中考数学多边形与平行四边形三年真题汇总
考点01 多边形的内角
1.(2025·北京·中考真题)若一个六边形的每个内角都是,则x的值为( )
A.60 B.90 C.120 D.150
2.(2025·甘肃兰州·中考真题)图1是通过平面图形的镶嵌所呈现的图案,图2是其局部放大示意图,由正六边形、正方形和正三角形构成,它的轮廓为正十二边形,则图2中的大小是( )
A. B. C. D.
3.(2025·四川自贡·中考真题)如图,正六边形与正方形的两邻边相交,则( )
A. B. C. D.
4.(2025·湖南长沙·中考真题)如图,五边形中,,,,则 °.
5.(2025·云南·中考真题)一个六边形的内角和等于( )
A. B. C. D.
6.(2025·甘肃·中考真题)如图,一个多边形纸片的内角和为,按图示的剪法剪去一个内角后,所得新多边形的边数为( )
A.12 B.11 C.10 D.9
7.(2021·青海西宁·中考真题)一个十二边形的内角和是 .
8.(2024·江苏南京·中考真题)如图,在正边形中,,则的值是( )
A.16 B.18 C.20 D.36
9.(2024·宁夏·中考真题)如图,在正五边形的内部,以边为边作正方形,连接,则 .
10.(2024·四川广元·中考真题)点F是正五边形边的中点,连接并延长与延长线交于点G,则的度数为 .
考点02 多边形的外角
1.(2025·四川遂宁·中考真题)已知一个凸多边形的内角和是外角和的4倍,则该多边形的边数为( )
A.10 B.11 C.12 D.13
2.(2025·四川凉山·中考真题)已知一个多边形的内角和是它外角和的4倍,则从这个多边形的一个顶点处可以引( )条对角线
A.6 B.7 C.8 D.9
3.(2024·四川攀枝花·中考真题)五边形的外角和为( )
A. B. C. D.
4.(2024·西藏·中考真题)已知正多边形的一个外角为,则这个正多边形的内角和为( )
A. B. C. D.
5.(2024·四川遂宁·中考真题)佩佩在“黄娥古镇”研学时学习扎染技术,得到了一个内角和为的正多边形图案,这个正多边形的每个外角为( )
A. B. C. D.
6.(2023·甘肃兰州·中考真题)如图1是我国古建筑墙上采用的八角形空窗,其轮廓是一个正八边形,窗外之境如同镶嵌于一个画框之中.如图2是八角形空窗的示意图,它的一个外角( )
A. B. C. D.
考点03 平行四边形的判定
1.(2024·四川乐山·中考真题)下列条件中,不能判定四边形是平行四边形的是( )
A. B.
C. D.
2.(2023·黑龙江大庆·中考真题)下列说法正确的是( )
A.一个函数是一次函数就一定是正比例函数
B.有一组对角相等的四边形一定是平行四边形
C.两条直角边对应相等的两个直角三角形一定全等
D.一组数据的方差一定大于标准差
3.(2024·山东济宁·中考真题)如图,四边形的对角线,相交于点O,,请补充一个条件 ,使四边形是平行四边形.
4.(2024·湖北武汉·中考真题)如图,在中,点,分别在边,上,.
(1)求证:;
(2)连接.请添加一个与线段相关的条件,使四边形是平行四边形.(不需要说明理由)
5.(2025·青海·中考真题)如图,在中,点O,D分别是边,的中点,过点A作交的延长线于点E,连接,.
(1)求证:四边形是平行四边形;
(2)若,试判断四边形的形状,并证明.
6.(2025·湖南长沙·中考真题)如图,正方形中,点E,F分别在,上,且.
(1)求证:四边形是平行四边形;
(2)连接,若,,求的长.
7.(2024·内蒙古·中考真题)如图,,平分,.
(1)求证:四边形是平行四边形;
(2)过点B作于点G,若,请直接写出四边形的形状.
考点04 平行四边形的性质
1.(2025·贵州·中考真题)如图,小红想将一张矩形纸片沿剪下后得到一个,若,则的度数是( )
A. B. C. D.
2.(2025·贵州·中考真题)如图,在中,,以为圆心,长为半径作弧,交于点,则的长为( )
A.5 B.4 C.3 D.2
3.(2025·河北·中考真题)平行四边形的一组邻边长分别为,,一条对角线长为.若为整数,则的值可以为 .(写出一个即可)
4.(2025·江苏连云港·中考真题)如图,在菱形中,,,为线段上的动点,四边形为平行四边形,则的最小值为 .
5.(2025·山西·中考真题)如图,在平行四边形中,点是对角线的中点,点是边的中点,连接.下列两条线段的数量关系中一定成立的是( )
A. B.
C. D.
6.(2025·新疆·中考真题)如图,在中,的平分线交于点E,若,则 .
