名称 | 9.3 离散型随机变量及其分布列、均值与方差(解析版)--2026版十年高考数学真题分类汇编 | ![]() | |
格式 | docx | ||
文件大小 | 145.2KB | ||
资源类型 | 试卷 | ||
版本资源 | 通用版 | ||
科目 | 数学 | ||
更新时间 | 2025-08-06 15:32:12 |
ξ 0 1 2
P
则当p在(0,1)内增大时,( )
A.D(ξ)减小
B.D(ξ)增大
C.D(ξ)先减小后增大
D.D(ξ)先增大后减小
【答案】 D
【解析】 本小题考查随机变量的分布列,期望、方差的计算及函数的单调性.
由题意得E(ξ)=0×+1×+2×=+p,
D(ξ)=·+·+·
=[(1+2p)2(1-p)+(1-2p)2+(3-2p)2·p]
=-p2+p+=-+.
由得0
3.(2025全国一卷,14,5分)有5个相同的球,分别标有数字1,2,3,4,5,从中有放回地随机取3次,每次取1个球.记X为这5个球中至少被取出1次的球的个数,则X的数学期望E(X)= . (i)为使得甲、乙所在队的比赛成绩为15分的概率最大,应该由谁参加第一阶段比赛 0,p+q-pq=p(1-q)+q>0,∴P1>P2,则应由甲参加第一阶段,这样才能使得甲、乙所在队的比赛成绩为15分的概率最大. 0,3-p-q>0,所以E(X)>E(Y).
【答案】
【解析】由题意得,X的可能取值为1,2,3,
P(X=1)==,P(X=2)==,
P(X=3)==,
则X的分布列为
X 1 2 3
P
E(X)=1×+2×+3×=.
4.(2025上海,6,4分)已知随机变量X的分布为,则期望E[X]= .
【答案】6.3
【解析】由题设有E[X]=5×0.2+6×0.3+7×0.5=1+1.8+3.5=6.3.
5.(2021浙江,15,6分)袋中有4个红球,m个黄球,n个绿球.现从中任取两个球,记取出的红球数为ξ,若取出的两个球都是红球的概率为,一红一黄的概率为,则m-n= ,E(ξ)= .
【答案】 1;
解题指导:由古典概型概率计算公式求得m+n+4的值,再利用概率公式求出m,从而得n的值,进而求出m-n;利用超几何分布的概率公式分别求出ξ=0,1,2的概率,然后利用数学期望公式即可得到结果.
【解析】 ∵P(ξ=2)=,可得=36,
∴m+n+4=9,
又∵P(一红一黄)=,解得m=3,
∴n=2,
∴m-n=1.
P(ξ=0)=,P(ξ=1)=,P(ξ=2)=,
∴E(ξ)=.
6.(2025北京,18,13分)
某次考试中,只有一道单项选择题考查了某个知识点,甲、乙两校的高一年级学生都参加了这次考试,为了解学生对该知识点的掌握情况,随机抽查了甲、乙两校高一年级各100名学生该题的答题数据,其中甲校学生选择正确的人数为80,乙校学生选择正确的人数为75.
假设学生之间答题相互独立,用频率估计概率.
(1)估计甲校高一年级学生该题选择正确的概率p;
(2)从甲、乙两校高一年级学生中各随机抽取1名,设X为这2名学生中该题选择正确的人数,估计X=1的概率及X的数学期望;
(3)假设:如果没有掌握该知识点,学生就从题目给出的四个选项中随机选择一个作为答案;如果掌握该知识点,甲校学生选择正确的概率为100%,乙校学生选择正确的概率为85%.
设甲、乙两校高一年级学生掌握该知识点的概率估计值分别为p1,p2,判断p1与p2的大小.(结论不要求证明)
【命题点】全概率公式+离散型随机变量的分布列
【解题思路】(1)甲校高一年级学生该题选择正确的概率p==.
