2026中考数学分式及分式方程三年真题汇总
考点01 分式值为0或有意义
1.(2025·黑龙江齐齐哈尔·中考真题)若代数式有意义,则实数的取值范围是 .
2.(2025·四川德阳·中考真题)函数y=的自变量x的取值范围是 .
3.(2024·黑龙江齐齐哈尔·中考真题)在函数中,自变量的取值范围是 .
4.(2024·山东济南·中考真题)若分式的值为0,则的值是 .
5.(2025·贵州·中考真题)若分式的值为0,则实数的值为( )
A.2 B.0 C. D.-3
6.(2023·四川凉山·中考真题)分式的值为0,则的值是( )
A.0 B. C.1 D.0或1
考点02 分式的化简计算
1.(2025·湖南·中考真题)约分: ;
2.(2023·广东广州·中考真题)已知,代数式:,,.
(1)因式分解A;
(2)在A,B,C中任选两个代数式,分别作为分子、分母,组成一个分式,并化简该分式.
3.(2025·黑龙江绥化·中考真题)计算: .
4.(2025·陕西·中考真题)化简:.
5.(2025·江西·中考真题)化简:
6.(2024·甘肃临夏·中考真题)化简:.
7.(2023·陕西·中考真题)化简:.
8.(2023·湖南常德·中考真题)先化简,再求值:,其中.
考点03 分式化简求值
1.(2025·北京·中考真题)已知,求代数式的值.
2.(2025·青海·中考真题)先化简,再从,,中选一个合适的数代入求值.
3.(2025·黑龙江·中考真题)先化简,再求值:,其中.
4.(2025·吉林·中考真题)先化简,再求值:,其中.
5.(2025·重庆·中考真题)先化简,再求值:,其中.
6.(2024·广东深圳·中考真题)先化简,再代入求值:,其中.
7.(2024·西藏·中考真题)先化简,再求值:,请为m选择一个合适的数代入求值.
8.(2024·山东淄博·中考真题)化简分式:,并求值(请从小宇和小丽的对话中确定,的值)
9.(2023·湖北鄂州·中考真题)若实数、分别满足,,且,则 .
10.(2023·青海西宁·中考真题)先化简,再求值:,其中,是方程的两个根.
考点04 解分式方程
1.(2025·北京·中考真题)方程的解为 .
2.(2025·湖南长沙·中考真题)分式方程的解为 .
3.(2024·青海西宁·中考真题)解方程:.
4.(2024·山东济宁·中考真题)解分式方程时,去分母变形正确的是( )
A. B.
C. D.
5.(2017·四川绵阳·中考真题)关于x的分式方程的解是 .
6.(2025·上海·中考真题)解方程:.
7.(2025·黑龙江·中考真题)已知关于的分式方程解为负数,则的值为( )
A. B. C.且 D.且
8.(2025·黑龙江齐齐哈尔·中考真题)如果关于的分式方程无解,那么实数的值是( )
A. B. C.或 D.且
9.(2025·四川眉山·中考真题)若关于x的不等式组至少有两个正整数解,且关于x的分式方程的解为正整数,则所有满足条件的整数a的值之和为( )
A.8 B.14 C.18 D.38
10.(2024·重庆·中考真题)若关于的不等式组至少有2个整数解,且关于的分式方程的解为非负整数,则所有满足条件的整数的值之和为 .
11.(2023·湖南永州·中考真题)若关于x的分式方程(m为常数)有增根,则增根是 .
考点05 分式方程的实际应用
1.(2025·吉林长春·中考真题)小吉和小林从同一地点出发跑800米,小吉的平均速度是小林的1.25倍,结果小吉比小林少用40秒到达终点.求小林跑步的平均速度.
2.(2024·黑龙江绥化·中考真题)一艘货轮在静水中的航速为,它以该航速沿江顺流航行所用时间,与以该航速沿江逆流航行所用时间相等,则江水的流速为( )
A. B. C. D.
3.(2023·江苏徐州·中考真题)随着2022年底城东快速路的全线通车,徐州主城区与东区之间的交通得以有效改善,如图某人乘车从徐州东站至戏马台景区,可沿甲路线或乙路线前往.已知甲、乙两条路线的长度均为,甲路线的平均速度为乙路线的倍,甲路线的行驶时间比乙路线少,求甲路线的行驶时间.
4.(2025·山西·中考真题)我国自主研发的型快速换轨车,采用先进的自动化技术、能精准高效地完成更换铁路钢轨的任务.一辆该型号快速换轨车每小时更换钢轨的公里数是一个工作队人工更换钢轨的2倍,它更换116公里钢轨比一个工作队人工更换80公里钢轨所用时间少22小时.求一辆该型号快速换轨车每小时更换钢轨多少公里.
5.(2025·黑龙江绥化·中考真题)用A,两种货车运输化工原料,A货车比货车每小时多运输15吨,A货车运输450吨所用时间与货车运输300吨所用时间相等.若设货车每小时运输化工原料吨,则可列方程为( )
A. B. C. D.
6.(2024·四川达州·中考真题)甲乙两人各自加工120个零件,甲由于个人原因没有和乙同时进行,乙先加工30分钟后,甲开始加工.甲为了追赶上乙的进度,加工的速度是乙的倍,最后两人同时完成.求乙每小时加工零件多少个?设乙每小时加工个零件.可列方程为( )
A. B.
C. D.
7.(2023·辽宁丹东·中考真题)“畅通交通,扮靓城市”,某市在道路提升改造中,将一座长度为36米的桥梁进行重新改造.为了尽快通车,某施工队在实际施工时,每天工作效率比原计划提高了,结果提前2天成功地完成了大桥的改造任务,那么该施工队原计划每天改造多少米
8.(2025·江苏扬州·中考真题)某文创商店推出甲、乙两款具有纪念意义和实用价值的书签,已知甲款书签价格是乙款书签价格的倍,且用100元购买甲款书签的数量比用128元购买乙款书签的数量少3个,求这两款书签的单价.
