2026中考数学一元一次方程与二元一次方程组三年真题汇总(含解析)

文档属性

名称 2026中考数学一元一次方程与二元一次方程组三年真题汇总(含解析)
格式 docx
文件大小 2.9MB
资源类型 试卷
版本资源 通用版
科目 数学
更新时间 2025-08-11 15:47:31

图片预览

文档简介

2026中考数学一元一次方程与二元一次方程组三年真题汇总
考点01 解一元一次方程
1.(2024·海南·中考真题)若代数式的值为5,则x等于( )
A.8 B. C.2 D.
2.(2024·广东广州·中考真题)定义新运算:例如:,.若,则的值为 .
3.(2024·上海·中考真题)已知,则 .
4.(2023·浙江衢州·中考真题)小红在解方程时,第一步出现了错误:
解:, ……
(1)请在相应的方框内用横线划出小红的错误处.
(2)写出你的解答过程.
5.(2023·山东枣庄·中考真题)对于任意实数a,b,定义一种新运算:,例如:,.根据上面的材料,请完成下列问题:
(1)___________,___________;
(2)若,求x的值.
考点02 一元一次方程的实际应用
1.(2025·北京·中考真题)北京风筝制作技艺是国家级非物质文化遗产.为制作一只京燕风筝,小明准备了五根直竹条(如图1):一根门条、两根等长的膀条和两根等长的尾条.他将门条和膀条分别烤弯后与尾条一起扎成风筝的骨架(如图2),其头部高、胸腹高与尾部高的比是.已知单根膀条长是胸腹高的5倍,门条比单根膀条短10cm,图1中的长是门条长的,的长均等于胸腹高.求这只风筝的骨架的总高.
2.(2024·陕西·中考真题)星期天,妈妈做饭,小峰和爸爸进行一次家庭卫生大扫除.根据这次大扫除的任务量,若小峰单独完成,需;若爸爸单独完成,需.当天,小峰先单独打扫了一段时间后,去参加篮球训练,接着由爸爸单独完成剩余的打扫任务.小峰和爸爸这次一共打扫了,求这次小峰打扫了多长时间.
3.(2023·四川巴中·中考真题)某学校课后兴趣小组在开展手工制作活动中,美术老师要求用14张卡纸制作圆柱体包装盒,准备把这些卡纸分成两部分,一部分做侧面,另一部分做底面.已知每张卡纸可以裁出2个侧面,或者裁出3个底面,如果1个侧面和2个底面可以做成一个包装盒,这些卡纸最多可以做成包装盒的个数为( )
A.6 B.8 C.12 D.16
4.(2025·四川内江·中考真题)学校准备添置一批课桌椅,原订购60套,每套100元.店方表示:如果多购,可以优惠.结果校方购了72套,每套减价3元,但商店获得同样多的利润.求每套课桌椅的成本.设每套课桌椅的成本为x元,则可列方程为( )
A. B.
C. D.
5.(2025·山东烟台·中考真题)某商场打折销售一款风扇,若按标价的六折出售,则每台风扇亏损10元;若按标价的九折出售,则每台风扇盈利95元.这款风扇每台的标价为( )
A.350元 B.320元 C.270元 D.220元
6.(2024·海南·中考真题)端午节是中国传统节日,人们有吃粽子的习俗.某商店售卖某品牌瘦肉粽和五花肉粽.请依据以下对话,求促销活动前每个瘦肉粽、五花肉粽的售价.
7.(2023·河北·中考真题)某磁性飞镖游戏的靶盘如图.珍珍玩了两局,每局投10次飞镖,若投到边界则不计入次数,需重新投,计分规则如下:
投中位置 A区 B区 脱靶
一次计分(分) 3 1
在第一局中,珍珍投中A区4次,B区2次,脱靶4次.