(2)乙校高一年级学生该题选择正确的概率为=,
所以P(X=1)=×+×=,
P(X=0)=×=,
P(X=2)=×=,
则E(X)=1×+0×+2×=.
(3)p1
即p1+=,解得p1=;
p2×85%+(1-p2)×25%=,
p2+=,解得p2=,
=<=,所以p1
某参赛队由甲、乙两名队员组成,设甲每次投中的概率为p,乙每次投中的概率为q,各次投中与否相互独立.
(1)若p=0.4,q=0.5,甲参加第一阶段比赛,求甲、乙所在队的比赛成绩不少于5分的概率.
(2)假设0
(ii)为使得甲、乙所在队的比赛成绩的数学期望最大,应该由谁参加第一阶段比赛
【解析】(1)由题意知甲参加第一阶段比赛与乙参加第二阶段比赛是相互独立事件.
因此甲、乙所在队的比赛成绩不少于5分的概率为
[1-(1-p)3][1-(1-q)3]=[1-(1-0.4)3][1-(1-0.5)3]=0.686.
(2)(i)设由甲参加第一阶段比赛,该队比赛成绩为15分的概率为P1,乙参加第一阶段比赛,该队比赛成绩为15分的概率为P2,
则P1=[1-(1-p)3]q3,P2=[1-(1-q)3]p3.
则P1-P2=[1-(1-p)3]q3-[1-(1-q)3]p3=3pq(q-p)(q+p-pq),又0
(ii)设甲参加第一阶段比赛,该队比赛成绩为X,则X的可能取值为0,5,10,15.则
P(X=0)=(1-p)3+[1-(1-p)3](1-q)3,
P(X=5)=[1-(1-p)3]·q(1-q)2,
P(X=10)=[1-(1-p)3]·q2(1-q),
P(X=15)=[1-(1-p)3]·q3,
所以由甲参加第一阶段比赛,该队比赛成绩的数学期望为E(X)=0+5[1-(1-p)3]·q(1-q)2+10[1-(1-p)3]·q2(1-q)+15[1-(1-p)3]·q3=15q(3p-3p2+p3).
设乙参加第一阶段比赛,该队比赛成绩为Y,同理可得乙参加第一阶段比赛,该队比赛成绩的数学期望E(Y)=15p(3q-3q2+q3).
E(X)-E(Y)=15q(3p-3p2+p3)-15p(3q-3q2+q3)=15pq(q-p)(3-p-q),
因为0
则由甲参加第一阶段比赛时,该队比赛成绩的数学期望最大.
8.(2024北京,18,13分,中)某保险公司为了解该公司某种保险产品的索赔情况,从合同保险期限届满的保单中随机抽取1 000份,记录并整理这些保单的索赔情况,获得数据如下表:
索赔次数 0 1 2 3 4
保单份数 800 100 60 30 10
假设:一份保单的保费为0.4万元;前三次索赔时,保险公司每次赔偿0.8万元;第四次索赔时,保险公司赔偿0.6万元.
假设不同保单的索赔次数相互独立,用频率估计概率.
(1)估计一份保单索赔次数不少于2的概率;
(2)一份保单的毛利润定义为这份保单的保费与赔偿总金额之差.
(i)记X为一份保单的毛利润,估计X的数学期望EX;
(ii)如果无索赔的保单的保费减少4%,有索赔的保单的保费增加20%,试比较这种情况下一份保单毛利润的数学期望估计值与(i)中EX估计值的大小.(结论不要求证明)
【解析】 (1)解法一(直接法):由题意可知“一份保单索赔次数不少于2次”的概率P==.
解法二(间接法):由题意可知“一份保单索赔次数不少于2”的对立事件为“一份保单索赔次数少于2”,则所求概率为P=1-=1-=.
(2)(i)由题意可知毛利润X的可能取值为0.4,-0.4,-1.2,-2,-2.6.
