数据,并用字母表示;
(2)研析各事件的相互关系(互斥、对立、相互独立)以及和事
件、积事件等;
(3)利用事件间的关系及相应的概率公式求解.
提醒 (1)注意公式的正用和逆用;(2)只有明确了两事件
具有的关系后,才能使用相应的概率公式.
【跟踪训练】
某学校为了解高一新生的体质健康状况,对学生的体质进行了测试.
现从男、女生中各随机抽取20人,把他们的测试数据按照《国家学生
体质健康标准》整理成下表.规定:总分≥60体质健康为合格.
等级 总分 男生人数 男生平均分 女生人数 女生平均分
优秀 [90,100] 5 91.3 2 91
良好 [80,89.9] 4 83.9 4 84.1
及格 [60,79.9] 8 70 11 70.2
不及格 60以下 3 49.6 3 49.1
总计 — 20 — 20 —
(1)从样本中随机选取一名学生,求这名学生体质健康等级是合格
的概率;
解:样本中体质健康等级是合格的学生人数为5+2+4+4+8+
11=34,
样本总数为20+20=40,
所以这名学生体质健康等级是合格的概率为 = .
(2)从男生样本和女生样本中各随机选取一人,求恰有一人的体质
健康等级是优秀的概率.
解:设事件A为“从男生样本中随机选出一人,其体质健康等
级是优秀”,事件B为“从女生样本中随机选出一人,其体质
健康等级是优秀”,
则P(A)= = ,P(B)= = .
因为A,B为相互独立事件,所以所求概率为
P(A + B)=P(A )+P( B)=P(A)[1-P
(B)]+[1-P(A)]P(B)= ×( 1- )+( 1- )
× = .
1. 从高中应届生中选飞行员,已知这批学生体形合格的概率为 ,视
力合格的概率为 ,其他综合标准合格的概率为 ,三项标准互不
影响,从中任选一学生,则三项均合格的概率为( )
A. B.
C. D.
解析: 由题意知三项标准互不影响,∴P= × × = .
2. 某单位入职面试中有三道题目,有三次答题机会,一旦某次答对抽
到的题目,则面试通过,否则就一直抽题到第3次为止.若求职者小
王答对每道题目的概率都是0.7,则他最终通过面试的概率为( )
A. 0.7 B. 0.91
C. 0.973 D. 0.981
解析: 由题意知,小王最终通过面试的概率为P=0.7+
0.3×0.7+0.3×0.3×0.7=0.973.
3. (多选)将两个质地均匀且四面分别标有1,2,3,4的正四面体各
掷一次,记事件A=“第一个四面体向下的一面为偶数”;事件 B
=“第二个四面体向下的一面为奇数”;事件C=“两个四面体向
下的一面均为奇数或者均为偶数”.则下列结论正确的是( )
A. P(A)= B. P(AB)=
C. P(ABC)= D. P(B)=
解析: 由题意知P(A)= = ,故A正确;∵P(B)=
= ,事件A与B相互独立,∴P(AB)= × = ,故B正确,
D错误;∵事件AB与事件C为互斥事件,∴P(ABC)=0,故C
错误.
4. 某农户要种植甲、乙两种蔬菜,需要先播种培育成苗,然后再进行
移栽.已知甲、乙两种蔬菜培育成苗的概率分别为0.5,0.6,移栽
后成活的概率分别为0.6,0.8,则恰好有一种蔬菜能培育成苗且移
栽成活的概率为 .
0.492
解析:记“甲种蔬菜能培育成苗且移栽成活”为事件A,“乙种蔬
菜能培育成苗且移栽成活”为事件B,则P(A)=0.5×0.6=
0.3,P(B)=0.6×0.8=0.48,P( )=0.7,P( )=
0.52,故恰好有一种蔬菜能培育成苗且移栽成活的概率为P
(A )+P( B)=P(A)P( )+P( )P(B)=
0.3×0.52+0.7×0.48=0.492.
知能演练·扣课标
02
课后巩固 核心素养落地
1. (2024·济宁月考)某电视台夏日水上闯关节目中的前三关的过关
率分别为0.8,0.6,0.5,只有通过前一关才能进入下一关,且每
关相互独立.一选手参加该节目,则该选手只闯过前两关的概率为
( )
A. 0.48 B. 0.4
C. 0.32 D. 0.24
解析:由题意可知该选手只闯过前两关,第三关没闯过,由相互独立事件的概率可知P=0.8×0.6×(1-0.5)=0.24,故该选手只闯过前两关的概率为0.24.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
2. (2024·杭州月考)甲射击命中目标的概率是 ,乙命中目标的概率
是 ,丙命中目标的概率是 ,现在三人同时射击目标,则目标被
击中的概率为( )
A. B.
C. D.
解析: 若三人均未击中目标,则概率为 × × = ,∴目标
被击中的概率为P=1- = .故选D.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
3. (2024·舟山月考)某大街在甲、乙、丙三处设有红绿灯,汽车在
这三处因遇绿灯而通行的概率分别为 , , ,则汽车在这三处因
遇红灯而停车一次的概率为( )
A. B.
C. D.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
解析: 设汽车分别在甲、乙、丙三处通行为事件A,B,C,
则P(A)= ,P(B)= ,P(C)= .因遇红灯停车一次即
为事件 BC+A C+AB ,故概率P=(1- )× × + ×
(1- )× + × ×(1- )= .