7.(2025·四川宜宾·中考真题)如图,点是平行四边形边的中点,连接并延长交的延长线于点.求证:,并求的长.
8.(2024·宁夏·中考真题)如图,在中,点在边上,,连接并延长交的延长线于点,连接并延长交的延长线于点F.求证:.小丽的思考过程如下:
参考小丽的思考过程,完成推理.
9.(2024·吉林·中考真题)如图,在中,点O是的中点,连接并延长,交的延长线于点E,求证:.
10.(2024·四川泸州·中考真题)如图,在中,E,F是对角线上的点,且.求证:.
11.(2017·山东淄博·中考真题)已知:如图,E,F为□ABCD对角线AC上的两点,且AE=CF,连接BE,DF,求证:BE=DF.
考点05 平行四边形的判定与性质综合
1.(2025·安徽·中考真题)在如图所示的中,,分别为边,的中点,点,分别在边,上移动(不与端点重合),且满足,则下列为定值的是( )
A.四边形的周长 B.的大小
C.四边形的面积 D.线段的长
2.(2025·江苏苏州·中考真题)如图,C是线段的中点,.
(1)求证:;
(2)连接,若,求的长.
3.(2025·新疆·中考真题)如图,在等腰直角三角形中,,,,点M是的中点,点D和点N分别是线段和上的动点.
(1)当点D和点N分别是和的中点时,求a的值;
(2)当时,以点C,D,N为顶点的三角形与相似,求的值;
(3)当时,求的最小值.
4.(2024·辽宁·中考真题)如图,的对角线,相交于点,,,若,,则四边形的周长为( )
A.4 B.6 C.8 D.16
5.(2024·浙江·中考真题)尺规作图问题:
如图1,点E是边上一点(不包含A,D),连接.用尺规作,F是边上一点.
小明:如图2.以C为圆心,长为半径作弧,交于点F,连接,则.
小丽:以点A为圆心,长为半径作弧,交于点F,连接,则.
小明:小丽,你的作法有问题,小丽:哦……我明白了!
(1)证明;
(2)指出小丽作法中存在的问题.
6.(2025·河南·中考真题)如图,四边形是平行四边形,以为直径的圆交于点.
(1)请用无刻度的直尺和圆规作出圆心(保留作图痕迹,不写作法).
(2)若点是的中点,连接.求证:四边形是平行四边形.
7.(2024·四川雅安·中考真题)如图,点O是对角线的交点,过点O的直线分别交,于点E,F.
(1)求证:;
(2)当时,,分别连接,,求此时四边形的周长.
8.(2024·黑龙江大庆·中考真题)如图,平行四边形中,、分别是,的平分线,且E、F分别在边,上.
(1)求证:四边形是平行四边形;
(2)若,,求的面积.
9.(2024·江苏镇江·中考真题)图1、2是一个折叠梯的实物图.图3是折叠梯展开、折叠过程中的一个主视图.图4是折叠梯充分展开后的主视图,此时点E落在上,已知,,点D、F、G、J在上,、、、均与所在直线平行,,.点N在上,、的长度固定不变.图5是折叠梯完全折叠时的主视图,此时、重合,点、、、、、在上的位置如图所示.
【分析问题】
(1)如图5,用图中的线段填空:_________;
(2)如图4,_________,由,且的长度不变,可得与之间的数量关系为_________;
【解决问题】
(3)求的长.
答案解析
考点01 多边形的内角
1.(2025·北京·中考真题)若一个六边形的每个内角都是,则x的值为( )
A.60 B.90 C.120 D.150
【答案】C
【分析】本题考查了多边形内角和公式,即,其中为边数,利用多边形内角和公式及正多边形的性质求解即可.
【详解】解:∵一个六边形的每个内角都是,
∴每个内角的度数为:,
故选:C.
2.(2025·甘肃兰州·中考真题)图1是通过平面图形的镶嵌所呈现的图案,图2是其局部放大示意图,由正六边形、正方形和正三角形构成,它的轮廓为正十二边形,则图2中的大小是( )
A. B. C. D.
【答案】D
【分析】本题考查了正多边形的内角和.根据正三角形的每个内角为,正方形的每个内角为,求解即可.
【详解】解:正三角形的每个内角为,正方形的每个内角为,
∴,
故选:D.
3.(2025·四川自贡·中考真题)如图,正六边形与正方形的两邻边相交,则( )
A. B. C. D.
【答案】B
【分析】本题考查的是对顶角的性质,多边形和正多边形的内角和,熟练掌握正多边形每个内角的求解公式是解题的关键.先根据正多边形每个内角为,得到正六边形和正方形每个内角的度数,再结合四边形的内角和以及对顶角的性质可得答案.
