11.2洛伦兹力
满分:64
班级:________ 姓名:________ 成绩:________
一、单选题(共5小题,共20分)
在一绝缘、粗糙且足够长的水平管道中有一带电荷量为q、质量为m的带正电小球,管道半径略大于小球半径,整个管道处于磁感应强度为B的水平匀强磁场中,磁感应强度方向与管道垂直,现给带电小球一个水平速度v0,且,g为重力加速度,则在整个运动过程中,摩擦力对带电小球做的功为( )。
(4分)
A. B. C. D.
如图所示,将一金属导体放在垂直于表面P的匀强磁场中,M、N是它的上下两个表面。当有恒定电流沿平行于平面P的方向通过时,在M、N板间可以测得有电势差,数值为U,这一现象就是“霍尔效应”,这个电势差也被称为“霍尔电势差”。那么下列说法正确的是( )。
(4分)
A.金属块上表面M的电势高于下表面N的电势
B.电流增大时,M、N两表面间的电压U增大
C.磁场减弱时,M、N两表面间的电压U增大
D.若将磁场方向改为垂直M面,则M、N板间仍存在电势差
电磁流量计可以测量导电液体的流量Q——单位时间内流过管道横截面的液体体积。如图所示,内壁光滑的薄圆管由非磁性导电材料制成,空间有垂直管道轴线的匀强磁场,磁感应强度为B。液体充满管道并以速度v沿轴线方向流动,圆管壁上的M、N两点连线为直径,且垂直于磁场方向,M、N两点的电势差为U0。下列说法错误的是( )
(4分)
A.N点电势比M点高 B.U0正比于流量Q
C.在流量Q一定时,管道半径越小,U0越小
D.若直径MN与磁场方向不垂直,测得的流量Q偏小
人体血管状况及血液流速可以反映身体健康状态。血管中的血液通常含有大量的正负离子。如图,血管内径为d,血流速度v方向水平向右。现将方向与血管横截面平行,且垂直纸面向内的匀强磁场施于某段血管,其磁感应强度大小恒为B,当血液的流量(单位时间内流过管道横截面的液体体积)一定时( )
(4分)
A.血管上侧电势低,血管下侧电势高 B.若血管内径变小,则血液流速变小
C.血管上下侧电势差与血液流速无关 D.血管上下侧电势差变大,说明血管内径变小
如图,M、N和P是以MN为直径的半圆弧上的三点,O点为半圆弧的圆心,∠MOP=90°.在M、N处各有一条长直导线垂直于纸面放置,导线中通有大小相等的恒定电流、方向如图所示,这时O点磁感应强度的大小为B1;若将N处的长直导线移至P处,则O点的磁感应强度大小变为B2.则B1与B2之比为( )
(4分)
A.1:1 B.1: C.:1 D.2:1
二、多选题(共1小题,共6分)
如图所示,光滑水平桌面上有一轻质光滑绝缘管道,空间存在竖直向下的匀强磁场,磁感应强度大小为B,绝缘管道在水平外力F(图中未画出)的作用下以速度v向右匀速运动,管道内有一带正电小球,初始位于管道M端且相对管道速度为0,一段时间后,小球运动到管道N端,小球质量为m,电量为q,管道长度为l,小球直径略小于管道内径,则小球从M端运动到N端过程有( )
(6分)
A.时间为 B.小球所受洛伦兹力做功为0
C.外力F的平均功率为 D.外力F的冲量为qBl
三、计算题(组)(共4小题,共38分)
磁流体发电是一项新兴技术,它可以把物体的内能直接转化为电能,图示是它的示意图,平行金属板A、B之间有一个很强的匀强磁场,将一束等离子体(高温下电离的气体,含有大量正、负带电粒子)喷入磁场,A、B两板间便产生电压。如果把A、B和用电器连接,A、B就是直流电源的两个电极。
(10分)
(1) 图中A、B板哪一个是发电机的正极 (4分)