(1)求珍珍第一局的得分;
(2)第二局,珍珍投中A区k次,B区3次,其余全部脱靶.若本局得分比第一局提高了13分,求k的值.
8.(2025·四川成都·中考真题)任意给一个数x,按下列程序进行计算.若输出的结果是15,则x的值为 .
9.(2024·江苏宿迁·中考真题)我国古代问题:以绳测井,若将绳三折测之,绳多四尺:若将绳四折测之,绳多一尺.绳长、井深各几何?这段话的意思是:用绳子量井深,把绳三折来量,井外余绳四尺;把绳四折来量,井外余绳一尺.绳长、井深各几尺?若设绳长为x尺,则可列方程为( )
A. B.
C. D.
10.(2025·天津·中考真题)《算学启蒙》是我国古代的数学著作,其中有一道题:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”意思是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可以追上慢马?设快马天可以追上慢马,则可以列出的方程为( )
A. B.
C. D.
11.(2024·山东威海·中考真题)定义
我们把数轴上表示数a的点与原点的距离叫做数a的绝对值.数轴上表示数a,b的点A,B之间的距离.特别的,当时,表示数a的点与原点的距离等于.当时,表示数a的点与原点的距离等于.
应用
如图,在数轴上,动点A从表示的点出发,以1个单位/秒的速度沿着数轴的正方向运动.同时,动点B从表示12的点出发,以2个单位/秒的速度沿着数轴的负方向运动.
(1)经过多长时间,点A,B之间的距离等于3个单位长度?
(2)求点A,B到原点距离之和的最小值.
12.(2025·湖北·中考真题)幻方起源于中国,月历常用于生活,它们有很多奥秘,探究并完成填空.
主题 探究月历与幻方的奥秘
活动一 图1是某月的月历,用方框选取了其中的9个数. (1)移动方框,若方框中的部分数如图2所示,则是______,是______; (2)移动方框,若方框中的部分数如图3所示,则是______,是______; (注:用含的代数式表示和.)
活动二 移动方框选取月历中的9个数,调整它们的位置,使其满足“三阶幻方”分布规律:每一横行、每一竖列以及两条斜对角线上的三个数的和都相等. (3)若方框选取的数如图4所示,调整后,部分数的位置如图5所示,则是______,是______; (4)若方框选取的数中最小的数是,调整后,部分数的位置如图6所示,则是______(用含的代数式表示).
13.(2025·吉林·中考真题)《孙子算经》中记载了这样一道题:今有三人共车,二车空:二人共车,九人步.问车几何?其译文为:有若干人乘车,若每3人同乘一车,最终剩余2辆空车;若每2人同乘一车,最终剩下9人因无车可乘而步行.问有多少辆车?为解决此问题,设共有x辆车,可列方程为 .
考点03 解二元一次方程组
1.(2025·山西·中考真题)(1)计算:
(2)解方程组:
2.(2025·四川凉山·中考真题)若,则的平方根是( )
A.8 B. C. D.
3.(2024·内蒙古呼伦贝尔·中考真题)点在直线上,坐标是二元一次方程的解,则点的位置在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.(2024·浙江·中考真题)解方程组:
5.(2023·江苏南通·中考真题)若实数,,满足,,则代数式的值可以是( )
A. B. C. D.
考点04 二元一次方程组的应用——古代问题
1.(2025·四川眉山·中考真题)我国古代算书《四元玉鉴》里有这样一道题:“九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个?”其大意是:用九百九十九文钱共买了一千个甜果和苦果,其中十一文钱可以买甜果九个,四文钱可以买苦果七个,问甜果苦果各买几个?若设买甜果x个,苦果y个,根据题意可列方程组为( )
A. B.
C. D.
2.(2024·四川南充·中考真题)在明朝程大位《算法统宗》中有首住店诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗的大意是:一些客人到李三公的店中住宿,如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.设该店有客房x间,房客y人,则可列方程组为( )
A. B.
C. D.
3.(2024·天津·中考真题)《孙子算经》是我国古代著名的数学典籍,其中有一道题:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳度之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长尺,绳子长尺,则可以列出的方程组为( )
A. B.
C. D.
4.(2024·四川成都·中考真题)中国古代数学著作《九章算术》中记载了这样一个题目:今有共买琎,人出半,盈四;人出少半,不足三.问人数,琎价各几何?其大意是:今有人合伙买琎石,每人出钱,会多出4钱;每人出钱,又差了3钱.问人数,琎价各是多少?设人数为,琎价为,则可列方程组为( )
A. B. C. D.
5.(2025·甘肃兰州·中考真题)《九章算术》是中国传统数学最重要的数学著作之一,“方程章”第11题大意是:两匹马一头牛总价超过1万,超过部分等于半匹马的价格;一匹马两头牛的总价不足1万,不足部分等于半头牛的价格,问一匹马、一头牛的价格分别是多少?若设一匹马价格为x,一头牛价格为y,则可列方程组为( )
A. B.
C. D.
6.(2024·江苏徐州·中考真题)中国古代数学著作《张邱建算经》中有一道问题;“今有甲、乙怀钱,各不知其数.甲得乙十钱,多乙余钱五倍.乙得甲十钱,适等.问甲、乙怀钱各几何?”问题大意:甲、乙两人各有钱币若干枚.若乙给甲10枚钱,此时甲的钱币数比乙的钱币数多出5倍,即甲的钱币数是乙钱币数的6倍;若甲给乙10枚钱,此时两人的钱币数相等.问甲、乙原来各有多少枚钱币?请用二元一次方程组解答上述问题.
考点05 二元一次方程组的应用——现代问题
1.(2023·辽宁·中考真题)某礼品店经销A,B两种礼品盒,第一次购进A种礼品盒10盒,B种礼品盒15盒,共花费2800元;第二次购进A种礼品盒6盒,B种礼品盒5盒,共花费1200元
(1)求购进A,B两种礼品盒的单价分别是多少元;
(2)若该礼品店准备再次购进两种礼品盒共40盒,总费用不超过4500元,那么至少购进A种礼品盒多少盒?
2.(2025·广西·中考真题)自2025年5月9日起至2025年12月31日,周末自驾游广西的外省籍小客车,可享受高速公路车辆通行费(以下简称高速费)优惠.小悦一家5月中旬从湖南自驾到广西探亲游玩,此次全程所产生的高速费享受的优惠如下:
湖南境内路段 广西境内特定路段 广西境内其他路段
周一至周四 9.5折
周五至周日 9.5折 全免 5折
(1)周六小悦一家从湖南Z市到广西A市,所经湖南境内路段、广西境内特定路段和其他路段的高速费原价分别为a元、b元和c元.求此行程的高速费实付多少元?
(2)周日他们从A市到K市(全程在广西境内),高速费实付27.55元;周一从K市原路返回到A市,高速费实付95.95元.求此行程中A市与K市间广西境内特定路段和其他路段的单程高速费原价分别是多少元.
3.(2025·江西·中考真题)系文物考古研究院用复原的青铜蒸馏器进行了蒸馏酒实验.用复原的青铜蒸馏器蒸馏粮食酒和芋头酒,需要的原材料与出酒率()如下表:
类别 原材料 出酒率
粮食酒 粮食糟醅(含大米、糯米、谷壳、大曲和蒸馏水 30%
芋头酒 芋头糟醅(含芋头、小曲和蒸馏水) 20%
如果第一次实验分别蒸馏出粮食酒和芋头酒共16公斤;第二次实验分别蒸馏出粮食酒和芋头酒共36公斤,且所用的粮食糟醅量是第一次的2倍,芋头糟醅量是第一次的3倍.
(1)求第一次实验分别用了多少公斤粮食糟醅和芋头糟醅?
(2)受限于当时的生产条件,古代青铜装馏器的出酒量约为现代复原品的80%.若粮食糟醅中大米占比约为,请问,在古代要想蒸馏出这两次实验得到的粮食酒总量,需要准备多少公斤大米?
4.(2023·山西·中考真题)风陵渡黄河公路大桥是连接山西、陕西、河南三省的交通要塞.该大桥限重标志牌显示,载重后总质量超过30吨的车辆禁止通行.现有一辆自重8吨的卡车,要运输若干套某种设备,每套设备由1个A部件和3个B部件组成,这种设备必须成套运输.已知1个A部件和2个B部件的总质量为2.8吨,2个A部件和3个B部件的质量相等.