P(X=0.4)==,P(X=-0.4)==,
P(X=-1.2)==,P(X=-2)==,
P(X=-2.6)==,
所以X的分布列为
X 0.4 -0.4 -1.2 -2 -2.6
P
EX=0.4×+(-0.4)×+(-1.2)×+(-2)×+(-2.6)×=0.122.
(ii)由题意知该情况下一份保单保费=0.4××(1-4%)+0.4××(1+20%)=0.403 2,
毛利润的数学期望=0.122+(0.403 2-0.4)=0.125 2,
因为0.125 2>0.122,
所以该情况下一份保单毛利润的数学期望大于EX.
9.(2023课标I,21)甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投籃,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5.
(1)求第2次投篮的人是乙的概率;
(2)求第次投篮的人是甲的概率;
(3)已知:若随机变量服从两点分布,且,则.记前次(即从第1次到第次投篮)中甲投篮的次数为,求.
【解析】(1)记“第次投篮的人是甲”为事件,“第次投篮的人是乙”为事件,
所以,
.
(2)设,依题可知,,则
,
即,
构造等比数列,设,解得,则,
又,所以是首项为,公比为的等比数列,
即.
(3)因为,,
所以当时,,
故.
10.(2022全国甲理,19,12分,应用性)甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.
(1)求甲学校获得冠军的概率;
(2)用X表示乙学校的总得分,求X的分布列与期望.
【解析】 (1)记“甲学校在第i个项目获胜”为事件Ai(i=1,2,3),“甲学校获得冠军”为事件E.
则P(E)=P(A1A2A3)+P(A1A2)+P(A1A3)+P(A2A3)=.
∴甲学校获得冠军的概率为.
(2)记“乙学校在第j个项目获胜”为事件Bj(j=1,2,3).X的所有可能取值为0,10,20,30.
则P(X=0)=P()=,
P(X=10)=P(B1)+P()+P(B3)
=,
P(X=20)=P(B1B2)+P(B1B3)+P(B2B3)
=,
P(X=30)=P(B1B2B3)=.
∴X的分布列为
X 0 10 20 30
P
∴E(X)=0×=13.
11.(2021新高考Ⅰ,18,12分)某学校组织“一带一路”知识竞赛,有A,B两类问题.每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分;B类问题中的每个问题回答正确得80分,否则得0分.
已知小明能正确回答A类问题的概率为0.8,能正确回答B类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.
(1)若小明先回答A类问题,记X为小明的累计得分,求X的分布列;
(2)为使累计得分的期望最大,小明应选择先回答哪类问题 并说明理由.
解题指导:(1)由题意分析出X的所有可能取值,并求出所有可能取值对应的概率,从而求出X的分布列.(2)根据(1),可求出小明先回答A类问题的数学期望E(X),再求出小明先回答B类问题的数学期望.通过比较,即可得出结果.
【解析】 (1)由题易知X的所有可能取值为0,20,100,
P(X=0)=1-0.8=0.2,
P(X=20)=0.8×(1-0.6)=0.32,
P(X=100)=0.8×0.6=0.48,
所以X的分布列为
X 0 20 100
P 0.2 0.32 0.48
(2)由(1)可知E(X)=0×0.2+20×0.32+100×0.48=54.4.
假设小明先回答B类问题,其累计得分为Y,则Y的所有可能取值为0,80,100,
P(Y=0)=1-0.6=0.4,
P(Y=80)=0.6×(1-0.8)=0.12,
P(Y=100)=0.6×0.8=0.48,
所以Y的分布列为
Y 0 80 100
P 0.4 0.12 0.48
所以E(Y)=0×0.4+80×0.12+100×0.48=57.6,
所以E(Y)>E(X),
所以小明应选择先回答B类问题.