(2) 若A、B两板相距为d,板间的磁感应强度为B,等离子体以速度v垂直于B的方向射入磁场,该发电机的电动势为多大 (6分)
(2020·武定民族中学高二期末)如图10所示,在磁感应强度为B的水平匀强磁场中,有一足够长的绝缘细棒OO′在竖直面内垂直磁场方向放置,细棒与水平面间的夹角为α,一质量为m、带电荷量为+q的圆环A套在OO′棒上,圆环与棒间的动摩擦因数为μ,且μ<tan α,重力加速度为g.现让圆环A由静止开始下滑,试问圆环在下滑过程中:
图10(7分)
(1) 圆环A的最大加速度为多大?获得最大加速度时的速度为多大?(4分)
(2) 圆环A能够达到的最大速度为多大?(3分)
磁屏蔽技术可以降低外界磁场对屏蔽区域的干扰。如图所示,x≥0区域存在垂直Oxy平面向里的匀强磁场,其磁感应强度大小为B1(未知)。第一象限内存在边长为2L的正方形磁屏蔽区ONPQ,经磁屏蔽后,该区域内的匀强磁场方向仍垂直Oxy平面向里,其磁感应强度大小为B2(未知),但满足0<B2<B1。某质量为m、电荷量为q(q>0)的带电粒子通过速度选择器后,在Oxy平面内垂直y轴射入x≥0区域,经磁场偏转后刚好从ON中点垂直ON射入磁屏蔽区域。速度选择器两极板间电压U、间距d、内部磁感应强度大小B0已知,不考虑该粒子的重力。
(13分)
(1) 求该粒子通过速度选择器的速率;(4分)
(2) 求B1以及y轴上可能检测到该粒子的范围;(4分)
(3) 定义磁屏蔽效率η=×100%,若在Q处检测到该粒子,则η是多少?(5分)
倾角θ=30°的光滑斜面上放着一个带正电的小球,小球质量为m,带电量为q,空间中存在一垂直于纸面向里的匀强磁场,磁感应强度大小为B,现将小球在斜面上由静止释放,求:
(8分)
(1) 小球刚释放时的加速度大小;(3分)
(2) 小球在斜面上滑行多长距离后将会脱离斜面。(5分)
第2页
第2页11.2洛伦兹力
满分:64
班级:__________ 姓名:__________ 考号:__________
一、单选题(共5小题,共20分)
1. 在一绝缘、粗糙且足够长的水平管道中有一带电荷量为q、质量为m的带正电小球,
管道半径略大于小球半径,整个管道处于磁感应强度为B的水平匀强磁场中,
mg
磁感应强度方向与管道垂直,现给带电小球一个水平速度v0,且v >0 qB ,g为重力加速度,
则在整个运动过程中,摩擦力对带电小球做的功为( )。
(4分)
1
A. mv
2
2 0
2
B. 1 m( mg ) 2 qB
C. 1 m[ ( mg 2) v2 2 qB 0 ]
2
D. 1
m[v2 mg2 0 + ( qB ) ]
正确答案: C
答案解析: 由左手定则可得,带电小球向右运动的过程中,受到的洛伦兹力向上,因此小球可能受到竖
直方向的重力、洛伦兹力、杆的支持力及水平方向的摩擦力,因 ,则qv0B>mg,可知小球上表面
受到摩擦力,做减速运动,洛伦兹力减小,直到qvB=mg时,小球不再受到摩擦力,将保持匀速直线运
动,此时 ,整个过程中,只有摩擦力做功。根据动能定理 ,得
,C项正确。
2. 如图所示,将一金属导体放在垂直于表面P的匀强磁场中,M、N是它的上下两个表面。
当有恒定电流沿平行于平面P的方向通过时,在M、N板间可以测得有电势差,数值为U,
这一现象就是“霍尔效应”,这个电势差也被称为“霍尔电势差”。那么下列说法正确的是( )。
(4分)
A.金属块上表面M的电势高于下表面N的电势
B.电流增大时,M、N两表面间的电压U增大
C.磁场减弱时,M、N两表面间的电压U增大