9.(2024·山东东营·中考真题)水是人类赖以生存的宝贵资源,为节约用水,创建文明城市,某市经论证从今年1月1日起调整居民用水价格,每立方米水费上涨原价的.小丽家去年5月份的水费是28元,而今年5月份的水费则是元.已知小丽家今年5月份的用水量比去年5月份的用水量少.设该市去年居民用水价格为,则可列分式方程为 .
10.(2023·湖南张家界·中考真题)《四元玉鉴》是我国古代的一部数学著作,其中记载了一个“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”大意是:现请人代买一批椽,这批椽的总售价为6210文钱.如果每株椽的运费是3文钱,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱.试问:用6210文能买多少株椽?设用6210文能买x株椽,则符合题意的方程是( )
A. B.
C. D.
11.(2024·内蒙古呼伦贝尔·中考真题)A,B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运30千克,A型机器人搬运900千克所用时间与B型机器人搬运600千克所用时间相等.A,B两种机器人每小时分别搬运多少千克化工原料?( )
A.60,30 B.90,120 C.60,90 D.90,60
12.(2023·辽宁锦州·中考真题)2023年5月15日,辽宁男篮取得第三次CBA总冠军,辽篮运动员的拼搏精神感染了众多球迷.某校篮球社团人数迅增,急需购进A,B两种品牌篮球,已知A品牌篮球单价比B品牌篮球单价的2倍少48元,采购相同数量的A,B两种品牌篮球,分别需要花费9600元和7200元.求A,B两种品牌篮球的单价分别是多少元?
考点06 分式方程与函数、方程的综合应用
1.(2025·重庆·中考真题)列方程解下列问题:
某厂生产甲、乙两种文创产品.每天生产甲种文创产品的数量比每天生产乙种文创产品的数量多50个,3天时间生产的甲种文创产品的数量比4天时间生产的乙种文创产品的数量多100个.
(1)求该厂每天生产的甲、乙文创产品数量分别是多少个?
(2)由于市场需求量增加,该厂对生产流程进行了改进.改进后,每天生产乙种文创产品的数量较改进前每天生产的数量增加同样的数量,且每天生产甲种文创产品的数量较改进前每天增加的数量是乙种文创产品每天增加数量的2倍.若生产甲、乙两种文创产品各1400个,乙比甲多用10天,求每天生产的乙种文创产品增加的数量.
2.(2025·内蒙古·中考真题)智能机器人的广泛应用是智慧农业的发展趋势之一.某品牌苹果采摘机器人的机械手能自动对成熟的苹果进行采摘,一个机器人可以搭载多个机械手同时工作.在正常工作状态下,该机器人的每一个机械手平均秒采摘一个成熟的苹果,它的一个机械手用800秒采摘苹果的个数比用600秒采摘苹果的个数多25个.
(1)求的值;
(2)现需要一定数量的苹果发往外地,采摘工作由多个机器人共同完成.每个机器人搭载4个相同的机械手,那么至少需要多少个这样的机器人同时工作1小时,才能使采摘的苹果个数不少于10000个
3.(2024·四川雅安·中考真题)某市为治理污水,保护环境,需铺设一段全长为3000米的污水排放管道,为了减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加,结果提前15天完成铺设任务.
(1)求原计划与实际每天铺设管道各多少米?
(2)负责该工程的施工单位,按原计划对工人的工资进行了初步的预算,工人每天人均工资为300元,所有工人的工资总金额不超过18万元,该公司原计划最多应安排多少名工人施工?
4.(2023·江苏南通·中考真题)为推进全民健身设施建设,某体育中心准备改扩建一块运动场地.现有甲、乙两个工程队参与施工,具体信息如下:
信息—
工程队 每天施工面积(单位:) 每天施工费用(单位:元)
甲 3600
乙 x 2200
信息二
甲工程队施工所需天数与乙工程队施工所需天数相等.
(1)求x的值;
(2)该工程计划先由甲工程队单独施工若干天,再由乙工程队单独继续施工,两队共施工22天,且完成的施工面积不少于.该段时间内体育中心至少需要支付多少施工费用
5.(2025·四川成都·中考真题)2025年8月7日至17日,第12届世界运动会将在成都举行,与运动会吉祥物“蜀宝”“锦仔”相关的文创产品深受大家喜爱.某文旅中心在售A,B两种吉祥物挂件,已知每个B种挂件的价格是每个A种挂件价格的,用300元购买B种挂件的数量比用200元购买A种挂件的数量多7个.
(1)求每个A种挂件的价格;
(2)某游客计划用不超过600元购买A,B两种挂件,且购买B种挂件的数量比A种挂件的数量多5个,求该游客最多购买多少个A种挂件.
6.(2025·山东东营·中考真题)《哪吒2魔童闹海》票房大卖,周边玩偶热销.某经销店购进A款哪吒玩偶的金额是2400元,购进B款哪吒玩偶的金额是1600元,购进A款哪吒玩偶的数量比B款哪吒玩偶少50个,A款哪吒玩偶单价是B款哪吒玩偶的2倍.
(1)A、B两款玩偶的单价分别是多少元?
(2)为满足消费者需求,在A、B两款玩偶单价不变的条件下,该超市准备再次购进A、B两款玩偶共100个,B款哪吒玩偶的数量不多于A款哪吒玩偶数量的2倍,且总金额不超过1100元,问有多少种进货方案?
7.(2024·山东日照·中考真题)【问题背景】2024年4月23日是第18个“世界读书日”,为给师生提供更加良好的阅读环境,学校决定扩大图书馆面积,增加藏书数量,现需购进20个书架用于摆放书籍.
【素材呈现】
素材一:有两种书架可供选择,A种书架的单价比B种书架单价高;
素材二:用18000元购买A种书架的数量比用9000元购买B种书架的数量多6个;
素材三:A种书架数量不少于B种书架数量的.