(1)求1个A部件和1个B部件的质量各是多少;
(2)卡车一次最多可运输多少套这种设备通过此大桥?
5.(2025·四川内江·中考真题)2025年春节期间,我国国产动画电影《哪吒之魔童闹海》刷新了中国电影票房的新纪录,商家推出A、B两款“哪吒”文旅纪念品.已知购进A款200个,B款300个,需花费14000元;购进A款100个,B款200个,需花费8000元.
(1)求A、B两款“哪吒”纪念品每个进价分别为多少元?
(2)根据网上预约的情况,如果该商家计划用不超过12000元的资金购进A、B两款“哪吒”纪念品共400个,那么至少需要购进B款纪念品多少个?
(3)在销售中,该商家发现每个A款纪念品售价60元时,可售出200个,售价每增加1元,销售量将减少5个.设每个A款纪念品售价元,W表示该商家销售A款纪念品的利润(单位:元),求W关于a的函数表达式,并求出W的最大值.
6.(2025·湖南长沙·中考真题)为落实科技兴农政策,某乡办食品企业应用新科技推动农产品由粗加工向精加工转变.根据市场需求,该食品企业将收购的农产品加工成A,B两种等级的农产品对外销售,已知销售6千克A等级农产品和4千克B等级农产品共收入元,销售4千克A等级农产品和2千克B等级农产品共收入元.(不考虑加工损耗)
(1)求每千克A等级农产品和每千克B等级农产品的销售单价分别为多少元?
(2)若该食品企业以每千克8元购进千克农产品,全部加工后对外销售,要求总利润不低于元,则至少需加工A等级农产品多少千克?
7.(2023·湖北恩施·中考真题)为积极响应州政府“悦享成长·书香恩施”的号召,学校组织150名学生参加朗诵比赛,因活动需要,计划给每个学生购买一套服装.经市场调查得知,购买1套男装和1套女装共需220元;购买6套男装与购买5套女装的费用相同.
(1)男装、女装的单价各是多少?
(2)如果参加活动的男生人数不超过女生人数的,购买服装的总费用不超过17000元,那么学校有几种购买方案?怎样购买才能使费用最低,最低费用是多少?
8.(2023·西藏·中考真题)列方程(组)解应用题:如图,巴桑家客厅的电视背景墙是由块形状大小相同的长方形墙砖砌成.

(1)求一块长方形墙砖的长和宽;
(2)求电视背景墙的面积.
9.(2025·江苏连云港·中考真题)如图,制作甲、乙两种无盖的长方体纸盒,需用正方形和长方形两种硬纸片,且长方形的宽与正方形的边长相等.
(1)现用200张正方形硬纸片和400张长方形硬纸片,恰好能制作甲、乙两种纸盒各多少个
(2)如果需要制作100个长方体纸盒,要求乙种纸盒数量不低于甲种纸盒数量的一半,那么至少需要多少张正方形硬纸片
考点06 求参数
1.(2025·四川遂宁·中考真题)已知是方程的解,则 .
2.(2024·江苏宿迁·中考真题)若关于x、y的二元一次方程组的解是,则关于x、y的方程组的解是 .
3.(2023·四川眉山·中考真题)已知关于的二元一次方程组的解满足,则m的值为( )
A.0 B.1 C.2 D.3
4.(2023·四川南充·中考真题)关于x,y的方程组的解满足,则的值是( )
A.1 B.2 C.4 D.8
5.(2023·四川泸州·中考真题)关于,的二元一次方程组的解满足,写出的一个整数值 .
答案解析
考点01 解一元一次方程
1.(2024·海南·中考真题)若代数式的值为5,则x等于( )
A.8 B. C.2 D.
【答案】A
【分析】本题主要考查了解一元一次方程,根据题意可知,解方程即可得到答案.
【详解】解:∵代数式的值为5,
∴,
解得,
故选:A.
2.(2024·广东广州·中考真题)定义新运算:例如:,.若,则的值为 .
【答案】或
【分析】本题考查了一元二次方程的应用,一元一次方程的应用,解题的关键是明确新运算的定义.根据新定义运算法则列出方程求解即可.
【详解】解:∵
而,
∴①当时,则有,
解得,;
②当时,,
解得,
综上所述,x的值是或,
故答案为:或.
3.(2024·上海·中考真题)已知,则 .
【答案】1
【分析】本题主要考查了二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.由二次根式被开方数大于0可知,则可得出,求出x即可.
【详解】解:根据题意可知:,
∴,
解得:,
故答案为:1.
4.(2023·浙江衢州·中考真题)小红在解方程时,第一步出现了错误:
解:, ……
(1)请在相应的方框内用横线划出小红的错误处.
(2)写出你的解答过程.
【答案】(1)见解析;
(2).
【分析】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解
(1)根据等式的性质,解一元一次方程的步骤即可判断;
(2)首先去分母、然后去括号、移项、合并同类项、次数化成1即可求解.
【详解】(1)
(2)解:,
去分母,得,,
移项,得:,
合并同类页,得:,
解得:.
5.(2023·山东枣庄·中考真题)对于任意实数a,b,定义一种新运算:,例如:,.根据上面的材料,请完成下列问题:
(1)___________,___________;
(2)若,求x的值.
【答案】(1)1;2;
(2),
【分析】(1)原式利用题中的新定义计算即可求出值;
(2)已知等式利用已知的新定义进行分类讨论并列出方程,再计算求出x的值即可.
【详解】(1),