D.若将磁场方向改为垂直M面,则M、N板间仍存在电势差
正确答案: B
答案解析: 电流方向向右,自由电子向左定向移动,根据左手定则,知电子向上表面偏转,上表面带负
电,下表面带正电,所以上表面比下表面电势低,A项错误;最终电子在电场力和洛伦兹力的作用下处于
平衡状态,有 ,得U=Bvd,故B减小时,M、N两表面间的电压U减小,C项错误;电流的微观表达
式为I=nevS,电流增大,则v增大,又U=Bvd,则U增大,B项正确。若将磁场方向改为垂直M面,根据左手
定则可知,电子偏向前表面或后表面,而M、N板间没有电势差,D项错误。
3. 电磁流量计可以测量导电液体的流量Q——单位时间内流过管道横截面的液体体积。如图所示,
内壁光滑的薄圆管由非磁性导电材料制成,空间有垂直管道轴线的匀强磁场,磁感应强度为B。
液体充满管道并以速度v沿轴线方向流动,圆管壁上的M、N两点连线为直径,且垂直于磁场方向,M、
N两点的电势差为U0。下列说法错误的是( )
(4分)
A.N点电势比M点高
B.U0正比于流量Q
C.在流量Q一定时,管道半径越小,U0越小
D.若直径MN与磁场方向不垂直,测得的流量Q偏小
正确答案: C
答案解析: 解:A.根据左手定则可知,带正电的粒子向下偏转,带负电的粒子向上偏转,故N点电势比M
点高,故A正确;
BC.设管道半径为r,稳定时导电粒子受到的洛伦兹力与电场力平衡,则有:
U
q 0 = qBv ,又有:Q=Sv=πr2v 2r
联立解得:U 2BQ= πr ,可得U0正比于流量Q。0
流量Q一定时,管道半径r越小,U0越大,故B正确,C错误;
2BQ
D.若直径MN与磁场方向不垂直,则关系式:U0 = πr 中的磁场强度B应该是磁感应强度垂直MN的分
量,故此时测量得到的M、N两点的电势差要小于直径MN与磁场方向垂直时的,可知测得的流量Q会偏小,
故D正确。
本题选错误的,故选:C。
4. 人体血管状况及血液流速可以反映身体健康状态。血管中的血液通常含有大量的正负离子。如图,
血管内径为d,血流速度v方向水平向右。现将方向与血管横截面平行,
且垂直纸面向内的匀强磁场施于某段血管,其磁感应强度大小恒为B,当血液的流量
(单位时间内流过管道横截面的液体体积)一定时( )
(4分)
A.血管上侧电势低,血管下侧电势高
B.若血管内径变小,则血液流速变小
C.血管上下侧电势差与血液流速无关
D.血管上下侧电势差变大,说明血管内径变小
正确答案: D
答案解析: 解:A.根据左手定则可知,正带电离子向血管上侧偏转,负带电离子向血管下侧偏转,则血
管上侧电势高,血管下侧电势低,故A错误;
B.设血液的流量为V,若血管内径变小,则血管的横截面积变小,根据V=Sv可知,血液流速变大,故B错
误;
CD.稳定时,带电离子所受洛伦兹力等于所受的电场力,
则有:qvB= qU d ,
可得U=dvB,
v= V
又有: π d 2( ) , 2
4VB
联立可得:U= πd ,
U 4VB根据 = πd 、V=Sv可知,血管上下侧电势差变大,说明血管内径变小,血液的流速变化,则血管内
径一定改变,则血管上下侧电势差改变,所以血管上下侧电势差与血液流速有关,故D正确,C错误;
故选:D。
5. 如图,M、N和P是以MN为直径的半圆弧上的三点,O点为半圆弧的圆心,∠MOP=90°.在M、
N处各有一条长直导线垂直于纸面放置,导线中通有大小相等的恒定电流、方向如图所示,
这时O点磁感应强度的大小为B1;若将N处的长直导线移至P处,则O点的磁感应强度大小变为B2.