【问题解决】
(1)问题一:求出两种书架的单价;
(2)问题二:设购买a个A种书架,购买总费用为w元,求w与a的函数关系式,并求出费用最少时的购买方案;
(3)问题三:实际购买时,商家调整了书架价格,A种书架每个降价m元,B种书架每个涨价元,按问题二的购买方案需花费21120元,求m的值.
答案解析
考点01 分式值为0或有意义
1.(2025·黑龙江齐齐哈尔·中考真题)若代数式有意义,则实数的取值范围是 .
【答案】且
【分析】本题主要考查代数式有意义的条件,由二次根式及分式、零指数幂有意义的条件可得:且,求解即可得到答案.
【详解】解:∵代数式有意义,
∴且,
∴且.
故答案为:且.
2.(2025·四川德阳·中考真题)函数y=的自变量x的取值范围是 .
【答案】x≠3的一切实数
【分析】根据分式的意义的条件:分母不等于0,可知:x-3≠0,解得x的范围.
【详解】解:根据题意,则
x﹣3≠0
解得:x≠3
∴自变量x的取值范围是x≠3的一切实数;
故答案为:x≠3的一切实数.
【点睛】主要考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.
3.(2024·黑龙江齐齐哈尔·中考真题)在函数中,自变量的取值范围是 .
【答案】且
【分析】本题考查了求自变量的取值范围,根据二次根式有意义的条件和分式有意义的条件列出不等式组解答即可求解,掌握二次根式有意义的条件和分式有意义的条件是解题的关键.
【详解】解:由题意可得,,
解得且,
故答案为:且.
4.(2024·山东济南·中考真题)若分式的值为0,则的值是 .
【答案】1
【分析】直接利用分式值为零的条件,则分子为零进而得出答案.
【详解】∵分式的值为0,
∴x 1=0,2x≠0
解得:x=1.
故答案为:1.
【点睛】此题主要考查了分式值为零的条件,正确把握分式的相关性质是解题关键.
5.(2025·贵州·中考真题)若分式的值为0,则实数的值为( )
A.2 B.0 C. D.-3
【答案】A
【分析】本题考查分式的值为0的条件,根据分式的值为0的条件是分子为0且分母不为0,进行求解即可.
【详解】解:由题意,得:且,
解得:;
故选A.
6.(2023·四川凉山·中考真题)分式的值为0,则的值是( )
A.0 B. C.1 D.0或1
【答案】A
【分析】根据分式值为0的条件进行求解即可.
【详解】解:∵分式的值为0,
∴,
解得,
故选A.
【点睛】本题主要考查了分式值为0的条件,熟知分式值为0的条件是分子为0,分母不为0是解题的关键.
考点02 分式的化简计算
1.(2025·湖南·中考真题)约分: ;
【答案】
【分析】此题考查约分的定义,熟记定义、正确确定分子与分母的公因式是解题的关键.
直接约去分子与分母的公因式即可.
【详解】解:,
故答案为:.
2.(2023·广东广州·中考真题)已知,代数式:,,.
(1)因式分解A;
(2)在A,B,C中任选两个代数式,分别作为分子、分母,组成一个分式,并化简该分式.
【答案】(1)
(2)见解析
【分析】(1)先提取公因式,再根据平方差公式进行因式分解即可;
(2)将选取的代数式组成分式,分子分母进行因式分解,再约分即可.
【详解】(1)解:;
(2)解:①当选择A、B时:
,
;
②当选择A、C时:
,
;
③当选择B、C时:
,
.
【点睛】本题主要考查了因式分解,分式的化简,解题的关键是掌握因式分解的方法和步骤,以及分式化简的方法.
3.(2025·黑龙江绥化·中考真题)计算: .
【答案】
【分析】本题考查分式混合运算,熟练掌握运算法则是解决问题的关键.先将分式的分子分母因式分解,再由分式混合运算法则求解即可得到答案.
【详解】解:
故答案为:.
4.(2025·陕西·中考真题)化简:.
【答案】
【分析】本题考查了分式的混合运算,熟练掌握运算法则是解题的关键.
先进行括号内分式的减法运算,再将除法化为乘法计算.
【详解】解:
.
5.(2025·江西·中考真题)化简:
【答案】
【分析】本题考查了分式的加减乘除混合运算.原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果即可.
【详解】解:
.
6.(2024·甘肃临夏·中考真题)化简:.
【答案】
【分析】本题考查分式的混合运算,掌握分式的混合运算法则是解题关键.根据分式的混合运算法则计算即可.
【详解】解:,
.
7.(2023·陕西·中考真题)化简:.
【答案】
【分析】先算括号里的运算,把除法转为乘法,最后约分即可.
【详解】解:
.
【点睛】本题主要考查分式的混合运算,解答的关键是对相应的运算法则的掌握.
8.(2023·湖南常德·中考真题)先化简,再求值:,其中.
【答案】,
【分析】先计算括号内的减法运算,再计算除法,得到化简结果,再把字母的值代入计算即可.
【详解】解:原式
,
当时,原式
【点睛】此题考查了分式的化简求值,熟练掌握分式运算法则和混合运算顺序是解题的关键.
考点03 分式化简求值
1.(2025·北京·中考真题)已知,求代数式的值.
【答案】
【分析】本题主要考查了分式的化简求值,熟练掌握运算法则是解题的关键.
先对分式的分子分母进行因式分解,化至最简分式,再将变形,进行整体代入求值.
【详解】解:原式
,
∵,
∴,
∴原式.
2.(2025·青海·中考真题)先化简,再从,,中选一个合适的数代入求值.
【答案】,时,值为,时,值为
【分析】本题考查了分式的化简求值,分式有意义的条件,熟练掌握分式的混合运算法则是解此题的关键.
括号内先通分,再将除法转化为乘法,约分即可化简,再代入合适的值进行计算即可.
【详解】解:
由于,
∴
把代入
原式
;
把代入
原式
.
3.(2025·黑龙江·中考真题)先化简,再求值:,其中.