故答案为:1;2;
(2)若时,即时,则

解得:,
若时,即时,则

解得:,不合题意,舍去,

【点睛】此题考查了实数的新定义运算及解一元一次方程,弄清题中的新定义是解本题的关键.
考点02 一元一次方程的实际应用
1.(2025·北京·中考真题)北京风筝制作技艺是国家级非物质文化遗产.为制作一只京燕风筝,小明准备了五根直竹条(如图1):一根门条、两根等长的膀条和两根等长的尾条.他将门条和膀条分别烤弯后与尾条一起扎成风筝的骨架(如图2),其头部高、胸腹高与尾部高的比是.已知单根膀条长是胸腹高的5倍,门条比单根膀条短10cm,图1中的长是门条长的,的长均等于胸腹高.求这只风筝的骨架的总高.
【答案】
【分析】本题主要考查了一元一次方程的应用,弄清量之间的关系、列出一元一次方程是解题的关键.
设胸腹高为,则单根膀条长为,门条的长度为,,,头部高为x,尾部高为,这只风筝的骨架的总高为;由列方程求出,进而求出风筝的骨架的总高即可.
【详解】解:设胸腹高为,则单根膀条长为,门条的长度为,,,头部高为x,尾部高为,这只风筝的骨架的总高为,
由,可得:,解得:;
所以这只风筝的骨架的总高.
答:这只风筝的骨架的总高.
2.(2024·陕西·中考真题)星期天,妈妈做饭,小峰和爸爸进行一次家庭卫生大扫除.根据这次大扫除的任务量,若小峰单独完成,需;若爸爸单独完成,需.当天,小峰先单独打扫了一段时间后,去参加篮球训练,接着由爸爸单独完成剩余的打扫任务.小峰和爸爸这次一共打扫了,求这次小峰打扫了多长时间.
【答案】小峰打扫了.
【分析】本题是一道工程问题的应用题.设小峰打扫了,爸爸打扫了,根据总工作量=各部分的工作量之和列出一元一次方程,然后求解即可.
【详解】解:设总工作量为1,小峰打扫了,爸爸打扫了,则小峰打扫任务的工作效率为,爸爸打扫任务的工作效率为,
由题意,得:,
解得:,
答:小峰打扫了.
3.(2023·四川巴中·中考真题)某学校课后兴趣小组在开展手工制作活动中,美术老师要求用14张卡纸制作圆柱体包装盒,准备把这些卡纸分成两部分,一部分做侧面,另一部分做底面.已知每张卡纸可以裁出2个侧面,或者裁出3个底面,如果1个侧面和2个底面可以做成一个包装盒,这些卡纸最多可以做成包装盒的个数为( )
A.6 B.8 C.12 D.16
【答案】C
【分析】设用x张卡纸做侧面,用y张卡纸做底面,则做出侧面的数量为2x,底面的数量为3y,然后根据等量关系:底面数量=侧面数量的2倍,列出方程组即可.
【详解】解:设用x张白卡纸做侧面,用y张白卡纸做底面,
由题意得,.
解得.

答:这些卡纸最多可以做成包装盒的个数为12个.
故选:C.
【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组.还需注意本题的等量关系是:底面数量=侧面数量的2倍.
4.(2025·四川内江·中考真题)学校准备添置一批课桌椅,原订购60套,每套100元.店方表示:如果多购,可以优惠.结果校方购了72套,每套减价3元,但商店获得同样多的利润.求每套课桌椅的成本.设每套课桌椅的成本为x元,则可列方程为( )
A. B.
C. D.
【答案】B
【分析】本题考查了一元一次方程的应用,根据利润相等建立方程.原计划利润为,实际利润为,两者相等即可求解.
【详解】解:设每套成本为元.原计划利润为元;实际购买时利润为元.
根据题意得:,
故选B.
5.(2025·山东烟台·中考真题)某商场打折销售一款风扇,若按标价的六折出售,则每台风扇亏损10元;若按标价的九折出售,则每台风扇盈利95元.这款风扇每台的标价为( )
A.350元 B.320元 C.270元 D.220元
【答案】A
【分析】本题主要考查了一元一次方程的实际应用,设这款风扇每台的标价为元,根据按标价的六折出售,则每台风扇亏损10元可得风扇的进价为元,根据按标价的九折出售,则每台风扇盈利95元可得风扇的进价为元,据此建立方程求解即可.
【详解】解:设这款风扇每台的标价为元,
由题意得,,
解得,
∴这款风扇每台的标价为350元,
故选:A.
6.(2024·海南·中考真题)端午节是中国传统节日,人们有吃粽子的习俗.某商店售卖某品牌瘦肉粽和五花肉粽.请依据以下对话,求促销活动前每个瘦肉粽、五花肉粽的售价.
【答案】促销活动前每个瘦肉粽的售价为15元,则促销活动前每个五花肉粽的售价10元.
【分析】本题考查了一元一次方程的应用.设促销活动前每个瘦肉粽的售价为元,则促销活动前每个五花肉粽的售价元,根据题意列方程求解即可.
【详解】解:设促销活动前每个瘦肉粽的售价为元,则促销活动前每个五花肉粽的售价元,
依题意得,
解得,

答:促销活动前每个瘦肉粽的售价为15元,则促销活动前每个五花肉粽的售价10元.
7.(2023·河北·中考真题)某磁性飞镖游戏的靶盘如图.珍珍玩了两局,每局投10次飞镖,若投到边界则不计入次数,需重新投,计分规则如下:
投中位置 A区 B区 脱靶
一次计分(分) 3 1
在第一局中,珍珍投中A区4次,B区2次,脱靶4次.