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
4. (2024·南京月考)某工厂师徒二人各加工相同型号的零件2个,是
否加工出精品互不影响.已知师傅加工一个零件是精品的概率为
,师徒二人各加工2个零件都是精品的概率为 ,则徒弟加工2个
零件都是精品的概率为( )
A. B.
C. D.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
解析: 记师傅加工2个零件都是精品的概率为P(A),则P
(A)= × = ,徒弟加工2个零件都是精品的概率为P
(B),则师徒二人各加工2个零件都是精品的概率为P(AB)=
P(A)·P(B)= ,求得P(B)= ,故徒弟加工2个零件都
是精品的概率为 .
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
5. 甲袋中有8个白球,4个红球,乙袋中有6个白球,6个红球,这些小
球除颜色外完全相同.从每袋中任取1个球,则取得同色球的概率为
( )
A. B.
C. D.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
解析: 设从甲袋中任取1个球,事件A为“取得白球”,则事
件 为“取得红球”;从乙袋中任取1个球,事件B为“取得白
球”,则事件 为“取得红球”.∵事件A与B相互独立,∴事件
与 相互独立,∴从每袋中任取1个球,取得同色球的概率为P
(AB∪ )=P(AB)+P( )=P(A)P(B)+P
( )P( )= × + × = .
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
6. 某校组织《最强大脑》竞赛,最终A,B两队进入决赛,两队各由
三名选手组成,每局两队各派一名选手比赛,除第三局胜者得2分
外,其余各局胜者均得1分,负者得0分.假设每局比赛A队选手获
胜的概率均为 ,且各局比赛结果相互独立,比赛结束时A队的得
分高于B队的得分的概率为( )
A. B.
C. D.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
解析: 比赛结束时A队的得分高于B队的得分包含三种情况:
①A全胜;②第一局A胜,第二局B胜,第三局A胜;③第一局B
胜,第二局A胜,第三局A胜.所以比赛结束时A队的得分高于B队
的得分的概率P=( )3+ × × + × × = .故选C.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
7. (2024·南平月考)某学校举行乒乓球比赛,采取五局三胜制,
甲、乙两位同学角逐冠亚军.若甲发球甲获胜的概率为 ,乙发球
甲获胜的概率为 ,要求甲先发球后交替进行,则打满3局甲一举
夺冠的概率为 .
解析:发球顺序是:甲、乙、甲,所以打满3局甲一举夺冠的概率
为 × × = .
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
8. 小明去参加法制知识答题比赛,比赛共有A,B,C三道题且每个
问题的回答结果相互独立.已知三道题的分值和小明答对每道题的
概率如表:
A题分值:3分 B题分值:3分 C题分值:4分
答对的概率 0.6 0.5 0.4
记小明所得总分为X(分),则 = .
解析:由已知得P(X=3)=0.6×0.5×0.6+0.4×0.5×0.6=
0.3,P(X=10)=0.6×0.5×0.4=0.12,所以 = .
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
9. 国产杀毒软件进行比赛,每个软件进行四轮考核,每轮考核中能够
准确对病毒进行查杀的进入下一轮考核,否则被淘汰.已知某个软
件在四轮考核中能够准确杀毒的概率依次是 , , , ,且各轮
考核能否通过互不影响.则该软件至多进入第三轮考核的概率
为 .
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
解析:设事件Ai(i=1,2,3,4)表示“该软件能通过第i轮考
核”,由已知得P(A1)= ,P(A2)= ,P(A3)= ,P
(A4)= ,设事件C表示“该软件至多进入第三轮”,则P
(C)=P( +A1 +A1A2 )=P( )+P(A1 )+
P(A1A2 )= + × + × × = .
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
10. 甲、乙、丙三人分别独立解一道题,甲做对的概率是 ,三人都
做对的概率是 ,三人都做错的概率是 .
(1)分别求乙、丙两人各自做对这道题的概率;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
解:设甲、乙、丙三人各自做对这道题分别为事件
A,B,C,
则P(A)= ,由题意得
解得或
所以乙、丙两人各自做对这道题的概率分别为 和 或 和 .
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
(2)求甲、乙、丙三人中恰有一人做对这道题的概率.
解:设“甲、乙、丙三人中恰有一人做对这道题”为事件D,
则P(D)=P(A)P( )P( )+P( )P(B)
P( )+P( )P( )P( C )
= + + = .
所以甲、乙、丙三人中恰有一人做对这道题的概率为 .