【答案】,
【分析】本题主要考查了分式的化简求值,涉及特殊角的三角函数值,分母有理化,熟练掌握运算法则是解题的关键.
先计算分式的乘法,再计算加法,然后代入特殊角的三角函数值求出,再代入求值即可.
【详解】解:
∵
∴原式.
4.(2025·吉林·中考真题)先化简,再求值:,其中.
【答案】,
【分析】本题主要考查了分式的化简求值,先把第二个分式的分子分解因式,再计算分式乘法化简,最后代值计算即可得到答案.
【详解】解;
,
当时,原式.
5.(2025·重庆·中考真题)先化简,再求值:,其中.
【答案】,原式=
【分析】本题考查分式的化简求值,零指数幂,根据多项式乘以多项式,单项式乘以多项式,分式的混合运算法则,进行化简,根据绝对值的意义,零指数幂求出的值,再把的值代入化简后的式子中进行计算即可.
【详解】解:原式
;
∵,
∴原式.
6.(2024·广东深圳·中考真题)先化简,再代入求值:,其中.
【答案】,
【分析】本题考查了分式的化简求值,分母的有理化,括号内先通分,再将除法转化为乘法,约分即可化简,代入计算即可得解.
【详解】解:
,
当时,原式.
7.(2024·西藏·中考真题)先化简,再求值:,请为m选择一个合适的数代入求值.
【答案】,取,原式.
【分析】本题考查了分式的化简求值.原式括号中两项通分并利用同分母分式的加法法则计算,同时分子分解因式,约分得到最简结果,把合适的m值代入计算即可求出值.
【详解】解:
,
∵,,
∴,,
∴取,原式.
8.(2024·山东淄博·中考真题)化简分式:,并求值(请从小宇和小丽的对话中确定,的值)
【答案】;
【分析】本题考查分式的化简求值,无理数估算;根据对话可求得,的值,将原分式化简后代入数值计算即可.
【详解】解:依题意,,且为整数,又,则,
;
当,时,原式.
9.(2023·湖北鄂州·中考真题)若实数、分别满足,,且,则 .
【答案】
【分析】先根据题意可以把,看作是一元二次方程的两个实数根,利用根与系数的关系得到,,再 根据进行求解即可.
【详解】设,依题,满足方程,是这个方程的两根,
∴,,
∵;
故答案为:.
【点睛】本题考查了一元二次方程根与系数的关系及分式的求值,熟练掌握一元二次方程根与系数的关系是解题的关键.
10.(2023·青海西宁·中考真题)先化简,再求值:,其中,是方程的两个根.
【答案】,
【分析】先根据分式的混合运算进行化简,然后根据一元二次方程根与系数的关系式得出 ,代入化简结果,即可求解.
【详解】解:原式
∵,是方程的两个根
∴
∴原式.
【点睛】本题考查了一元二次方程根与系数的关系,分式的化简求值,熟练掌握分式的混合运算,一元二次方程根与系数的关系是解题的关键.
考点04 解分式方程
1.(2025·北京·中考真题)方程的解为 .
【答案】
【分析】本题主要考查了解分式方程,先把原方程去分母化为整式方程,再解方程并检验即可得到答案.
【详解】解:
去分母得:,
移项,合并同类项得:,
系数化为1得:,
检验,当时,,
∴是原方程的解,
故答案为:.
2.(2025·湖南长沙·中考真题)分式方程的解为 .
【答案】
【分析】本题考查了解分式方程,首先去分母把分式方程化为整式方程,解整式方程求出未知数的值,再把求出的值代入最简公分母检验是否增根即可.
【详解】解:,
去分母得:,
去括号得:,
移项得:,
合并同类项得:,
系数化为得:,
检验:当时,
可得:,
是原分式方程的解.
故答案为:.
3.(2024·青海西宁·中考真题)解方程:.
【答案】
【分析】本题考查了解分式方程,熟练掌握解分式方程的一般步骤,是解题的关键.要注意解分式方程时要检验.
先去分母,然后求解,再检验即可.
【详解】解:去分母得:,
解得:,
经检验是分式方程的解.
∴原方程的解为:.
4.(2024·山东济宁·中考真题)解分式方程时,去分母变形正确的是( )
A. B.
C. D.
【答案】A
【分析】本题考查通过去分母将分式方程转化为整式方程,方程两边同乘各分母的最简公分母,即可去分母.
【详解】解:方程两边同乘,得,
整理可得:
故选:A.
5.(2017·四川绵阳·中考真题)关于x的分式方程的解是 .
【答案】
【分析】把分式方程转化为整式方程即可解决问题.
【详解】解:
两边乘得到,,
解得,
检验:把代入得:,
∴是原方程的解.
故答案为:.
【点睛】此题考查解分式方程,解题的关键是熟练掌握解分式方程的步骤,注意解分式方程必须检验.
6.(2025·上海·中考真题)解方程:.
【答案】
【分析】本题主要考查了解分式方程,先把原方程去分母化为整式方程,再解方程并检验即可得到答案.
【详解】解:
方差两边同时乘以得:,
去括号得:,
移项,合并同类项得:,
∴,
∴或,
解得或,
检验,当时,,此时是原方程的增根,
当时,,此时是原方程的解,
∴原方程的解为.
7.(2025·黑龙江·中考真题)已知关于的分式方程解为负数,则的值为( )
A. B. C.且 D.且
【答案】A
【分析】本题考查了分式方程,首先将分式方程转化为整式方程,求出解关于的表达式,再结合解为负数及分母不为零的条件确定的范围.
【详解】解:,
得,
得,
解得:,
根据题意,解,
即,
解得:,
分母,
即,
即,
解得:,
,
故选:A.
8.(2025·黑龙江齐齐哈尔·中考真题)如果关于的分式方程无解,那么实数的值是( )
A. B. C.或 D.且
【答案】C
【分析】本题考查分式方程无解,分式方程无解的情况有两种:解为增根或变形后整式方程无解.需将原方程化简,分别讨论这两种情况对应的m值即可.