【详解】解:如图,
∵正六边形与正方形的两邻边相交,
∴,,
∵,,,
∴,
∴,
故选:B.
4.(2025·湖南长沙·中考真题)如图,五边形中,,,,则 °.
【答案】205
【分析】本题主要考查了多边形的内角和求法,根据其公式解题即可.
【详解】解:多边形的内角和为,
∴五边形的内角和为,
,
故答案为:205.
5.(2025·云南·中考真题)一个六边形的内角和等于( )
A. B. C. D.
【答案】C
【分析】本题考查了多边形的内角和公式,掌握边形内角和为是解题的关键.
根据多边形的内角和公式直接计算即可.
【详解】解:由题意得:,
故选:C.
6.(2025·甘肃·中考真题)如图,一个多边形纸片的内角和为,按图示的剪法剪去一个内角后,所得新多边形的边数为( )
A.12 B.11 C.10 D.9
【答案】A
【分析】本题考查了多边形内角和问题,设原多边形的边数为,根据内角和可解得,按图示的剪法剪去一个内角后,新多边形的边数比原多边形的边数多1,即可解答,熟知多边形内角和公式是解题的关键.
【详解】解:设原多边形的边数为,
则可得,
解得,
按图示的剪法剪去一个内角后,
新多边形的边数比原多边形的边数多1,为,
故选:A.
7.(2021·青海西宁·中考真题)一个十二边形的内角和是 .
【答案】/度
【分析】本题考查的是多边形内角和,根据多边形内角和公式计算即可.
【详解】解:一个十二边形的内角和是,
故答案为:.
8.(2024·江苏南京·中考真题)如图,在正边形中,,则的值是( )
A.16 B.18 C.20 D.36
【答案】B
【分析】本题主要考查了正多边形与圆,圆周角定理,中心角,
先标字母,将正n变形看成一个圆,再根据圆周角定理求出,可求出中心角的度数,进而得出正多边形的边数.
【详解】解:如图所示,标准正方形的中心O,为中心角,将正n变形看成一个圆,
∵,
∴,
∴,
∴.
故选:B.
9.(2024·宁夏·中考真题)如图,在正五边形的内部,以边为边作正方形,连接,则 .
【答案】81
【分析】本题考查正多边形的内角问题,正方形的性质,等腰三角形的性质等.先根据正多边形内角公式求出,进而求出,最后根据求解.
【详解】解:正五边形中,,,
正方形中,,,
,,
,
,
故答案为:81.
10.(2024·四川广元·中考真题)点F是正五边形边的中点,连接并延长与延长线交于点G,则的度数为 .
【答案】/18度
【分析】连接,,根据正多边形的性质可证,得到,进而得到是的垂直平分线,即,根据多边形的内角和公式可求出每个内角的度数,进而得到,再根据三角形的内角和定理即可解答.
【详解】解:连接,,
∵五边形是正五边形,
∴,
∴,
∴,
∵点F是的中点,
∴是的垂直平分线,
∴,
∵在正五边形中,,
∴,
∴.
故答案为:
【点睛】本题考查正多边形的性质,内角,全等三角形的判定及性质,垂直平分线的判定,三角形的内角和定理,正确作出辅助线,综合运用相关知识是解题的关键.
考点02 多边形的外角
1.(2025·四川遂宁·中考真题)已知一个凸多边形的内角和是外角和的4倍,则该多边形的边数为( )
A.10 B.11 C.12 D.13
【答案】A
【分析】本题考查了多边形的内角和与外角和,熟知多边形的内角和与外角和公式是解题的关键,
根据多边形内角和与外角和公式,建立方程求解边数即可.
【详解】解:设这个多边形的边数为n,根据题意可得:
解方程,得
因此,该多边形的边数为10,
故选:A.
2.(2025·四川凉山·中考真题)已知一个多边形的内角和是它外角和的4倍,则从这个多边形的一个顶点处可以引( )条对角线
A.6 B.7 C.8 D.9
【答案】B
【分析】本题主要考查了多边形外角和和内角和综合,多边形对角线条数问题,设这个多边形的边数为,边形的内角和为,外角和为,从边形的一个顶点出发可以引条对角线,据此根据一个多边形的内角和是它外角和的4倍建立方程求出的值即可得到答案.
【详解】解:设这个多边形的边数为,
由题意得,,
解得,
∴这个多边形是十边形,
∴从这个多边形一个顶点可以引条对角线,
故选:B.
