课件24张PPT。第二章 一元二次方程2.4 用因式分解法求解一元二次方程配方法我们通过配成完全平方式的方法,得到了一元二次方程的根,这种解一元二次方程的方法称为配方法(solving by completing the square)平方根的意义:完全平方式:式子a2±2ab+b2叫完全平方式,且a2±2ab+b2 =(a±b)2. 如果x2=a,那么x=用配方法解一元二次方程的方法的助手:配方法用配方法解一元二次方程的步骤:1.化1:把二次项系数化为1(方程两边都除以二次项系数);
2.移项:把常数项移到方程的右边;
3.配方:方程两边都加上一次项系数绝对值一半的平方;
4.变形:方程左分解因式,右边合并同类;
5.开方:根据平方根意义,方程两边开平方;
6.求解:解一元一次方程;
7.定解:写出原方程的解.公式法一般地,对于一元二次方程 ax2+bx+c=0(a≠0) 上面这个式子称为一元二次方程的求根公式.
用求根公式解一元二次方程的方法称为公式法(solving by formular).老师提示:
用公式法解一元二次方程的前提是:
1.必需是一般形式的一元二次方程: ax2+bx+c=0(a≠0).
2.b2-4ac≥0.你能解决这个问题吗一个数的平方与这个数的3倍有可能相等吗?如果相等,这个数是几?你是怎样求出来的?小颖,小明,小亮都设这个数为x,根据题意得小颖做得对吗?小明做得对吗?你能解决这个问题吗一个数的平方与这个数的3倍有可能相等吗?如果相等,这个数是几?你是怎样求出来的?小颖,小明,小亮都设这个数为x,根据题意得小亮做得对吗?分解因式法当一元二次方程的一边是0,而另一边易于分解成两个一次因式的乘积时,我们就可以用分解因式的方法求解.这种用分解因式解一元二次方程的方法你为分解因式法.老师提示:
1.用分解因式法的条件是:方程左边易于分解,而右边等于零;
2. 关键是熟练掌握因式分解的知识;
3.理论依旧是“如果两个因式的积等于零,那么至少有一个因式等于零.”分解因式法用分解因式法解方程: (1)5x2=4x;(2)x-2=x(x-2).分解因式法解一元二次方程的步骤是:2. 将方程左边因式分解; 3. 根据“至少有一个因式为零”,转化为两个一元一次方程. 4. 分别解两个一元一次方程,它们的根就是原方程的根.1.化方程为一般形式;1 .x2-4=0; 2.(x+1)2-25=0.解:1.(x+2)(x-2)=0,∴x+2=0,或x-2=0.∴x1=-2, x2=2.淘金者你能用分解因式法解下列方程吗?2.[(x+1)+5][(x+1)-5]=0,∴x+6=0,或x-4=0.∴x1=-6, x2=4.这种解法是不是解这两个方程的最好方法?
你是否还有其它方法来解?争先赛1.解下列方程:解:设这个数为x,根据题意,得∴x=0,或2x-7=0.2x2=7x.2x2-7x=0,x(2x-7) =0,先胜为快一个数平方的2倍等于这个数的7倍,求这个数.用分解因式法解 参考答案:
1.2. ;4. ;我们已经学过一些特殊的二次三项式的分解因式,如:二次三项式 ax2+bx+c的因式分解但对于一般的二次三项式ax2+bx+c(a≠o),怎么把它分解因式呢?观察下列各式,也许你能发现些什么一般地,要在实数范围 内分解二次三项式ax2+bx+c(a≠o),只要用公式法求出相应的一元二次方程ax2+bx+c=0(a≠o),的两个根x1,x2,然后直接将ax2+bx+c写成a(x-x1)(x-x2),就可以了.即ax2+bx+c= a(x-x1)(x-x2).
二次三项式 ax2+bx+c的因式分解回味无穷当一元二次方程的一边是0,而另一边易于分解成两个一次因式的乘积时,我们就可以用分解因式的方法求解.这种用分解因式解一元二次方程的方法称为分解因式法.
分解因式法的条件是方程左边易于分解,而右边等于零,关键是熟练掌握因式分解的知识,理论依旧是“如果两个因式的积等于零,那么至少有一个因式等于零.”
因式分解法解一元二次方程的步骤是:
(1)化方程为一般形式;
(2)将方程左边因式分解;
(3)根据“至少有一个因式为零”,得到两个一元一次方程.
(4)两个一元一次方程的根就是原方程的根.
因式分解的方法,突出了转化的思想方法——“降次”,鲜明地显示了“二次”转化为“一次”的过程.明确1、用因式分解法解一元二次方程时,等号的一边必须是0.
2、另一边可分解成两个因式乘积的形式.自学指导2自学课本68页例1,明确:
1、对题目中的两个方程的一边都是采用哪种方法因式分解的?提取的公因式有什么不同点?2、你能仿照课本上的方法解这两个方程
吗?解下列方程:
(1)5x2=4x (2)x-2=x(x-2)学以致用用分解因式法解下列方程:
(1)(x+2)(x-4)=0
(2)4x(2x+1)=3(2x+1)想一想你能用分解因式法解下列方程吗?