【详解】解:方程去分母,得:,
整理,得:;
∵原方程无解,
∴①整式方程无解,则:,解得:;
②分式方程有增根,则:,解得:;
把代入,得:,解得:;
综上:或
故选C.
9.(2025·四川眉山·中考真题)若关于x的不等式组至少有两个正整数解,且关于x的分式方程的解为正整数,则所有满足条件的整数a的值之和为( )
A.8 B.14 C.18 D.38
【答案】B
【分析】本题主要考查了求不等式组的解集,解分式方程,先解不等式组,确定出a的取值范围,再解分式方程,结合解为正整数的条件筛选出a的值,最后求和即可.
【详解】解:
解①得:
解②得:,
∵关于x的不等式组至少有两个正整数解
∴不等式组的解集为.
∵不等式组的解集至少有两个正整数解,则解集需包含至少两个整数.
当时,解集包含,
此时.
分式方程化简为:,
解得.
要求解为正整数且,则为大于等于2的整数,
即为大于等于6的偶数.
∵,
∴或8,
当时,不等式组的解集为,整数解为,满足条件.
当时,不等式组的解集为,整数解为,满足条件.
则所有满足条件的整数之和为,
故选:B.
10.(2024·重庆·中考真题)若关于的不等式组至少有2个整数解,且关于的分式方程的解为非负整数,则所有满足条件的整数的值之和为 .
【答案】16
【分析】本题考查了分式方程的解,以及解一元一次不等式组.先解不等式组,根据关于的一元一次不等式组至少有两个整数解,确定的取值范围,再把分式方程去分母转化为整式方程,解得,由分式方程的解为非负整数,确定的取值范围且,进而得到且,根据范围确定出的取值,相加即可得到答案.
【详解】解:,
解①得:,
解②得:,
关于的一元一次不等式组至少有两个整数解,
,
解得,
解方程,得,
关于的分式方程的解为非负整数,
且,是偶数,
解得且,是偶数,
且,是偶数,
则所有满足条件的整数的值之和是,
故答案为:16.
11.(2023·湖南永州·中考真题)若关于x的分式方程(m为常数)有增根,则增根是 .
【答案】
【分析】根据使分式的分母为零的未知数的值,是方程的增根,计算即可.
【详解】∵关于x的分式方程(m为常数)有增根,
∴,
解得,
故答案为:.
【点睛】本题考查了分式方程的解法,增根的理解,熟练掌握分式方程的解法是解题的关键.
考点05 分式方程的实际应用
1.(2025·吉林长春·中考真题)小吉和小林从同一地点出发跑800米,小吉的平均速度是小林的1.25倍,结果小吉比小林少用40秒到达终点.求小林跑步的平均速度.
【答案】小林跑步的平均速度为4米每秒
【分析】本题考查了分式方程的实际应用,正确理解题意,找到等量关系是解题的关键.
设小林跑步的平均速度为米每秒,则小吉的平均速度为米每秒,分别表示出时间,根据“小吉比小林少用40秒到达终点”建立分式方程求解,再检验即可.
【详解】解:设小林跑步的平均速度为米每秒,则小吉的平均速度为米每秒,
由题意得:,
解得:,
经检验,是原方程的解,且符合题意,
∴原方程的解为:,
答:小林跑步的平均速度为4米每秒.
2.(2024·黑龙江绥化·中考真题)一艘货轮在静水中的航速为,它以该航速沿江顺流航行所用时间,与以该航速沿江逆流航行所用时间相等,则江水的流速为( )
A. B. C. D.
【答案】D
【分析】此题主要考查了分式方程的应用,利用顺水速静水速水速,逆水速静水速水速,设未知数列出方程,解方程即可求出答案.
【详解】解:设江水的流速为,根据题意可得:
,
解得:,
经检验:是原方程的根,
答:江水的流速为.
故选:D.
3.(2023·江苏徐州·中考真题)随着2022年底城东快速路的全线通车,徐州主城区与东区之间的交通得以有效改善,如图某人乘车从徐州东站至戏马台景区,可沿甲路线或乙路线前往.已知甲、乙两条路线的长度均为,甲路线的平均速度为乙路线的倍,甲路线的行驶时间比乙路线少,求甲路线的行驶时间.
【答案】甲路线的行驶时间为.
【分析】设甲路线的行驶时间为,则乙路线的行驶事件为,根据“甲路线的平均速度为乙路线的倍”列分式方程求解即可.
【详解】解:甲路线的行驶时间为,则乙路线的行驶事件为,由题意可得,
,
解得,
经检验是原方程的解,
∴甲路线的行驶时间为,
答:甲路线的行驶时间为.
【点睛】本题考查分式方程的应用,解题的关键是明确题意,找出等量关系列出相应的分式方程.
4.(2025·山西·中考真题)我国自主研发的型快速换轨车,采用先进的自动化技术、能精准高效地完成更换铁路钢轨的任务.一辆该型号快速换轨车每小时更换钢轨的公里数是一个工作队人工更换钢轨的2倍,它更换116公里钢轨比一个工作队人工更换80公里钢轨所用时间少22小时.求一辆该型号快速换轨车每小时更换钢轨多少公里.
【答案】一辆该型号快速换轨车每小时更换钢轨2公里
【分析】本题考查了分式方程的应用,正确理解题意,找到等量关系并列出分式方程是解题的关键,注意要检验;设一辆该型号快速换轨车每小时更换钢轨x公里;根据等量关系:快速换轨车更换116公里钢轨比一个工作队人工更换80公里钢轨所用时间少22小时,列出分式方程,求解并检验即可.
【详解】解:设一辆该型号快速换轨车每小时更换钢轨x公里.
根据题意得:.
解得:.
经检验,是原方程的根,且符合题意.
答:一辆该型号快速换轨车每小时更换钢轨2公里.