3.(2024·四川攀枝花·中考真题)五边形的外角和为( )
A. B. C. D.
【答案】C
【分析】本题考查了多边形的外角和定理,多边形的外角和与边数无关,任意多边形的外角和都是.
【详解】解:正五边形的外角和是.
故选C.
4.(2024·西藏·中考真题)已知正多边形的一个外角为,则这个正多边形的内角和为( )
A. B. C. D.
【答案】B
【分析】本题考查了多边形的内角和外角,先求出正多边形的边数,再根据多边形的内角和公式计算即可得解,根据多边形的外角求出边数是解此题的关键.
【详解】解:∵正多边形的一个外角为,
∴正多边形的边数为,
∴这个正多边形的内角和为,
故选:B.
5.(2024·四川遂宁·中考真题)佩佩在“黄娥古镇”研学时学习扎染技术,得到了一个内角和为的正多边形图案,这个正多边形的每个外角为( )
A. B. C. D.
【答案】C
【分析】本题考查了正多边形的外角,设这个正多边形的边数为,先根据内角和求出正多边形的边数,再用外角和除以边数即可求解,掌握正多边形的性质是解题的关键.
【详解】解:设这个正多边形的边数为,
则,
∴,
∴这个正多边形的每个外角为,
故选:.
6.(2023·甘肃兰州·中考真题)如图1是我国古建筑墙上采用的八角形空窗,其轮廓是一个正八边形,窗外之境如同镶嵌于一个画框之中.如图2是八角形空窗的示意图,它的一个外角( )
A. B. C. D.
【答案】A
【分析】由正八边形的外角和为,结合正八边形的每一个外角都相等,再列式计算即可.
【详解】解:∵正八边形的外角和为,
∴,
故选A
【点睛】本题考查的是正多边形的外角问题,熟记多边形的外角和为是解本题的关键.
考点03 平行四边形的判定
1.(2024·四川乐山·中考真题)下列条件中,不能判定四边形是平行四边形的是( )
A. B.
C. D.
【答案】D
【分析】根据平行四边形的判定定理分别进行分析即可.
【详解】解:A、∵,
∴四边形是平行四边形,故此选项不合题意;
B、∵,
∴四边形是平行四边形,故此选项不合题意;
C、∵,
∴四边形是平行四边形,故此选项不合题意;
D、∵,不能得出四边形是平行四边形,故此选项符合题意;
故选:D.
【点睛】此题主要考查平行四边形的判定,解题的关键是熟知平行四边形的判定定理.
2.(2023·黑龙江大庆·中考真题)下列说法正确的是( )
A.一个函数是一次函数就一定是正比例函数
B.有一组对角相等的四边形一定是平行四边形
C.两条直角边对应相等的两个直角三角形一定全等
D.一组数据的方差一定大于标准差
【答案】C
【分析】根据正比例函数的定义、平行四边形的判定、直角三角形全等的判定、标准差的概念对各选项进行判断,选出正确答案即可.
【详解】解:A、一个函数是一次函数不一定是正比例函数,故本选项不符合题意;
B、有两组对角相等的四边形一定是平行四边形,故本选项不符合题意;
C、两条直角边对应相等的两个直角三角形一定全等,故本选项符合题意;
D、一组数据的方差不一定大于这组数据的标准差,故本选项不符合题意;
故选:C.
【点睛】本题考查了正比例函数的定义、平行四边形的判定、直角三角形全等的判定、标准差的概念等知识点,属于基础题,解答本题的关键是熟练掌握各知识点的概念.
3.(2024·山东济宁·中考真题)如图,四边形的对角线,相交于点O,,请补充一个条件 ,使四边形是平行四边形.
【答案】(答案不唯一)
【分析】本题考查平行四边形的判定,根据一组对边平行且相等的四边形是平行四边形即可求解.
【详解】解:添加条件:,
证明:∵,
∴,
在和中,
,
∴
∴,
∴四边形是平行四边形.
故答案为:(答案不唯一)
4.(2024·湖北武汉·中考真题)如图,在中,点,分别在边,上,.
(1)求证:;
(2)连接.请添加一个与线段相关的条件,使四边形是平行四边形.(不需要说明理由)
【答案】(1)见解析
(2)添加(答案不唯一)
【分析】本题考查了平行四边形的性质与判定,全等三角形的判定;
(1)根据平行四边形的性质得出,,结合已知条件可得,即可证明;
(2)添加,依据一组对边平行且相等的四边形是平行四边形,即可求解.
【详解】(1)证明:∵四边形是平行四边形,
∴,,,
∵,
∴即,
在与中,
,
∴;
(2)添加(答案不唯一)
如图所示,连接.
∵四边形是平行四边形,
∴,即,
当时,四边形是平行四边形.