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
11. 专家甲独立地破译一个密码成功的概率为 ,为提高破译概率需
增加专家数量,若要达到译出密码的概率为99%(各专家相互独
立互不交流),至少需要像甲这样的专家的个数为(参考数据:
lg 2=0.301 0,lg 3=0.477 1)( )
A. 15 B. 16
C. 17 D. 18
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
解析: 设需要像甲这样的专家x个, 要达到译出密码的概率
为99%,则 ≤ ,则xlg ≤lg ,即x≥ =
≈16.01,故至少需要17个像甲这样的专家.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
12. 如图,已知电路中4个开关闭合的概率都是 ,且每个开关是否闭
合是相互独立的,则灯亮的概率为( )
A. B.
C. D.
解析: 记“A开关闭合”“B开关闭合”“C开关闭合”“D
开关闭合”分别为事件A,B,C,D,则题图中含开关的三条
线路同时断开的概率为P( )P( )[1-P(AB)]= ×
×(1- × )= ,所以灯亮的概率为1- = .故选C.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
13. (2024·湛江月考)在荷花池中,有一只青蛙在成品字形的三片荷
叶上跳来跳去(每次跳跃时,均从一片跳到另一片),而且逆时
针方向跳的概率是顺时针方向跳的概率的两倍,如图所示.假设现
在青蛙在A片荷叶上,则跳三次之后停在A片荷叶上的概率是 .
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
解析:由题意知逆时针方向跳的概率为 ,顺时针方向跳的概率
为 ,青蛙跳三次要回到A片荷叶只有两条途径:第一条:
A→B→C→A,P1= × × = ;第二条:A→C→B→A,
P2= × × = ,所以跳三次之后停在A片荷叶上的概率P=
P1+P2= + = .
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
14. 为刺激消费,逐渐形成以国内大循环为主体,国内、国际双循环
相互促进的新发展格局,某市给市民发放面额为100元的旅游消费
券,由抽样调查预计老、中、青三类市民持有这种消费券到某旅
游景点的消费额及其概率如表:
200元 300元 400元 500元
老年 0.4 0.3 0.2 0.1
中年 0.3 0.4 0.2 0.1
青年 0.3 0.3 0.2 0.2
某天恰好有持有这种消费券的老年人、中年人、青年人各一人到
该旅游景点.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
(1)求这三人恰有两人的消费额不少于300元的概率;
解:设三人中恰有两人的消费额不少于300元的概率为P1,
则P1=(0.7)2×0.4+2×0.3×0.7×0.6=0.448.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
(2)求这三人的消费总额大于或等于1 300元的概率.
解:消费总额为1 500元的概率是0.1×0.1×0.2=0.002,
消费总额为1 400元的概率是(0.1)2×0.2+2×(0.2)
2×0.1=0.01,
消费总额为1 300元的概率是(0.1)2×0.3+
0.3×0.1×0.2+0.1×0.4×0.2+(0.2)3+2×(0.2)
2×0.1=0.033,
0.002+0.01+0.033=0.045,
所以消费总额大于或等于1 300元的概率是0.045.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
15. (2024·宁波质检)某单位举办闯关答题比赛,共分两轮,每轮共
有4类题型,选手从前往后逐类回答,若中途回答错误,立马淘
汰,若全部回答正确,就能获得一枚复活币并进行下一轮答题,
两轮都通过就可以获得奖金.选手在第一轮闯关获得的复活币,系
统会在下一轮答题中自动使用,即下一轮重新进行闯关答题时,
在某一类题型中回答错误,自动复活一次,视为答对该类题型.若
某选手每轮的4类题型的通过率均分别为 , , , ,则该选
手进入第二轮答题的概率为 ;该选手最终获得奖金的概率
为 .
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
解析:选手进入第二轮答题,则第一轮中答题全部正确,概率为
× × × = ,第二轮通过的概率为 + × × × +
× × × + × × × + × × × = + + + +
= ,该选手最终获得奖金的概率为 × = .
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
16. 设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为
0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.
(1)求同一工作日至少3人需使用设备的概率;
解:记Ai表示事件:同一工作日乙、丙中恰有i人需使用设
备,i=0,1,2.
B表示事件:甲需使用设备.
C表示事件:丁需使用设备.
D表示事件:同一工作日至少3人需使用设备.
E表示事件:同一工作日4人需使用设备.
F表示事件:同一工作日需使用设备的人数大于k.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
(1)D=A1BC+A2B+A2 C,P(B)=0.6,P(C)
=0.4,P(A1)=2×0.5×0.5=0.5,
P(A2)=0.5×0.5=0.25,
所以P(D)=P(A1BC+A2B+A2 C)=P(A1BC)
+P(A2B)+P(A2 C)=P(A1)P(B)·P(C)
+P(A2)P(B)+P(A2)P( )P(C)=0.31.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
(2)实验室计划购买k台设备供甲、乙、丙、丁使用.若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k的最小值.
解: 由(1)知,若k=2,
则P(F)=0.31>0.1.
又E=BCA2,
所以P(E)=P(BCA2)=P(B)P(C)P(A2)=0.06.
若k=3,则P(F)=0.06<0.1.
所以k的最小值为3.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
谢 谢 观 看!