(1)求珍珍第一局的得分;
(2)第二局,珍珍投中A区k次,B区3次,其余全部脱靶.若本局得分比第一局提高了13分,求k的值.
【答案】(1)珍珍第一局的得分为6分;
(2).
【分析】(1)根据题意列式计算即可求解;
(2)根据题意列一元一次方程即可求解.
【详解】(1)解:由题意得(分),
答:珍珍第一局的得分为6分;
(2)解:由题意得,
解得:.
【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.
8.(2025·四川成都·中考真题)任意给一个数x,按下列程序进行计算.若输出的结果是15,则x的值为 .
【答案】3
【分析】本题考查了程序框图的计算,一元一次方程的应用,正确理解题意是解题的关键.
根据程序框图的运算法则建立一元方程求解即可.
【详解】解:由题意得:,
解得:,
故答案为:3.
9.(2024·江苏宿迁·中考真题)我国古代问题:以绳测井,若将绳三折测之,绳多四尺:若将绳四折测之,绳多一尺.绳长、井深各几何?这段话的意思是:用绳子量井深,把绳三折来量,井外余绳四尺;把绳四折来量,井外余绳一尺.绳长、井深各几尺?若设绳长为x尺,则可列方程为( )
A. B.
C. D.
【答案】A
【分析】本题主要考查了一元一次方程组的实际应用,利用井的深度不变建立方程是解题的关键.
【详解】解:设绳长为x尺,列方程为,
故选A.
10.(2025·天津·中考真题)《算学启蒙》是我国古代的数学著作,其中有一道题:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”意思是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可以追上慢马?设快马天可以追上慢马,则可以列出的方程为( )
A. B.
C. D.
【答案】A
【分析】本题考查一元一次方程的应用,属于行程问题中的追及问题.解题的关键是找到两马路程相等的等量关系.
设快马用天追上慢马,快马的总路程为里,慢马的总路程为里,根据题意,列出方程即可.
【详解】解:设快马用天追上慢马,快马的总路程为里,慢马的总路程为里,根据题意得:

故选:A
11.(2024·山东威海·中考真题)定义
我们把数轴上表示数a的点与原点的距离叫做数a的绝对值.数轴上表示数a,b的点A,B之间的距离.特别的,当时,表示数a的点与原点的距离等于.当时,表示数a的点与原点的距离等于.
应用
如图,在数轴上,动点A从表示的点出发,以1个单位/秒的速度沿着数轴的正方向运动.同时,动点B从表示12的点出发,以2个单位/秒的速度沿着数轴的负方向运动.
(1)经过多长时间,点A,B之间的距离等于3个单位长度?
(2)求点A,B到原点距离之和的最小值.
【答案】(1)过4秒或6秒
(2)3
【分析】本题考查了一元一次方程的应用,不等式的性质,绝对值的意义等知识,解题的关键是:
(1)设经过x秒,则A表示的数为,B表示的数为,根据“点A,B之间的距离等于3个单位长度”列方程求解即可;
(2)先求出点A,B到原点距离之和为,然后分,,三种情况讨论,利用绝对值的意义,不等式的性质求解即可.
【详解】(1)解:设经过x秒,则A表示的数为,B表示的数为,
根据题意,得,
解得或6,
答,经过4秒或6秒,点A,B之间的距离等于3个单位长度;
(2)解:由(1)知:点A,B到原点距离之和为,
当时,,
∵,
∴,即,
当时,,
∵,
∴,即,
当时,,
∵,
∴,即,
综上,,
∴点A,B到原点距离之和的最小值为3.
12.(2025·湖北·中考真题)幻方起源于中国,月历常用于生活,它们有很多奥秘,探究并完成填空.
主题 探究月历与幻方的奥秘
活动一 图1是某月的月历,用方框选取了其中的9个数. (1)移动方框,若方框中的部分数如图2所示,则是______,是______; (2)移动方框,若方框中的部分数如图3所示,则是______,是______; (注:用含的代数式表示和.)
活动二 移动方框选取月历中的9个数,调整它们的位置,使其满足“三阶幻方”分布规律:每一横行、每一竖列以及两条斜对角线上的三个数的和都相等. (3)若方框选取的数如图4所示,调整后,部分数的位置如图5所示,则是______,是______; (4)若方框选取的数中最小的数是,调整后,部分数的位置如图6所示,则是______(用含的代数式表示).
【答案】(1)(2)(3)11,3(4)
【分析】本题考查列代数式,解一元一次方程,找准等量关系,正确的列出代数式和方程,是解题的关键:
(1)观察日历表中方框中的数字之间的数量关系,列出算式求解即可;
(2)观察日历表中方框中的数字之间的数量关系,列出算式求解即可;
(3)根据幻方的特点,列出算式,进行求解即可;
(4)先根据是最小数,表示出其它的数,根据幻方的特点,列出方程,进行求解即可.
【详解】解:(1)由图可知:;
故答案为:;
(2)由图可知:;
故答案为:;
(3)由题意,得:,;
故答案为:11,3;
(4)∵最小的数为,则剩余的数为:,
∴,
解得:;
故答案为:.
13.(2025·吉林·中考真题)《孙子算经》中记载了这样一道题:今有三人共车,二车空:二人共车,九人步.问车几何?其译文为:有若干人乘车,若每3人同乘一车,最终剩余2辆空车;若每2人同乘一车,最终剩下9人因无车可乘而步行.问有多少辆车?为解决此问题,设共有x辆车,可列方程为 .
【答案】
【分析】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.
根据人数不变,即可得出关于x的一元一次方程,即可求解.
【详解】解:依题意,得:,
故答案为:.
考点03 解二元一次方程组
1.(2025·山西·中考真题)(1)计算:
(2)解方程组:
【答案】(1);(2)
【分析】本题考查了含乘方的有理数的混合运算,解二元一次方程组等知识,正确进行运算是解题的关键;
(1)依次计算绝对值、乘方与括号,最后计算加减即可;
(2)利用加减消元法,两式相加消去未知数y,求得未知数x的值,再求出y的值即可.
【详解】解:(1)原式