方法总结 求解离散型随机变量的数学期望的一般步骤:
1.判断取值:即判断随机变量的所有可能取值及取每个值所表示的意义;2.探求概率:利用排列组合、枚举法、概率公式,求出随机变量取每个值时的概率;3.写出分布列:按规定形式写出分布列,注意检验所求的分布列或事件的概率是否正确;4.求期望值:利用离散型随机变量的数学期望的定义求其期望值.
12.(2022北京,18,13分,应用性)在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到9.50 m以上(含9.50 m)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m):
甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,9.35,9.30,9.25;
乙:9.78,9.56,9.51,9.36,9.32,9.23;
丙:9.85,9.65,9.20,9.16.
假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.
(1)估计甲在校运动会铅球比赛中获得优秀奖的概率;
(2)设X是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X的数学期望EX;
(3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大 (结论不要求证明)
【解析】 (1)甲以往参加的10次比赛中,有4次比赛成绩达到获得优秀奖的标准,则甲得优秀奖的概率P=.
(2)随机变量X的所有可能取值为0,1,2,3,设甲、乙、丙获得优秀奖分别为事件A,B,C,则A,B,C,相互独立,且P(A)=,P(B)=P(C)=,P()=1-P(A)=1-,P()=P()=,
则P(X=0)=P()=P()P()P()=;
P(X=1)=P(A)+P()+P(C)=P(A)P()·P()+P()P(B)P()+P()P()P(C)=;
P(X=2)=P(AB)+P(AC)+P(BC)=P(A)P(B)·P()+P(A)P()P(C)+P()P(B)P(C)=;
P(X=3)=P(ABC)=P(A)P(B)P(C)=.
故X的数学期望EX=0×.
(3)丙.
详解:乙夺冠的概率为P(乙)=,
丙夺冠的概率为P(丙)=,
甲夺冠的概率为P(甲)=1-,
P(丙)最大,所以丙夺冠的概率最大.
13.(2018北京理,17,12分)电影公司随机收集了电影的有关数据,经分类整理得到下表:
电影类型 第一类 第二类 第三类 第四类 第五类 第六类
电影部数 140 50 300 200 800 510
好评率 0.4 0.2 0.15 0.25 0.2 0.1
好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.
假设所有电影是否获得好评相互独立.
(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;
(2)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;
(3)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等.用“ξk=1”表示第k类电影得到人们喜欢,“ξk=0”表示第k类电影没有得到人们喜欢(k=1,2,3,4,5,6).写出方差Dξ1,Dξ2,Dξ3,Dξ4,Dξ5,Dξ6的大小关系.
【解析】 (1)由题意知,样本中电影的总部数是140+50+300+200+800+510=2 000,
第四类电影中获得好评的电影部数是200×0.25=50.
故所求概率是=0.025.
(2)设事件A为“从第四类电影中随机选出的电影获得好评”,
事件B为“从第五类电影中随机选出的电影获得好评”.
故所求概率为P(A+B)=P(A)+P(B)
=P(A)(1-P(B))+(1-P(A))P(B).
由题意知:P(A)估计为0.25,P(B)估计为0.2.
故所求概率估计为0.25×0.8+0.75×0.2=0.35.
(3)Dξ1>Dξ4>Dξ2=Dξ5>Dξ3>Dξ6.
解后反思 古典概型的概率以及方差的求解:
在使用古典概型的概率公式时,应该注意:(1)要判断该概率模型是不是古典概型;(2)先分清基本事件的总数n与事件A中包含的结果数m,再利用公式P(A)=求出事件A发生的概率.在求方差时,要学会判断随机变量是不是服从特殊分布,若服从,则利用特殊分布的方差公式求解.
14.(2017课标Ⅲ理,18,12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温 [10,15) [15,20) [20,25) [25,30) [30,35) [35,40)
天数 2 16 36 25 7 4
以最高气温位于各区间的频率代替最高气温位于该区间的概率.
(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值
【解析】 本题考查随机变量的分布列,数学期望.
(1)由题意知,X所有可能取值为200,300,500,由表格数据知
P(X=200)==0.2,P(X=300)==0.4,P(X=500)==0.4.