(1)x2-4=0
(2)(x+1)2-25=0
(3)x2-10x+25=0合作探究1、一个数平方的2倍等于这个数的7倍,求这个数.2、解下列方程:
(1)5(x2-x)=3(x2+x)
(2)(x-2)2=(2x+3)2知识链接分解因式
1、x2-3x
2、x-2-x(x-2)
3、(x-2)2-(2x+3)2
4、x2-10x+25自学指导1<2分钟>自学课本从67到68页“议一议”上面的内容,明确:
1、小颖、小明、小亮解方程的方法有什么不同?
2、谁的解法不对?错在什么地方?为什么?我只有奋力奔跑,才能看见光亮、认知方向。2.4 用因式分解法求解一元二次方程
【学习目标】
1.会用分解因式(提公因式法、公式法)解某些简单的数字系数的一元二次方程.
2.能根据具体的一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性.
【学习重点】
用因式分解法解一元二次方程.
【学习难点】
理解因式分解法解一元二次方程的基本思想.
情景导入 生成问题
1.将下列各式分解因式:
(1)x2-2x; (2)x2-4x+4; (3)x2-16; (4)x(x-2)-(x-2).
解:(1)x(x-2);(2)(x-2)2;(3)(x+4)(x-4);(4)(x-2)(x-1).
自学互研 生成能力
先阅读教材P46“议一议”前面的内容.然后完成下面的问题:
1.当一元二次方程的一边为0,而另一边易于分解为两个一次因式的乘积时,我们就可以采用分解因式法解一元二次方程.
2.分解因式法解一元二次方程的根据是:若a·b=0,则a=0或b=0.如:若(x+2)(x-3)=0,那么x+2=0或者x-3=0.这就是说,求一元二次方程(x+2)(x-3)=0的解,就相当于求一次方程x+2=0或x-3=0的解.
3.方程(x-2)(x+3)=0的解是( D )
A.x=2 B.x=-3 C.x1=-2,x2=3 D.x1=2,x2=-3
典例讲解:
1.用因式分解法解下列方程:
(1)5x2+3x=0; (2)7x(3-x)=4(x-3); (3)9(x-2)2=4(x+1)2.
分析:(1)左边=x(5x+3),右边=0;(2)先把右边化为0,即7x(3-x)-4(x-3)=0,找出(3-x)与(x-3)的关系;(3)应用平方差公式.
解:(1)因式分解,得x(5x+3)=0,于是得x=0或5x+3=0,x1=0,x2=-;(2)原方程化为7x(3-x)-4(x-3)=0,因式分解,得(x-3)(-7x-4)=0,于是得x-3=0或-7x-4=0,x1=3,x2=-;(3)原方程化为9(x-2)2-4(x+1)2=0,因式分解,得[3(x-2)+2(x+1)][3(x-2)-2(x+1)]=0,即(5x-4)(x-8)=0,于是得5x-4=0或x-8=0,x1=,x2=8.
2.选择合适的方法解下列方程:
(1)2x2-5x+2=0; (2)(1-x)(x+4)=(x-1)(1-2x); (3)3(x-2)2=x2-2x.
分析:(1)题宜用公式法;(2)题中找到(1-x)与(x-1)的关系用因式分解法;(3)3(x-2)2=x·(x-2)用因式分解法.
解:(1)a=2,b=-5,c=2,b2-4ac=(-5)2-4×2×2=9>0,x==,x1=2,x2=;(2)原方程化为(1-x)(x+4)+(1-x)(1-2x)=0,因式分解,得(1-x)(5-x)=0,即(x-1)(x-5)=0,x-1=0或x-5=0,x1=1,x2=5;(3)原方程变形为3(x-2)2-x(x-2)=0,因式分解,得(x-2)(2x-6)=0,x-2=0或2x-6=0,x1=2,x2=3.
对应练习:
1.完成教材P47“想一想”.
2.完成教材P47随堂练习1、2.
3.完成教材P47习题2.7的第1题.
交流展示 生成新知
1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.
2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.
知识模块 探索用因式分解法求解一元二次方程的方法
检测反馈 达成目标
1.如果(x-1)(x+2)=0,那么以下结论正确的是( A )
A.x=1或x=-2 B.必须x=1 C.x=2或x=-1 D.必须x=1且x=-2
2.方程x2-3x=0的解为( D )
A.x=0 B.x=3 C.x1=0,x2=-3 D.x1=0,x2=3
3.方程2(x-3)=3x(x-3)的解是x1=3,x2=.
4.方程3x(x-1)=1-x的两个根是x1=1,x2=-.
5.已知(a2+b2)2-(a2+b2)-6=0,求a2+b2的值.
解:设a2+b2=x,则原方程化为x2-x-6=0.a=1,b=-1,c=-6,b2-4ac=(-1)2-4×1×(-6)=25>0,x=,∴x1=3,x2=-2.即a2+b2=3或a2+b2=-2,∵a2+b2≥0,∴a2+b2=-2不符合题意应舍去,取a2+b2=3.∴a2+b2=3
课后反思 查漏补缺
1.收获:________________________________________________________________________
2.存在困惑:________________________________________________________________________