5.(2025·青海·中考真题)如图,在中,点O,D分别是边,的中点,过点A作交的延长线于点E,连接,.
(1)求证:四边形是平行四边形;
(2)若,试判断四边形的形状,并证明.
【答案】(1)见解析
(2)当时,四边形是矩形,理由见解析
【分析】本题考查的是平行四边形的判定与性质,矩形的判定,全等三角形的判定与性质;
(1)先证明,可得,结合可得结论;
(2)由,点是边上的中点,可得即,结合由(1)得四边形是平行四边形,从而可得结论.
【详解】(1)证明:∵点为的中点
∴,
∵
∴,,
在和中
∴,
∴
∵
∴四边形是平行四边形;
(2)证明:当时,四边形是矩形,
理由如下:
∵ ,点是边上的中点,
∴ 即,
∵ 由(1)得四边形是平行四边形,
∴ 四边形是矩形.
6.(2025·湖南长沙·中考真题)如图,正方形中,点E,F分别在,上,且.
(1)求证:四边形是平行四边形;
(2)连接,若,,求的长.
【答案】(1)见解析
(2)
【分析】该题考查了正方形的性质,矩形的性质和判定,勾股定理等知识点,解题的关键是掌握以上知识点.
(1)根据四边形是正方形,得出且.结合,得出.结合,即可证明四边形是平行四边形.
(2)过点作于点.根据四边形是正方形,,得出.结合,证出四边形是矩形.得出.结合,得出.在中,由勾股定理求出.
【详解】(1)证明:∵四边形是正方形,
∴且.
又,
.
.
又.
∴四边形是平行四边形.
(2)解:过点作于点.
∵四边形是正方形,,
.
又,
∴四边形是矩形.
.
又,
.
在中,由勾股定理得.
7.(2024·内蒙古·中考真题)如图,,平分,.
(1)求证:四边形是平行四边形;
(2)过点B作于点G,若,请直接写出四边形的形状.
【答案】(1)证明见详解
(2)四边形为正方形
【分析】(1)由角平分线的定义可得出,由平行线的性质可得出,等量代换可得出,利用证明 ,由全等三角形的性质得出,结合已知条件可得出四边形是平行四边形.
(2)由已知条件可得出,由平行四边形的性质可得出,,根据平行线的性质可得出,,由全等三角形的性质可得出,等量代换可得出, 即可得出四边形为正方形.
【详解】(1)证明:∵平分,
∴,
∵,
∴,
∴,
在和中,
,
∴,
∴,
由∵,
∴四边形是平行四边形.
(2)四边形是正方形.
过点B作于点G,
∴,
∵四边形是平行四边形.
∴,,
∴,,
∴,,
由(1),
∴,
∵,
∴,
∴,
∴四边形是正方形.
【点睛】本题主要考查了全等三角形的判定以及性质,平行四边形的性质和判定,正方形的判定,以及平行线的性质,掌握全等三角形的判定以及性质,平行四边形的性质和判定,正方形的判定定理是解题的关键.
考点04 平行四边形的性质
1.(2025·贵州·中考真题)如图,小红想将一张矩形纸片沿剪下后得到一个,若,则的度数是( )
A. B. C. D.
【答案】B
【分析】本题考查平行四边形的性质,根据平行四边形的对边平行,结合平行线的性质,即可得出结果.
【详解】解:∵,
∴,
∴;
故选B.
2.(2025·贵州·中考真题)如图,在中,,以为圆心,长为半径作弧,交于点,则的长为( )
A.5 B.4 C.3 D.2
【答案】D
【分析】本题考查等边三角形的判定和性质,根据作图得到,进而推出为等边三角形,得到,再根据线段的和差关系进行求解即可.
【详解】解:根据作图可知:,
∵,
∴为等边三角形,
∴,
∴;
故选D.
3.(2025·河北·中考真题)平行四边形的一组邻边长分别为,,一条对角线长为.若为整数,则的值可以为 .(写出一个即可)
【答案】(答案不唯一)
【分析】本题考查了平行四边形的性质,三角形三边关系,不等式组的整数解,根据题意得出,进而写出一个整数解即可求解.
【详解】解:依题意,
∴,
∵为整数,
∴可以是,,,,
故答案为:(答案不唯一).
4.(2025·江苏连云港·中考真题)如图,在菱形中,,,为线段上的动点,四边形为平行四边形,则的最小值为 .
【答案】
【分析】利用四边形为平行四边形,得出,,由为线段上的动点,可知、运动方向和距离相等,利用相对运动,可以看作是定线段,菱形在方向上水平运动,过点作的平行线, 过点作关于线段的对称点,由对称性得,则,当且仅当、、依次共线时,取得最小值,此时,设与交于点,交于点,延长交延长线于点,分别证明四边形和四边形是矩形,求出,,再利用勾股定理求出即可.