因此X的分布列为
X 200 300 500
P 0.2 0.4 0.4
(2)由题意知,这种酸奶一天的需求量至多为500瓶,至少为200瓶,因此只需考虑200≤n≤500.
当300≤n≤500时,
若最高气温不低于25,则Y=6n-4n=2n;
若最高气温位于区间[20,25),
则Y=6×300+2(n-300)-4n=1 200-2n;
若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n.
因此EY=2n×0.4+(1 200-2n)×0.4+(800-2n)×0.2=640-0.4n.
当200≤n<300时,
若最高气温不低于20,则Y=6n-4n=2n;
若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n.
因此EY=2n×(0.4+0.4)+(800-2n)×0.2=160+1.2n.
所以n=300时,Y的数学期望达到最大值,最大值为520元.
15.(2017天津理,16,13分)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为,,.
(1)记X表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X的分布列和数学期望;
(2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.
【解析】 本小题主要考查离散型随机变量的分布列与数学期望,事件的相互独立性,互斥事件的概率加法公式等基础知识.考查运用概率知识解决简单实际问题的能力.
(1)随机变量X的所有可能取值为0,1,2,3.
P(X=0)=××=,
P(X=1)=×1-×1-+1-××1-+××=,
P(X=2)=××+××+××=,
P(X=3)=××=.
所以,随机变量X的分布列为
X 0 1 2 3
P
随机变量X的数学期望E(X)=0×+1×+2×+3×=.
(2)设Y表示第一辆车遇到红灯的个数,Z表示第二辆车遇到红灯的个数,则所求事件的概率为
P(Y+Z=1)=P(Y=0,Z=1)+P(Y=1,Z=0)
=P(Y=0)P(Z=1)+P(Y=1)P(Z=0)
=×+×
=.
所以,这2辆车共遇到1个红灯的概率为.
技巧点拔 解决随机变量分布列问题的关键是正确求出随机变量可以取哪些值以及取各个值时对应的概率,只有正确理解随机变量取值的意义才能解决这个问题,理解随机变量取值的意义是解决这类问题的必要前提.
16.(2016天津理,16,13分)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会.
(1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;
(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.
【解析】 (1)由已知,有P(A)==.
所以,事件A发生的概率为.
(2)随机变量X的所有可能取值为0,1,2.
P(X=0)==,
P(X=1)==,
P(X=2)==.
所以,随机变量X的分布列为
X 0 1 2
P
随机变量X的数学期望E(X)=0×+1×+2×=1.
评析 本题主要考查古典概型及其概率计算公式,互斥事件、离散型随机变量的分布列与数学期望等基础知识.考查运用概率知识解决简单实际问题的能力.
17.(2015天津理,16,13分)为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.
(1)设A为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A发生的概率;
(2)设X为选出的4人中种子选手的人数,求随机变量X的分布列和数学期望.
【解析】 (1)由已知,有
P(A)==.
所以,事件A发生的概率为.
(2)随机变量X的所有可能取值为1,2,3,4.
P(X=k)=(k=1,2,3,4).
所以,随机变量X的分布列为
X 1 2 3 4
P
随机变量X的数学期望E(X)=1×+2×+3×+4×=.
评析 本题主要考查古典概型及其概率计算公式,互斥事件,离散型随机变量的分布列与数学期望等基础知识.考查运用概率知识解决简单实际问题的能力.属中等难度题.
18.(2015四川理,17,12分)某市A,B两所中学的学生组队参加辩论赛,A中学推荐了3名男生、2名女生,B中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人、女生中随机抽取3人组成代表队.
(1)求A中学至少有1名学生入选代表队的概率;
(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X表示参赛的男生人数,求X的分布列和数学期望.
【解析】 (1)由题意,参加集训的男、女生各有6名.
参赛学生全从B中学抽取(等价于A中学没有学生入选代表队)的概率为=.