(2)解:①+②,得,

将代入②,得,

所以原方程组的解是.
2.(2025·四川凉山·中考真题)若,则的平方根是( )
A.8 B. C. D.
【答案】C
【分析】本题考查非负性,解二元一次方程组,求一个数的平方根,利用二次根式的性质进行化简,先根据非负性,得到关于的二元一次方程组,两个方程相减后求出的值,再根据平方根的定义,进行求解即可.熟练掌握非负性,平方根的定义,是解题的关键.
【详解】解:∵,
∴,
,得:,
∴的平方根是;
故选:C.
3.(2024·内蒙古呼伦贝尔·中考真题)点在直线上,坐标是二元一次方程的解,则点的位置在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
【答案】D
【分析】本题考查了一次函数图象上点的特征,解二元一次方程组等知识,联立方程组 ,求出点P的坐标即可判断.
【详解】解∶ 联立方程组,
解得,
∴P的坐标为,
∴点P在第四象限,
故选∶D.
4.(2024·浙江·中考真题)解方程组:
【答案】
【分析】此题考查了解二元一次方程组,利用①×3+②得,,解得,再把代入①求出即可.
【详解】解:
①×3+②得,
解得,
把代入①得,
解得

5.(2023·江苏南通·中考真题)若实数,,满足,,则代数式的值可以是( )
A. B. C. D.
【答案】D
【分析】联立方程组,解得,设,然后根据二次函数的性质,即可求解.
【详解】解:依题意,,
解得:



∴有最大值,最大值为
故选:D.
【点睛】本题考查了二次函数的性质,解二元一次方程组,熟练掌握二次函数的性质是解题的关键.
考点04 二元一次方程组的应用——古代问题
1.(2025·四川眉山·中考真题)我国古代算书《四元玉鉴》里有这样一道题:“九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个?”其大意是:用九百九十九文钱共买了一千个甜果和苦果,其中十一文钱可以买甜果九个,四文钱可以买苦果七个,问甜果苦果各买几个?若设买甜果x个,苦果y个,根据题意可列方程组为( )
A. B.
C. D.
【答案】C
【分析】本题考查根据实际问题列方程组,设买甜果x个,苦果y个,根据用九百九十九文钱共买了一千个甜果和苦果,其中十一文钱可以买甜果九个,四文钱可以买苦果七个,列出方程组即可.
【详解】解:设甜果x个,苦果y个,
∵用九百九十九文钱共买了一千个甜果和苦果,故可列方程为:
∵甜果9个11文,苦果7个4文,
∴甜果每个单价为文,苦果每个单价为文,
∵总费用为999文,故可列方程为:;
故可列方程组:;
故选C.
2.(2024·四川南充·中考真题)在明朝程大位《算法统宗》中有首住店诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗的大意是:一些客人到李三公的店中住宿,如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.设该店有客房x间,房客y人,则可列方程组为( )
A. B.
C. D.
【答案】A
【分析】本题考查了由实际问题抽象出二元一次方程组.设该店有客房x间,房客y人;每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间客房得出方程组即可.
【详解】解:设该店有客房x间,房客y人;根据题意得:

故选:A.
3.(2024·天津·中考真题)《孙子算经》是我国古代著名的数学典籍,其中有一道题:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳度之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长尺,绳子长尺,则可以列出的方程组为( )
A. B.
C. D.
【答案】A
【分析】本题考查的是二元一次方程组的应用.用一根绳子去量一根长木,绳子剩余4.5尺可知:;绳子对折再量长木,长木剩余1尺可知:;从而可得答案.
【详解】解:由题意可得方程组为:

故选:A.
4.(2024·四川成都·中考真题)中国古代数学著作《九章算术》中记载了这样一个题目:今有共买琎,人出半,盈四;人出少半,不足三.问人数,琎价各几何?其大意是:今有人合伙买琎石,每人出钱,会多出4钱;每人出钱,又差了3钱.问人数,琎价各是多少?设人数为,琎价为,则可列方程组为( )
A. B. C. D.
【答案】B
【分析】本题主要考查了列二元一次方程组,根据题意列出二元一次方程组即可.
【详解】解:设人数为,琎价为,
根据每人出钱,会多出4钱可得出,
每人出钱,又差了3钱.可得出,
则方程组为:,
故选:B.
5.(2025·甘肃兰州·中考真题)《九章算术》是中国传统数学最重要的数学著作之一,“方程章”第11题大意是:两匹马一头牛总价超过1万,超过部分等于半匹马的价格;一匹马两头牛的总价不足1万,不足部分等于半头牛的价格,问一匹马、一头牛的价格分别是多少?若设一匹马价格为x,一头牛价格为y,则可列方程组为( )
A. B.
C. D.
【答案】A
【分析】此题考查了二元一次方程组的应用,解题的关键是正确分析题目中的等量关系.设每匹马的价格为x钱,每头牛的价格为y钱,根据题意列出方程即可.
【详解】解:设每匹马的价格为x,每头牛的价格为y,根据题意可得,

故选A.
6.(2024·江苏徐州·中考真题)中国古代数学著作《张邱建算经》中有一道问题;“今有甲、乙怀钱,各不知其数.甲得乙十钱,多乙余钱五倍.乙得甲十钱,适等.问甲、乙怀钱各几何?”问题大意:甲、乙两人各有钱币若干枚.若乙给甲10枚钱,此时甲的钱币数比乙的钱币数多出5倍,即甲的钱币数是乙钱币数的6倍;若甲给乙10枚钱,此时两人的钱币数相等.问甲、乙原来各有多少枚钱币?请用二元一次方程组解答上述问题.
【答案】甲、乙原来各有38枚、18枚钱币
【分析】本题考查了二元一次方程组的应用,根据题意找到等量关系列出方程是解决本题的关键.
设甲有钱x枚,乙有钱y枚,根据“甲得乙十钱,多乙余钱五倍.乙得甲十钱,适等”列出方程组,求解即可.
【详解】解:设甲有钱x枚,乙有钱y枚,由题意,得