【详解】解:∵四边形为平行四边形,
∴,,
∵为线段上的动点,
∴可以看作是定线段,菱形在方向上水平运动,
则如图,过点作的平行线,
过点作关于线段的对称点,
由对称性得,
∴,当且仅当、、依次共线时,取得最小值,
此时如图,设与交于点,交于点,延长交延长线于点,
∵菱形中,,,
∴,,,
由题可得,
∴由对称性可得,
∴,
∴,
∴四边形是矩形,
∴,
∵四边形为平行四边形,
∴,,
∴,
∴,
∴四边形是矩形,
∴,,
∴,,
∴,
即的最小值为,
故答案为:.
【点睛】本题考查菱形的性质,平行四边形的性质,矩形的判定与性质,勾股定理,轴对称的性质,两点之间线段最短,根据题意结合相对运动得出运动轨迹,再利用将军饮马解决问题是解题的关键.
5.(2025·山西·中考真题)如图,在平行四边形中,点是对角线的中点,点是边的中点,连接.下列两条线段的数量关系中一定成立的是( )
A. B.
C. D.
【答案】C
【分析】本题考查了三角形中位线的性质,平行四边形的性质,由三角形中位线的性质得,进而由平行四边形的性质得,即可求解,掌握以上知识点是解题的关键.
【详解】解:∵点是对角线的中点,点是边的中点,
∴是的中位线,
∴,
∵四边形是平行四边形,
∴,
∴,
故选:.
6.(2025·新疆·中考真题)如图,在中,的平分线交于点E,若,则 .
【答案】2
【分析】本题考查平行四边形的性质,等角对等边,根据平行四边形的性质,得到,得到,角平分线的定义,得到,进而得到,进而得到即可.
【详解】解:∵,,
∴,
∴,
∵的平分线交于点E,
∴,
∴,
∴;
故答案为:2.
7.(2025·四川宜宾·中考真题)如图,点是平行四边形边的中点,连接并延长交的延长线于点.求证:,并求的长.
【答案】见解析,
【分析】本题主要考查了全等三角形的性质与判定,平行四边形的性质,由平行四边形的性质得到,则由平行线的性质可得,再证明,即可利用证明,则可得到,据此可得答案.
【详解】证明:∵四边形是平行四边形,
∴,
∴,
∵点是平行四边形边的中点,
∴,
∴,
∴,
∴.
8.(2024·宁夏·中考真题)如图,在中,点在边上,,连接并延长交的延长线于点,连接并延长交的延长线于点F.求证:.小丽的思考过程如下:
参考小丽的思考过程,完成推理.
【答案】见解析
【分析】本题考查的是平行四边形的性质,相似三角形的判定与性质,先证明,可得,同理可得:,再进一步证明即可.
【详解】证明:四边形是平行四边形
,,
,
同理可得,,
∴
又,
即,
又,
.
9.(2024·吉林·中考真题)如图,在中,点O是的中点,连接并延长,交的延长线于点E,求证:.
【答案】证明见解析
【分析】本题主要考查了全等三角形的性质与判定,平行四边形的性质,先根据平行四边形对边平行推出,再由线段中点的定义得到,据此可证明,进而可证明.
【详解】证明:∵四边形是平行四边形,
∴,
∴,
∵点O是的中点,
∴,
∴,
∴.
10.(2024·四川泸州·中考真题)如图,在中,E,F是对角线上的点,且.求证:.
【答案】证明见解析
【分析】本题主要考查了平行四边形的性质,全等三角形的性质与判定,先由平行四边形的性质得到,则,再证明,即可证明.
【详解】证明:∵四边形是平行四边形,
∴,
∴,
又∵,
∴,
∴.
11.(2017·山东淄博·中考真题)已知:如图,E,F为□ABCD对角线AC上的两点,且AE=CF,连接BE,DF,求证:BE=DF.
【答案】证明见解析.
【分析】利用SAS证明△AEB≌△CFD,再根据全等三角形的对应边相等即可得.
【详解】∵四边形ABCD是平行四边形,
∴AB//DC,AB=DC,
∴∠BAE=∠DCF,
在△AEB和△CFD中,
,
∴△AEB≌△CFD(SAS),
∴BE=DF.
【点睛】本题考查了平行四边形的性质以及全等三角形的判定与性质,熟练掌握相关的性质是解题的关键.