5.(2025·黑龙江绥化·中考真题)用A,两种货车运输化工原料,A货车比货车每小时多运输15吨,A货车运输450吨所用时间与货车运输300吨所用时间相等.若设货车每小时运输化工原料吨,则可列方程为( )
A. B. C. D.
【答案】C
【分析】本题考查了分式方程的应用.熟练掌握工作量与工作效率和工作时间的关系,是解题的关键.
设B货车每小时运输x吨,则A货车每小时运输吨.根据A运输450吨的时间等于B运输300吨的时间,列方程.
【详解】解:设B货车每小时运输x吨,则A货车每小时运输吨.
∵A货车运输450吨的时间为,B货车运输300吨的时间为,
∴,
即.
故选:C.
6.(2024·四川达州·中考真题)甲乙两人各自加工120个零件,甲由于个人原因没有和乙同时进行,乙先加工30分钟后,甲开始加工.甲为了追赶上乙的进度,加工的速度是乙的倍,最后两人同时完成.求乙每小时加工零件多少个?设乙每小时加工个零件.可列方程为( )
A. B.
C. D.
【答案】D
【分析】本题主要考查了分式方程的实际应用,设乙每小时加工个零件,则甲每小时加工个零件,再根据时间工作总量工作效率结合甲的工作时间比乙的工作时间少30分钟列出方程即可.
【详解】解:设乙每小时加工个零件,则甲每小时加工个零件,
由题意得,
故选:D.
7.(2023·辽宁丹东·中考真题)“畅通交通,扮靓城市”,某市在道路提升改造中,将一座长度为36米的桥梁进行重新改造.为了尽快通车,某施工队在实际施工时,每天工作效率比原计划提高了,结果提前2天成功地完成了大桥的改造任务,那么该施工队原计划每天改造多少米
【答案】施工队原计划每天改造6米.
【分析】设施工队原计划每天改造米,根据提前2天成功地完成了大桥的改造任务得:,解方程并检验可得答案.
【详解】解:设施工队原计划每天改造米,
根据题意得:,
解得,
经检验,是原方程的解,
答:施工队原计划每天改造6米.
【点睛】本题考查分式方程的应用,解题的关键是读懂题意,找到等量关系列出分式方程.
8.(2025·江苏扬州·中考真题)某文创商店推出甲、乙两款具有纪念意义和实用价值的书签,已知甲款书签价格是乙款书签价格的倍,且用100元购买甲款书签的数量比用128元购买乙款书签的数量少3个,求这两款书签的单价.
【答案】乙款书签价格为16元,甲款书签价格为20元
【分析】本题考查了分式方程的实际应用,正确理解题意,找到等量关系是解题的关键.
设乙款书签价格为(元),则甲款书签价格为(元),根据“用100元购买甲款书签的数量比用128元购买乙款书签的数量少3个”建立分式方程求解即可.
【详解】解:设乙款书签价格为(元),则甲款书签价格为(元),
由题意得:,
解得:,
经检验:是原方程的解,且符合题意,
∴则甲款书签价格为(元)
答:乙款书签价格为16元,甲款书签价格为20元.
9.(2024·山东东营·中考真题)水是人类赖以生存的宝贵资源,为节约用水,创建文明城市,某市经论证从今年1月1日起调整居民用水价格,每立方米水费上涨原价的.小丽家去年5月份的水费是28元,而今年5月份的水费则是元.已知小丽家今年5月份的用水量比去年5月份的用水量少.设该市去年居民用水价格为,则可列分式方程为 .
【答案】
【分析】本题主要考查了分式方程的应用,设该市去年居民用水价格为,则今年居民用水价格为,根据小丽家今年5月份的用水量比去年5月份的用水量少,列出方程即可.
【详解】解:设该市去年居民用水价格为,则今年居民用水价格为,根据题意得:
.
故答案为:.
10.(2023·湖南张家界·中考真题)《四元玉鉴》是我国古代的一部数学著作,其中记载了一个“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”大意是:现请人代买一批椽,这批椽的总售价为6210文钱.如果每株椽的运费是3文钱,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱.试问:用6210文能买多少株椽?设用6210文能买x株椽,则符合题意的方程是( )
A. B.
C. D.
【答案】C
【分析】本题考查了分式方程的实际应用,根据单价总价数量结合少拿一株椽后剩下的椽的运费恰好等于一株椽的价钱,即可得出关于x的分式方程.
【详解】解:设用6210文能买x株椽,
由题意得:,
故选:C.
11.(2024·内蒙古呼伦贝尔·中考真题)A,B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运30千克,A型机器人搬运900千克所用时间与B型机器人搬运600千克所用时间相等.A,B两种机器人每小时分别搬运多少千克化工原料?( )
A.60,30 B.90,120 C.60,90 D.90,60
【答案】D
【分析】本题考查了分式方程的应用,设B型机器人每小时搬运x千克,则A型机器人每小时搬运千克,根据“A型机器人搬运900千克所用时间与B型机器人搬运600千克所用时间相等”列分式方程求解即可.
【详解】解:设B型机器人每小时搬运x千克,则A型机器人每小时搬运千克,
根据题意,得,
解得,
经检验,是原方程的解,
∴,
答:A型机器人每小时搬运90千克, B型机器人每小时搬运60千克.
故选:D.
12.(2023·辽宁锦州·中考真题)2023年5月15日,辽宁男篮取得第三次CBA总冠军,辽篮运动员的拼搏精神感染了众多球迷.某校篮球社团人数迅增,急需购进A,B两种品牌篮球,已知A品牌篮球单价比B品牌篮球单价的2倍少48元,采购相同数量的A,B两种品牌篮球,分别需要花费9600元和7200元.求A,B两种品牌篮球的单价分别是多少元?
【答案】A品牌篮球单价为96元,B品牌篮球单价为72元
【分析】设B品牌篮球单价为x元,则A品牌篮球单价为元,,再利用“采购相同数量的A,B两种品牌篮球,分别需要花费9600元和7200元”,列方程,解方程即可.