因此,A中学至少有1名学生入选代表队的概率为1-=.
(2)根据题意,X的可能取值为1,2,3.
P(X=1)==,
P(X=2)==,
P(X=3)==.
所以X的分布列为
X 1 2 3
P
因此,X的数学期望为
E(X)=1×P(X=1)+2×P(X=2)+3×P(X=3)
=1×+2×+3×=2.
评析 本题主要考查随机事件的概率、古典概型、随机变量的分布列、数学期望等基础知识,考查运算求解能力、应用意识,考查运用概率与统计的知识与方法分析和解决实际问题的能力.
19.(2015安徽理,17,12分)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.
(1)求第一次检测出的是次品且第二次检测出的是正品的概率;
(2)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望).
【解析】 (1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A,
P(A)==.
(2)X的可能取值为200,300,400.
P(X=200)==,
P(X=300)==,
P(X=400)=1-P(X=200)-P(X=300)=1--=.
故X的分布列为
X 200 300 400
P
EX=200×+300×+400×=350.
20.(2015福建理,16,13分)某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定.小王到该银行取钱时,发现自己忘记了银行卡的密码,但可以确认该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.
(1)求当天小王的该银行卡被锁定的概率;
(2)设当天小王用该银行卡尝试密码的次数为X,求X的分布列和数学期望.
【解析】 (1)设“当天小王的该银行卡被锁定”的事件为A,
则P(A)=××=.
(2)依题意得,X所有可能的取值是1,2,3.
又P(X=1)=,P(X=2)=×=,P(X=3)=××1=,
所以X的分布列为
X 1 2 3
P
所以E(X)=1×+2×+3×=.
评析 本小题主要考查古典概型、相互独立事件的概率、随机变量的分布列、数学期望等基础知识,考查运算求解能力、应用意识,考查必然与或然思想.
21.(2013课标Ⅰ理,19,12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.
假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为,且各件产品是否为优质品相互独立.
(1)求这批产品通过检验的概率;
(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.
【解析】 (1)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品都是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,所以P(A)=P(A1B1)+P(A2B2)
=P(A1)P(B1|A1)+P(A2)P(B2|A2)
=×+×=.
(2)X可能的取值为400,500,800,并且
P(X=400)=1--=,
P(X=500)=,P(X=800)=.
所以X的分布列为
X 400 500 800
P
EX=400×+500×+800×=506.25.
22.(2016课标Ⅰ,19,12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:
以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.
(1)求X的分布列;
(2)若要求P(X≤n)≥0.5,确定n的最小值;
(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个
【解析】 (1)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.
可知X的所有可能取值为16、17、18、19、20、21、22,
P(X=16)=0.2×0.2=0.04;
P(X=17)=2×0.2×0.4=0.16;
P(X=18)=2×0.2×0.2+0.4×0.4=0.24;
P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24;
P(X=20)=2×0.2×0.4+0.2×0.2=0.2;
P(X=21)=2×0.2×0.2=0.08;
P(X=22)=0.2×0.2=0.04.(4分)
所以X的分布列为
X 16 17 18 19 20 21 22
P 0.04 0.16 0.24 0.24 0.2 0.08 0.04
(6分)
(2)由(1)知P(X≤18)=0.44,P(X≤19)=0.68,故n的最小值为19.(8分)
(3)记Y表示2台机器在购买易损零件上所需的费用(单位:元).
当n=19时,
EY=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040.(10分)
当n=20时,
EY=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080.
可知当n=19时所需费用的期望值小于n=20时所需费用的期望值,故应选n=19.(12分)
思路分析 (1)确定X的可能取值,分别求其对应的概率,进而可列出分布列.
(2)根据(1)中求得的概率可得P(X≤18)以及P(X≤19)的值,由此即可确定n的最小值.
(3)求出n=19,n=20时的期望值,比较大小即可作出决策.
(
第
11
页 共
12
页
)