考点05 平行四边形的判定与性质综合
1.(2025·安徽·中考真题)在如图所示的中,,分别为边,的中点,点,分别在边,上移动(不与端点重合),且满足,则下列为定值的是( )
A.四边形的周长 B.的大小
C.四边形的面积 D.线段的长
【答案】C
【分析】本题主要考查了平行四边形的性质与判定,熟练掌握平行四边形对边平行且相等的性质,通过全等三角形转化面积关系,是解题的关键.利用平行四边形的性质,通过证明三角形全等分析四边形各边、角、面积等是否为定值,重点关注面积能否通过转化为平行四边形面积的一部分来判断 .
【详解】解:连接,
在中,,分别为,中点,
且,,,
且,
四边形是平行四边形,
,
同理,且.
∴四边形是平行四边形,
则与的面积分别为与面积的一半,
四边形的面积,
四边形的面积始终为面积的一半,是定值.
选项A:、等边长随、移动变化,周长不定,错误.
选项B:随位置改变,错误.
选项D:长度随、移动改变,错误.
综上,四边形的面积是定值,
故选:.
2.(2025·江苏苏州·中考真题)如图,C是线段的中点,.
(1)求证:;
(2)连接,若,求的长.
【答案】(1)详见解析
(2)8
【分析】本题考查全等三角形的判定和性质,平行四边形的判定和性质,熟练掌握相关判定定理和性质,是解题的关键:
(1)中点得到,平行线的性质,得到,利用证明即可;
(2)根据,得到,进而得到四边形为平行四边形,进而得到,即可得出结果.
【详解】(1)证明:是线段的中点,
.
,
.
在和中,
.
(2),是线段的中点,
.
,
.
又,
∴四边形是平行四边形,
.
3.(2025·新疆·中考真题)如图,在等腰直角三角形中,,,,点M是的中点,点D和点N分别是线段和上的动点.
(1)当点D和点N分别是和的中点时,求a的值;
(2)当时,以点C,D,N为顶点的三角形与相似,求的值;
(3)当时,求的最小值.
【答案】(1)
(2)
(3)
【分析】(1)勾股定理求出的长,中点求出的长,的长,根据,求出的值即可;
(2)设,得到,,进而得到,分和两种情况进行讨论,列出比例式进行求解即可;
(3)作于点,连接,易得为等腰直角三角形,得到,,进而得到四边形为平行四边形,得到,将绕点旋转90度得到,连接,证明,得到,进而得到,得到,勾股定理求出的长即可.
【详解】(1)解:∵等腰直角三角形中,,,,,
∴,
∵点D和点N分别是和的中点,
∴,,
∵,
∴;
(2)∵,,
∴,
设,则:,,
∵等腰直角三角形中,,,
∴,
∴,
∵是的中点,
∴,
∴,
当点C,D,N为顶点的三角形与相似时,分两种情况:
①当时,则:,
∴,
此方程无解,不符合题意;
②当时,则:,
∴,
解得:(不符合题意,舍去)或;
∴;
综上:;
(3)∵,,
∴,
作于点,连接,
则:,
∴为等腰直角三角形,
∴,,
∴,,
又,
∴四边形为平行四边形,
∴,
将绕点旋转90度得到,连接,则:,
∵,
∴,
又∵,
∴,
∴,
∴,
∴,
∴当点在线段上时,的值最小为的长,
在中,,
∴,
∴的最小值为.
【点睛】本题考查等腰直角三角形的判定和性质,相似三角形的判定和性质,平行四边形的判定和性质,勾股定理,求线段和的最小值,熟练掌握相关知识点,合理添加辅助线,构造特殊图形,是解题的关键.
4.(2024·辽宁·中考真题)如图,的对角线,相交于点,,,若,,则四边形的周长为( )
A.4 B.6 C.8 D.16
【答案】C
【分析】本题考查了平行四边形的判定与性质,熟练掌握知识点是解题的关键.
由四边形是平行四边形得到,,再证明四边形是平行四边形,则,即可求解周长.
【详解】解:∵四边形是平行四边形,
∴,,
∵,,
∴四边形是平行四边形,
∴,
∴周长为:,
故选:C.
5.(2024·浙江·中考真题)尺规作图问题:
如图1,点E是边上一点(不包含A,D),连接.用尺规作,F是边上一点.
小明:如图2.以C为圆心,长为半径作弧,交于点F,连接,则.
小丽:以点A为圆心,长为半径作弧,交于点F,连接,则.
小明:小丽,你的作法有问题,小丽:哦……我明白了!
(1)证明;
(2)指出小丽作法中存在的问题.
【答案】(1)见详解
(2)以点A为圆心,长为半径作弧,与可能有两个交点,故存在问题
【分析】本题主要考查了平行四边形的判定与性质,
(1)根据小明的作图方法证明即可;
(2)以点A为圆心,长为半径作弧,与可能有两个交点,据此作答即可.