则B1与B2之比为( )
(4分)
A.1:1
B.1:√ 2
C.√ 2 :1
D.2:1
正确答案: C
B
答案解析: 解:依题意,每根导线在O点产生的磁感应强度为 1 ,方向竖直向下, 2
则当M移至P点时,O点合磁感应强度大小为:
B
B =2× 1
√ 2
2 ×cos45°= B , 12 2
则B1与B2之比为√ 2 :1,故ABD错误,C正确。
故选:C。
二、多选题(共1小题,共6分)
6. 如图所示,光滑水平桌面上有一轻质光滑绝缘管道,空间存在竖直向下的匀强磁场,
磁感应强度大小为B,绝缘管道在水平外力F(图中未画出)的作用下以速度v向右匀速运动,
管道内有一带正电小球,初始位于管道M端且相对管道速度为0,一段时间后,小球运动到管道N端,
小球质量为m,电量为q,管道长度为l,小球直径略小于管道内径,则小球从M端运动到N端过程有( )
(6分)
A.时间为
B.小球所受洛伦兹力做功为0
C.外力F的平均功率为
D.外力F的冲量为qBl
正确答案: B C D
答案解析: A.小球在水平外力F的作用下以速度u向右匀速运动,由F=qvB可知,小球受到的洛伦兹力沿
管道方向,且大小保持不变,根据牛顿第二定律得quB=ma,由初速度为零的位移公式 ,解得
,故A错误;
B.小球所受洛伦兹力始终和运动方向相互垂直,故洛伦兹力不做功,故B正确;
C.小球所受洛伦兹力不做功,故在沿管道方向分力做正功的大小等于垂直于管道向左的分力做负功的大
小,外力始终与洛伦兹力的垂直管道的分力平衡,则有WF=Wy=Wx=quBl,外力F的平均功率为
,故C正确;
D.外力始终与洛伦兹力的垂直管道的分力平衡,外力F的冲量大小等于
,故D正确。
故选:BCD。
三、计算题(组)(共4小题,共38分)
7. 磁流体发电是一项新兴技术,它可以把物体的内能直接转化为电能,图示是它的示意图,
平行金属板A、B之间有一个很强的匀强磁场,将一束等离子体(高温下电离的气体,含有大量正、
负带电粒子)喷入磁场,A、B两板间便产生电压。如果把A、B和用电器连接,A、
B就是直流电源的两个电极。
(10分)
(1)图中A、B板哪一个是发电机的正极 (4分)
正确答案: 带电粒子进入磁场后在洛伦兹力作用下偏转,正、负粒子分别聚集于B、A,两板间就有了
电势差。由于B板聚集了正电荷,电势高,故B板是发电机的正极。
答案解析: 根据左手定则判断板的极性.
(2)若A、B两板相距为d,板间的磁感应强度为B,等离子体以速度v垂直于B的方向射入磁场,
该发电机的电动势为多大 (6分)
正确答案: 若A、B两板未接入电路中,当正、负电荷偏转积累于B、A两板上后,两板间建立了一个电
场,电场又对带电粒子产生静电力的作用,且静电力与洛伦兹力方向相反。当A、B两板积累的电荷达到
一定数量后,两力的关系为qE=qvB。
此时带电粒子就以速度 匀速通过磁场区域。
此时两板间的电势差(所求电动势)U=Ed=Bdv,这就是该发电机的电动势的大小。
答案解析: 离子在运动过程中同时受电场力和洛伦兹力,二力平衡时两板间的电压稳定.
8. (2020·武定民族中学高二期末)如图10所示,在磁感应强度为B的水平匀强磁场中,
有一足够长的绝缘细棒OO′在竖直面内垂直磁场方向放置,细棒与水平面间的夹角为α,一质量为m、
带电荷量为+q的圆环A套在OO′棒上,圆环与棒间的动摩擦因数为μ,且μ<tan α,重力加速度为g.