解这个方程组,得.
答:甲、乙原来各有38枚、18枚钱币.
考点05 二元一次方程组的应用——现代问题
1.(2023·辽宁·中考真题)某礼品店经销A,B两种礼品盒,第一次购进A种礼品盒10盒,B种礼品盒15盒,共花费2800元;第二次购进A种礼品盒6盒,B种礼品盒5盒,共花费1200元
(1)求购进A,B两种礼品盒的单价分别是多少元;
(2)若该礼品店准备再次购进两种礼品盒共40盒,总费用不超过4500元,那么至少购进A种礼品盒多少盒?
【答案】(1)A礼品盒的单价是100元,B礼品盒的单价是120元;
(2)至少购进A种礼品盒15盒.
【分析】(1)设A礼品盒的单价是a元,B礼品盒的单价是b元,根据题意列方程组即可得到结论;
(2)设购进A礼品盒x盒,则购进B礼品盒盒,根据题意列不等式即可得到结论.
【详解】(1)解:设A礼品盒的单价是a元,B礼品盒的单价是b元,
根据题意得:,
解得:,
答:A礼品盒的单价是100元,B礼品盒的单价是120元;
(2)解:设购进A礼品盒x盒,则购进B礼品盒盒,
根据题意得:,
解得:,
∵x为整数,
∴x的最小整数解为15,
∴至少购进A种礼品盒15盒.
【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,正确的理解题意是解题的关键.
2.(2025·广西·中考真题)自2025年5月9日起至2025年12月31日,周末自驾游广西的外省籍小客车,可享受高速公路车辆通行费(以下简称高速费)优惠.小悦一家5月中旬从湖南自驾到广西探亲游玩,此次全程所产生的高速费享受的优惠如下:
湖南境内路段 广西境内特定路段 广西境内其他路段
周一至周四 9.5折
周五至周日 9.5折 全免 5折
(1)周六小悦一家从湖南Z市到广西A市,所经湖南境内路段、广西境内特定路段和其他路段的高速费原价分别为a元、b元和c元.求此行程的高速费实付多少元?
(2)周日他们从A市到K市(全程在广西境内),高速费实付27.55元;周一从K市原路返回到A市,高速费实付95.95元.求此行程中A市与K市间广西境内特定路段和其他路段的单程高速费原价分别是多少元.
【答案】(1)
(2)特定路段和其他路段的单程高速费原价分别是元和元
【分析】本题考查了代数式、二元一次方程组:
(1)根据题意列出代数式即可;
(2)根据题意列出方程组求解即可.
【详解】(1)此次行程高速费原价总共为:元
实际支付高速费用:元
(2)解:设特定路段和其他路段的单程高速费原价分别元和元
解得:
故此行程中市与市间广西境内特定路段和其他路段的单程高速费原价分别是元和元.
3.(2025·江西·中考真题)系文物考古研究院用复原的青铜蒸馏器进行了蒸馏酒实验.用复原的青铜蒸馏器蒸馏粮食酒和芋头酒,需要的原材料与出酒率()如下表:
类别 原材料 出酒率
粮食酒 粮食糟醅(含大米、糯米、谷壳、大曲和蒸馏水 30%
芋头酒 芋头糟醅(含芋头、小曲和蒸馏水) 20%
如果第一次实验分别蒸馏出粮食酒和芋头酒共16公斤;第二次实验分别蒸馏出粮食酒和芋头酒共36公斤,且所用的粮食糟醅量是第一次的2倍,芋头糟醅量是第一次的3倍.
(1)求第一次实验分别用了多少公斤粮食糟醅和芋头糟醅?
(2)受限于当时的生产条件,古代青铜装馏器的出酒量约为现代复原品的80%.若粮食糟醅中大米占比约为,请问,在古代要想蒸馏出这两次实验得到的粮食酒总量,需要准备多少公斤大米?
【答案】(1)第一次实验用粮食糟醅和芋头糟醅的质量分别是40、20公斤.
(2)需要准备公斤大米.
【分析】本题主要考查了二元一次方程组、一元一次方程的应用等知识点,审清题意、正确列出方程组和方程是解题的关键.
(1)第一次实验用粮食糟醅和芋头糟醅的质量分别是x、y公斤,则第一次实验用粮食糟醅和芋头糟醅的质量分别是公斤,然后根据题意列二元一次方程组求解即可;
(2)先求出两次得到粮食酒的总质量,设需要准备z公斤大米,则粮食糟醅的质量为,再根据题意列一元一次方程求解即可.
【详解】(1)解:第一次实验用粮食糟醅和芋头糟醅的质量分别是x、y公斤,则第一次实验用粮食糟醅和芋头糟醅的质量分别是公斤,
由题意可得:,解得:.
答:第一次实验用粮食糟醅和芋头糟醅的质量分别是40、20公斤.
(2)解:两次实验得到的粮食酒总量为公斤,
设需要准备z公斤大米,则粮食糟醅的质量为,
由题意可得:,解得:千克.
答:需要准备公斤大米.
4.(2023·山西·中考真题)风陵渡黄河公路大桥是连接山西、陕西、河南三省的交通要塞.该大桥限重标志牌显示,载重后总质量超过30吨的车辆禁止通行.现有一辆自重8吨的卡车,要运输若干套某种设备,每套设备由1个A部件和3个B部件组成,这种设备必须成套运输.已知1个A部件和2个B部件的总质量为2.8吨,2个A部件和3个B部件的质量相等.