【详解】(1)∵,
∴,
又根据作图可知:,
∴四边形是平行四边形,
∴;
(2)原因:以点A为圆心,长为半径作弧,与可能有两个交点,
故无法确定F的位置,
故小丽的作法存在问题.
6.(2025·河南·中考真题)如图,四边形是平行四边形,以为直径的圆交于点.
(1)请用无刻度的直尺和圆规作出圆心(保留作图痕迹,不写作法).
(2)若点是的中点,连接.求证:四边形是平行四边形.
【答案】(1)作图见详解
(2)证明过程见详解
【分析】本题主要考查圆的基本性质,尺规作垂线,平行四边形的判定和性质,掌握以上知识是关键.
(1)运用尺规作直径的垂直平分线即可;
(2)根据平行四边形的性质结合题意得到,,即,由一组对边平行且相等的四边形是平行四边形即可求证.
【详解】(1)解:如图所示,
∵是直径,
∴运用尺规作直径的垂直平分线角于点,
∴点即为所求点的位置;
(2)证明:如图所示,
∵四边形是平行四边形,
∴,
∵点分别是的中点,
∴,,即,
∴四边形是平行四边形.
7.(2024·四川雅安·中考真题)如图,点O是对角线的交点,过点O的直线分别交,于点E,F.
(1)求证:;
(2)当时,,分别连接,,求此时四边形的周长.
【答案】(1)见解析
(2)
【分析】本题主要考查了平行四边形和菱形.熟练掌握平行四边形的判定和性质,菱形的判定,全等三角形的判定和性质,是解决问题的关键.
(1)由题目中的中,O为对角线的中点,可以得出,,结合,可以证得两个三角形全等,进而得出结论;
(2)由(1)中得到的结论可以得到,结合得出四边形是平行四边形,进而利用证明出四边形为菱形,根据即可求出菱形的周长.
【详解】(1)∵四边形是平行四边形,
∴,
∴,
∵点O是对角线的交点,
∴,
在△和中,,
∴.
(2)由(1)知,,
∴,
∵,
∴四边形是平行四边形,
∵,
∴是菱形,
∴,
∴,
∴四边形的周长为.
8.(2024·黑龙江大庆·中考真题)如图,平行四边形中,、分别是,的平分线,且E、F分别在边,上.
(1)求证:四边形是平行四边形;
(2)若,,求的面积.
【答案】(1)见解析
(2).
【分析】(1)由平行四边形的性质得到,,结合角平分线的条件得到,由得到,,根据平行线的判定得到,根据平行四边形的判定即可得到是平行四边形;
(2)求得是等边三角形,得到,,证明,求得,作于点,在中,求得,据此求解即可.
【详解】(1)证明:∵四边形是平行四边形,
∴,,
∵分别是、的平分线,
∴,,
∴,
∵,
∴,
∴,
∴,
∴四边形是平行四边形;
(2)解:由(1)得,,
∴,
∵,
∴是等边三角形,
∴,
∵,
∴,,
∵,
∴,
∴,
∴,
作于点,
在中,,,
∴,
∴.
【点睛】本题考查了解直角三角形,相似三角形的判定和性质,勾股定理,平行四边形的判定和性质,等边三角形的判定和性质.正确引出辅助线解决问题是解题的关键.
9.(2024·江苏镇江·中考真题)图1、2是一个折叠梯的实物图.图3是折叠梯展开、折叠过程中的一个主视图.图4是折叠梯充分展开后的主视图,此时点E落在上,已知,,点D、F、G、J在上,、、、均与所在直线平行,,.点N在上,、的长度固定不变.图5是折叠梯完全折叠时的主视图,此时、重合,点、、、、、在上的位置如图所示.
【分析问题】
(1)如图5,用图中的线段填空:_________;
(2)如图4,_________,由,且的长度不变,可得与之间的数量关系为_________;
【解决问题】
(3)求的长.
【答案】(1);(2),;(3)
【分析】(1);
(2)可推出四边形是平行四边形,从而,从而,进而得出,根据,得出,进一步得出结果;
(3)作于,解直角三角形求得和,进而表示出,在直角三角形中根据勾股定理列出方程,进而得出结果.
【详解】解:(1),
,
故答案为:;
(2)、、、均与所在直线平行,
,
,
四边形是平行四边形,
,
,
,
,,
,
,
,
,
故答案为:,;
(3)如图,
作于,
,
,,
,
设,则,,
,
,
.
【点睛】本题考查了解直角三角形的应用,平行四边形的判定和性质,勾股定理,线段之间的数量关系,解决问题的关键是理解题意,熟练应用有关基础知识.