现让圆环A由静止开始下滑,试问圆环在下滑过程中:
图10 (7分)
(1)圆环A的最大加速度为多大?获得最大加速度时的速度为多大? (4分)
mg cos α
正确答案: gsinα qB
答案解析: 由于μ<tan α,所以环A将由静止开始沿棒下滑,环A沿棒运动的速度为v1时,受到重力
mg,洛伦兹力qv1B、棒的弹力FN1和摩擦力Ff1=μFN1,
根据牛顿第二定律,沿棒的方向有mgsin α-Ff1=ma
垂直棒的方向有FN1+qv1B=mgcos α
所以当FN1=0,即Ff1=0时,a有最大值aM,且aM=gsin α,此时qv1B=mgcos α,
解得v mg cos α
1 = qB
(2)圆环A能够达到的最大速度为多大? (3分)
mg sin α+ μ cos α
正确答案: μqB
答案解析: 设当环A的速度达到最大值vM时,环A所受棒的弹力为FN2,方向垂直于棒向下,摩擦力为
Ff2=μFN2,
此时应有a=0,由平衡条件得mgsin α=Ff2
FN2+mgcos α=qvMB
v mg sin α+ μ cos α解得 m = μqB
9. 磁屏蔽技术可以降低外界磁场对屏蔽区域的干扰。如图所示,
x≥0区域存在垂直Oxy平面向里的匀强磁场,其磁感应强度大小为B1(未知)。
第一象限内存在边长为2L的正方形磁屏蔽区ONPQ,经磁屏蔽后,
该区域内的匀强磁场方向仍垂直Oxy平面向里,其磁感应强度大小为B2(未知),但满足0<B2<B1。
某质量为m、电荷量为q(q>0)的带电粒子通过速度选择器后,在Oxy平面内垂直y轴射入x≥0区域,
经磁场偏转后刚好从ON中点垂直ON射入磁屏蔽区域。速度选择器两极板间电压U、间距d、
内部磁感应强度大小B0已知,不考虑该粒子的重力。
(13分)
(1)求该粒子通过速度选择器的速率; (4分)
U
正确答案: 该粒子通过速度选择器的速率为 dB ;
0
U
答案解析: 设该粒子通过速度选择器的速率为v,根据平衡条件可得:qvB0=q d
U
解得:v= dB ; 0
(2)求B1以及y轴上可能检测到该粒子的范围; (4分)
mU
正确答案: B1的大小为 qLdB ,y轴上可能检测到该粒子的范围为L<y<3L;
0
答案解析: 粒子垂直于y轴进入磁场,垂直于x轴进入正方形磁屏蔽区,则O为圆心,粒子的轨迹半
径为:
ON 2L
R= 2 = =L2
2
根据洛伦兹力提供向心力可得:qvB1=m
v
R
mU
解得:B1= qLdB ;0
粒子进入磁屏蔽区ONPQ,若B2=B1,则粒子在磁屏蔽区ONPQ中运动的半径最小,打在y轴上的位置距离O点
最近,即为L;
若B2=0,则粒子从PQ中点射出,由于外部的磁场为B1,则粒子做匀速圆周运动的半径仍为L,轨迹如图所
示:
所以y轴上可能检测到该粒子的范围为:L<y<3L;
B1 B2
(3)定义磁屏蔽效率η= B ×100%,若在Q处检测到该粒子,则η是多少? (5分)1
正确答案: 若在Q处检测到该粒子,则η是60%。
答案解析: 若在Q处检测到该粒子,粒子运动轨迹如图所示:
根据几何关系可得:r2=(2L)2+(r-L)2
解得粒子运动的轨迹半径为:r=2.5L
2
根据洛伦兹力提供向心力可得:qvB2=m
v
r
mU
解得:B = 2 2.5qLdB0
B1 B2
磁屏蔽效率为:η= B ×100%1
解得:η=60%。
10. 倾角θ=30°的光滑斜面上放着一个带正电的小球,小球质量为m,带电量为q,
空间中存在一垂直于纸面向里的匀强磁场,磁感应强度大小为B,现将小球在斜面上由静止释放,求:
(8分)
(1)小球刚释放时的加速度大小; (3分)
正确答案: 小球刚释放时,小球受重力、斜面的支持力,由牛顿第二定律得:mgsinθ=ma
解得:a=gsinθ= g
答:小球刚释放时的加速度大小是 g;
答案解析: 小球刚释放时,对小球受力分析,由牛顿第二定律求解加速度大小;
(2)小球在斜面上滑行多长距离后将会脱离斜面。 (5分)
正确答案: 小球在斜面上滑行时,小球受重力、斜面的支持力,垂直斜面向上的洛伦兹力,小球沿斜
面做匀加速运动,当斜面的支持力为零时将会脱离斜面,
要离开斜面时:qvB=mgcosθ
由速度位移的关系式得:
联立解得:
答:小球在斜面上滑行 后将会脱离斜面。
答案解析: 小球在斜面上滑行时,对小球受力分析,明确小球的运动特点,当压力为零时,抓住垂直于
斜面方向上的合力为零,求出小球的速率,再根据速度位移的关系式求解即可。11.2洛伦兹力
满分:64
班级:__________ 姓名:__________ 考号:__________
一、单选题(共5小题,共20分)
1. 在一绝缘、粗糙且足够长的水平管道中有一带电荷量为q、质量为m的带正电小球,
管道半径略大于小球半径,整个管道处于磁感应强度为B的水平匀强磁场中,
磁感应强度方向与管道垂直,现给带电小球一个水平速度v0,且v >
mg
0 qB ,g为重力加速度,
则在整个运动过程中,摩擦力对带电小球做的功为( )。
(4分)
1 2
A. mv 2 0
2
B. 1 m( mg ) 2 qB
C. 1 m[ ( mg 2) v2] 2 qB 0
2
D. 1 m[v2 mg 2 0 + ( qB ) ]
2. 如图所示,将一金属导体放在垂直于表面P的匀强磁场中,M、N是它的上下两个表面。
当有恒定电流沿平行于平面P的方向通过时,在M、N板间可以测得有电势差,数值为U,
这一现象就是“霍尔效应”,这个电势差也被称为“霍尔电势差”。那么下列说法正确的是( )。
(4分)
A.金属块上表面M的电势高于下表面N的电势
B.电流增大时,M、N两表面间的电压U增大
C.磁场减弱时,M、N两表面间的电压U增大
D.若将磁场方向改为垂直M面,则M、N板间仍存在电势差
3. 电磁流量计可以测量导电液体的流量Q——单位时间内流过管道横截面的液体体积。如图所示,
内壁光滑的薄圆管由非磁性导电材料制成,空间有垂直管道轴线的匀强磁场,磁感应强度为B。
液体充满管道并以速度v沿轴线方向流动,圆管壁上的M、N两点连线为直径,且垂直于磁场方向,M、
N两点的电势差为U0。下列说法错误的是( )
(4分)
A.N点电势比M点高
B.U0正比于流量Q
C.在流量Q一定时,管道半径越小,U0越小
D.若直径MN与磁场方向不垂直,测得的流量Q偏小
4. 人体血管状况及血液流速可以反映身体健康状态。血管中的血液通常含有大量的正负离子。如图,
血管内径为d,血流速度v方向水平向右。现将方向与血管横截面平行,
且垂直纸面向内的匀强磁场施于某段血管,其磁感应强度大小恒为B,当血液的流量
(单位时间内流过管道横截面的液体体积)一定时( )
(4分)
A.血管上侧电势低,血管下侧电势高
B.若血管内径变小,则血液流速变小
C.血管上下侧电势差与血液流速无关
D.血管上下侧电势差变大,说明血管内径变小
5. 如图,M、N和P是以MN为直径的半圆弧上的三点,O点为半圆弧的圆心,∠MOP=90°.在M、
N处各有一条长直导线垂直于纸面放置,导线中通有大小相等的恒定电流、方向如图所示,
这时O点磁感应强度的大小为B1;若将N处的长直导线移至P处,则O点的磁感应强度大小变为B2.