【详解】解:设B品牌篮球单价为x元,则A品牌篮球单价为元,
根据题意,得.
解这个方程,得.
经检验,是所列方程的根.
(元).
所以,A品牌篮球单价为96元,B品牌篮球单价为72元.
【点睛】本题考查的是分式方程的应用,设出恰当的未知数,确定相等关系是解题的关键.
考点06 分式方程与函数、方程的综合应用
1.(2025·重庆·中考真题)列方程解下列问题:
某厂生产甲、乙两种文创产品.每天生产甲种文创产品的数量比每天生产乙种文创产品的数量多50个,3天时间生产的甲种文创产品的数量比4天时间生产的乙种文创产品的数量多100个.
(1)求该厂每天生产的甲、乙文创产品数量分别是多少个?
(2)由于市场需求量增加,该厂对生产流程进行了改进.改进后,每天生产乙种文创产品的数量较改进前每天生产的数量增加同样的数量,且每天生产甲种文创产品的数量较改进前每天增加的数量是乙种文创产品每天增加数量的2倍.若生产甲、乙两种文创产品各1400个,乙比甲多用10天,求每天生产的乙种文创产品增加的数量.
【答案】(1)该厂每天生产的甲文创产品数量为个,乙文创产品数量是个
(2)每天乙文创产品增加的数量是个
【分析】本题考查一元一次方程和分式方程的应用,正确理解题意,根据等量关系列方程是解题的关键.
(1)设该厂每天生产的乙文创产品数量是x个,根据题意列一元一次方程解答即可;
(2)设该厂每天乙文创产品增加的数量是个,根据“生产甲、乙两种文创产品各1400个,乙比甲多用10天”列分式方程解答即可.
【详解】(1)解:设该厂每天生产的乙文创产品数量是x个,则甲文创产品数量为个.
,
解得:,
则甲文创产品数量为个,
答:该厂每天生产的乙文创产品数量是个,则甲文创产品数量为个.
(2)解:设每天乙文创产品增加的数量是个,则甲文创产品增加的数量是个.
,
解得:,
经检验:是原方程的解,
答:每天乙文创产品增加的数量是个.
2.(2025·内蒙古·中考真题)智能机器人的广泛应用是智慧农业的发展趋势之一.某品牌苹果采摘机器人的机械手能自动对成熟的苹果进行采摘,一个机器人可以搭载多个机械手同时工作.在正常工作状态下,该机器人的每一个机械手平均秒采摘一个成熟的苹果,它的一个机械手用800秒采摘苹果的个数比用600秒采摘苹果的个数多25个.
(1)求的值;
(2)现需要一定数量的苹果发往外地,采摘工作由多个机器人共同完成.每个机器人搭载4个相同的机械手,那么至少需要多少个这样的机器人同时工作1小时,才能使采摘的苹果个数不少于10000个
【答案】(1)8
(2)至少需要6个这样的机器人
【分析】本题考查了分式方程和一元一次不等式的实际应用,正确理解题意是解题的关键.
(1)根据“一个机械手用800秒采摘苹果的个数比用600秒采摘苹果的个数多25个”建立分式方程求解即可;
(2)设需要个这样的机器人同时工作1小时,由总采摘量不少于10000个建立一元一次不等式求解.
【详解】(1)解:由题意得,,
解得:,
经检验:是原方程的解,且符合题意,
∴的值为8;
(2)解:1小时,
设需要个这样的机器人,
由题意得:,
解得:,
∵为正整数,
∴最小值为6,
答:至少需要6个这样的机器人.
3.(2024·四川雅安·中考真题)某市为治理污水,保护环境,需铺设一段全长为3000米的污水排放管道,为了减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加,结果提前15天完成铺设任务.
(1)求原计划与实际每天铺设管道各多少米?
(2)负责该工程的施工单位,按原计划对工人的工资进行了初步的预算,工人每天人均工资为300元,所有工人的工资总金额不超过18万元,该公司原计划最多应安排多少名工人施工?
【答案】(1)原计划与实际每天铺设管道各为40米,50米
(2)该公司原计划最多应安排8名工人施工
【分析】此题考查了分式方程的应用,以及一元一次不等式的应用,弄清题意是解本题的关键.
(1)设原计划每天铺设管道米,则实际施工每天铺设管道,根据原计划的时间实际的时间+15列出方程,求出方程的解即可得到结果;
(2)设该公司原计划应安排名工人施工,根据工作时间=工作总量工作效率计算出原计划的工作天数,进而表示出所有工人的工作总额,由所有工人的工资总金额不超过18万元列出不等式,求出不等式的解集,找出解集中的最大整数解即可.
【详解】(1)解:设原计划每天铺设管道x米,则实际施工每天铺设管道米,
根据题意得:,
解得:,
经检验是分式方程的解,且符合题意,
∴,
则原计划与实际每天铺设管道各为40米,50米;
(2)解:设该公司原计划应安排y名工人施工,(天),
根据题意得:,
解得:,
∴不等式的最大整数解为8,
则该公司原计划最多应安排8名工人施工.
4.(2023·江苏南通·中考真题)为推进全民健身设施建设,某体育中心准备改扩建一块运动场地.现有甲、乙两个工程队参与施工,具体信息如下:
信息—
工程队 每天施工面积(单位:) 每天施工费用(单位:元)
甲 3600
乙 x 2200
信息二
甲工程队施工所需天数与乙工程队施工所需天数相等.
(1)求x的值;
(2)该工程计划先由甲工程队单独施工若干天,再由乙工程队单独继续施工,两队共施工22天,且完成的施工面积不少于.该段时间内体育中心至少需要支付多少施工费用
【答案】(1)x的值为600
(2)该段时间内体育中心至少需要支付施工费用56800元
【分析】(1)根据题意甲工程队施工所需天数与乙工程队施工所需天数相等列出分式方程解方程即可;
(2)设甲工程队先单独施工天,体育中心共支付施工费用元,根据先由甲工程队单独施工若干天,再由乙工程队单独继续施工,两队共施工22天,且完成的施工面积不少于列出不等式即可得到答案.
【详解】(1)解:由题意列方程,得.
方程两边乘,得.
解得.
检验:当时,.
所以,原分式方程的解为.
答:x的值为600.
(2)解:设甲工程队先单独施工天,体育中心共支付施工费用元.
则.
,
.
1400>0,
随的增大而增大.
当时,取得最小值,最小值为56800.
答:该段时间内体育中心至少需要支付施工费用56800元.
【点睛】本题主要考查了分式方程的应用,一元一次不等式的应用以及一次函数的应用,熟练掌握知识点是解题的关键.
5.(2025·四川成都·中考真题)2025年8月7日至17日,第12届世界运动会将在成都举行,与运动会吉祥物“蜀宝”“锦仔”相关的文创产品深受大家喜爱.某文旅中心在售A,B两种吉祥物挂件,已知每个B种挂件的价格是每个A种挂件价格的,用300元购买B种挂件的数量比用200元购买A种挂件的数量多7个.
(1)求每个A种挂件的价格;
(2)某游客计划用不超过600元购买A,B两种挂件,且购买B种挂件的数量比A种挂件的数量多5个,求该游客最多购买多少个A种挂件.
【答案】(1)每个A种挂件的价格为25元
(2)该游客最多购买11个A种挂件
【分析】本题考查分式方程的应用、一元一次不等式的应用,理解题意,正确列出方程和不等式是解答的关键.
(1)设每个A种挂件的价格为x元,则每个B种挂件的价格为,根据题意列分式方程求解即可;
(2)设该游客购买y个A种挂件,则购买个B种挂件,根据题意列不等式求解即可.
【详解】(1)解:设每个A种挂件的价格为x元,则每个B种挂件的价格为元.
根据题意,得,
解得,经检验是原方程的解,且符合题意,
答:每个A种挂件的价格为25元;
(2)解:设该游客购买y个A种挂件,则购买个B种挂件,
由(1)得每个B种挂件的价格为(元),
根据题意,得,
解得,
由于y为正整数,
故该游客最多购买11个A种挂件.
6.(2025·山东东营·中考真题)《哪吒2魔童闹海》票房大卖,周边玩偶热销.某经销店购进A款哪吒玩偶的金额是2400元,购进B款哪吒玩偶的金额是1600元,购进A款哪吒玩偶的数量比B款哪吒玩偶少50个,A款哪吒玩偶单价是B款哪吒玩偶的2倍.
(1)A、B两款玩偶的单价分别是多少元?
(2)为满足消费者需求,在A、B两款玩偶单价不变的条件下,该超市准备再次购进A、B两款玩偶共100个,B款哪吒玩偶的数量不多于A款哪吒玩偶数量的2倍,且总金额不超过1100元,问有多少种进货方案?
【答案】(1)A、B两款玩偶的单价分别是16元和8元;
(2)4种
【分析】本题考查分式方程的实际应用,一元一次不等式的实际应用,正确的列出分式方程和一元一次不等式组,是解题的关键:
(1)设B款玩偶的单价是元,根据购进A款哪吒玩偶的数量比B款哪吒玩偶少50个,A款哪吒玩偶单价是B款哪吒玩偶的2倍,列出方程进行求解即可;
(2)设购进款玩偶个,根据B款哪吒玩偶的数量不多于A款哪吒玩偶数量的2倍,且总金额不超过1100元,列出不等式组,求出整数解,即可.
【详解】(1)解:设B款玩偶的单价是元,由题意,得:
,
解得:,
经检验,是原方程的解,且符合题意;
∴;
答:A、B两款玩偶的单价分别是16元和8元;
(2)设购进款玩偶个,则购进款玩偶个,由题意,得:
,
解得:,
∵为整数,
∴,
∴,
故共有4种方案.
7.(2024·山东日照·中考真题)【问题背景】2024年4月23日是第18个“世界读书日”,为给师生提供更加良好的阅读环境,学校决定扩大图书馆面积,增加藏书数量,现需购进20个书架用于摆放书籍.
【素材呈现】
素材一:有两种书架可供选择,A种书架的单价比B种书架单价高;
素材二:用18000元购买A种书架的数量比用9000元购买B种书架的数量多6个;
素材三:A种书架数量不少于B种书架数量的.
【问题解决】
(1)问题一:求出两种书架的单价;
(2)问题二:设购买a个A种书架,购买总费用为w元,求w与a的函数关系式,并求出费用最少时的购买方案;
(3)问题三:实际购买时,商家调整了书架价格,A种书架每个降价m元,B种书架每个涨价元,按问题二的购买方案需花费21120元,求m的值.
【答案】(1)1200元;1000元
(2);购买A种书架8个,B种书架12个
(3)120
【分析】本题考查运用分式方程,一次函数,一元一次方程解决实际问题.
(1)设B种书架的单价为x元,则A种书架的单价为元,用18000元购买A种书架个,用9000元购买B种书架个,根据素材二即可列出方程,求解并检验即可解答;
(2)根据总费用=A种书架的总费用+B种书架的总费用即可列出函数,根据资料三求出自变量a的取值范围,再根据一次函数的增减性即可求出总费用的最小值;
(3)根据总费用=A种书架的总费用+B种书架的总费用列出一元一次方程,求解即可解答.
【详解】(1)解:设B种书架的单价为x元,则A种书架的单价为元.
由题意得,
解得,
经检验,是分式方程的解,且符合题意,
.
答:两种书架的单价分别为1200元,1000元.
(2)解:购买a个A种书架时,购买总费用,
即,
由题意得,a应满足:,解得.
,
∴w随着a的增大而增大,
当时,w的值最小,最小值为,
费用最少时购买A种书架8个,B种书架12个.
(3)解:由题意得
,
解得.