则B1与B2之比为( )
(4分)
A.1:1
B.1:√ 2
C.√ 2 :1
D.2:1
二、多选题(共1小题,共6分)
6. 如图所示,光滑水平桌面上有一轻质光滑绝缘管道,空间存在竖直向下的匀强磁场,
磁感应强度大小为B,绝缘管道在水平外力F(图中未画出)的作用下以速度v向右匀速运动,
管道内有一带正电小球,初始位于管道M端且相对管道速度为0,一段时间后,小球运动到管道N端,
小球质量为m,电量为q,管道长度为l,小球直径略小于管道内径,则小球从M端运动到N端过程有( )
(6分)
A.时间为
B.小球所受洛伦兹力做功为0
C.外力F的平均功率为
D.外力F的冲量为qBl
三、计算题(组)(共4小题,共38分)
7. 磁流体发电是一项新兴技术,它可以把物体的内能直接转化为电能,图示是它的示意图,
平行金属板A、B之间有一个很强的匀强磁场,将一束等离子体(高温下电离的气体,含有大量正、
负带电粒子)喷入磁场,A、B两板间便产生电压。如果把A、B和用电器连接,A、
B就是直流电源的两个电极。
(10分)
(1)图中A、B板哪一个是发电机的正极 (4分)
(2)若A、B两板相距为d,板间的磁感应强度为B,等离子体以速度v垂直于B的方向射入磁场,
该发电机的电动势为多大 (6分)
8. (2020·武定民族中学高二期末)如图10所示,在磁感应强度为B的水平匀强磁场中,
有一足够长的绝缘细棒OO′在竖直面内垂直磁场方向放置,细棒与水平面间的夹角为α,一质量为m、
带电荷量为+q的圆环A套在OO′棒上,圆环与棒间的动摩擦因数为μ,且μ<tan α,重力加速度为g.
现让圆环A由静止开始下滑,试问圆环在下滑过程中:
图10 (7分)
(1)圆环A的最大加速度为多大?获得最大加速度时的速度为多大? (4分)
(2)圆环A能够达到的最大速度为多大? (3分)
9. 磁屏蔽技术可以降低外界磁场对屏蔽区域的干扰。如图所示,
x≥0区域存在垂直Oxy平面向里的匀强磁场,其磁感应强度大小为B1(未知)。
第一象限内存在边长为2L的正方形磁屏蔽区ONPQ,经磁屏蔽后,
该区域内的匀强磁场方向仍垂直Oxy平面向里,其磁感应强度大小为B2(未知),但满足0<B2<B1。
某质量为m、电荷量为q(q>0)的带电粒子通过速度选择器后,在Oxy平面内垂直y轴射入x≥0区域,
经磁场偏转后刚好从ON中点垂直ON射入磁屏蔽区域。速度选择器两极板间电压U、间距d、
内部磁感应强度大小B0已知,不考虑该粒子的重力。
(13分)
(1)求该粒子通过速度选择器的速率; (4分)
(2)求B1以及y轴上可能检测到该粒子的范围; (4分)
B1 B2
(3)定义磁屏蔽效率η= B ×100%,若在Q处检测到该粒子,则η是多少? (5分)1
10. 倾角θ=30°的光滑斜面上放着一个带正电的小球,小球质量为m,带电量为q,
空间中存在一垂直于纸面向里的匀强磁场,磁感应强度大小为B,现将小球在斜面上由静止释放,求:
(8分)
(1)小球刚释放时的加速度大小; (3分)
(2)小球在斜面上滑行多长距离后将会脱离斜面。 (5分)