(1)求1个A部件和1个B部件的质量各是多少;
(2)卡车一次最多可运输多少套这种设备通过此大桥?
【答案】(1)一个部件的质量为1.2吨,一个部件的质量为0.8吨
(2)6套
【分析】(1)设一个A部件的质量为吨,一个部件的质量为吨.然后根据等量关系“1个A部件和2个B部件的总质量为2.8吨”和“2个A部件和3个B部件的质量相等”列二元一次方程组求解即可;
(2)设该卡车一次可运输套这种设备通过此大桥.根据“载重后总质量超过30吨的车辆禁止通行”列不等式再结合为整数求解即可.
【详解】(1)解:设一个A部件的质量为吨,一个部件的质量为吨.
根据题意,得,
解得.
答:一个A部件的质量为1.2吨,一个部件的质量为0.8吨.
(2)解:设该卡车一次可运输套这种设备通过此大桥.
根据题意,得.
解得.
因为为整数,取最大值,所以.
答:该卡车一次最多可运输6套这种设备通过此大桥.
【点睛】本题主要考查了二元一次方程组的应用、一元一次不等式的应用等知识点,正确列出二元一次方程组和不等式是解答本题的关键.
5.(2025·四川内江·中考真题)2025年春节期间,我国国产动画电影《哪吒之魔童闹海》刷新了中国电影票房的新纪录,商家推出A、B两款“哪吒”文旅纪念品.已知购进A款200个,B款300个,需花费14000元;购进A款100个,B款200个,需花费8000元.
(1)求A、B两款“哪吒”纪念品每个进价分别为多少元?
(2)根据网上预约的情况,如果该商家计划用不超过12000元的资金购进A、B两款“哪吒”纪念品共400个,那么至少需要购进B款纪念品多少个?
(3)在销售中,该商家发现每个A款纪念品售价60元时,可售出200个,售价每增加1元,销售量将减少5个.设每个A款纪念品售价元,W表示该商家销售A款纪念品的利润(单位:元),求W关于a的函数表达式,并求出W的最大值.
【答案】(1)A款“哪吒”纪念品每个进价为40元,B款“哪吒”纪念品每个进价为20元;
(2)至少需要购进B款纪念品200个
(3),W的最大值为4500
【分析】本题主要考查了二元一次方程组的实际应用,二次函数的实际应用,一元一次不等式的实际应用,正确理解题意列出方程组,函数关系式和不等式是解题的关键.
(1)设A款“哪吒”纪念品每个进价为x元,B款“哪吒”纪念品每个进价为y元,根据购进A款200个,B款300个,需花费14000元;购进A款100个,B款200个,需花费8000元建立方程组求解即可;
(2)设需要购进B款纪念品m个,则需要购进A款纪念品个,根据购买资金不超过12000元建立不等式求解即可;
(3)根据题意可得每个A款纪念品的利润为元,销售量为个,据此列出W关于a的二次函数关系式,再利用二次函数的性质求出W的最大值即可.
【详解】(1)解:设A款“哪吒”纪念品每个进价为x元,B款“哪吒”纪念品每个进价为y元,
由题意得,,
解得,
答:A款“哪吒”纪念品每个进价为40元,B款“哪吒”纪念品每个进价为20元;
(2)解:设需要购进B款纪念品m个,则需要购进A款纪念品个,
由题意得,,
解得,
∴m的最小值为200,
答:至少需要购进B款纪念品200个;
(3)解:由题意得,

∵,
∴当,即时,W最大,最大值为4500.
6.(2025·湖南长沙·中考真题)为落实科技兴农政策,某乡办食品企业应用新科技推动农产品由粗加工向精加工转变.根据市场需求,该食品企业将收购的农产品加工成A,B两种等级的农产品对外销售,已知销售6千克A等级农产品和4千克B等级农产品共收入元,销售4千克A等级农产品和2千克B等级农产品共收入元.(不考虑加工损耗)
(1)求每千克A等级农产品和每千克B等级农产品的销售单价分别为多少元?
(2)若该食品企业以每千克8元购进千克农产品,全部加工后对外销售,要求总利润不低于元,则至少需加工A等级农产品多少千克?
【答案】(1)A等级农产品每千克销售单价为元,B等级农产品每千克销售单价为元
(2)要求总利润不低于元,则至少需加工A等级农产品千克
【分析】本题考查了二元一次方程组、一元一次不等式在实际问题中的应用,正确理解题意即可.
(1)设A等级农产品每千克销售单价为元,B等级农产品每千克销售单价为元,由题意得即可求解;
(2)设需加工A等级农产品千克,则需加工B等级农产品千克,由题意得.即可求解;
【详解】(1)解:设A等级农产品每千克销售单价为元,B等级农产品每千克销售单价为元,
由题意得解得
答:A等级农产品每千克销售单价为元,B等级农产品每千克销售单价为元.
(2)解:设需加工A等级农产品千克,则需加工B等级农产品千克,
由题意得.
解得,
答:要求总利润不低于元,则至少需加工A等级农产品千克.
7.(2023·湖北恩施·中考真题)为积极响应州政府“悦享成长·书香恩施”的号召,学校组织150名学生参加朗诵比赛,因活动需要,计划给每个学生购买一套服装.经市场调查得知,购买1套男装和1套女装共需220元;购买6套男装与购买5套女装的费用相同.
(1)男装、女装的单价各是多少?
(2)如果参加活动的男生人数不超过女生人数的,购买服装的总费用不超过17000元,那么学校有几种购买方案?怎样购买才能使费用最低,最低费用是多少?
【答案】(1)男装单价为100元,女装单价为120元.
(2)学校有11种购买方案,当女装购买90套,男装购买60套时,所需费用最少,最少费用为16800元
【分析】(1)设男装单价为x元,女装单价为y元,根据题意列方程组求解即可;
(2)设参加活动的女生有a人,则男生有人,列不等式组找到a的取值范围,再设总费用为w元,得到w与a的关系,根据一次函数的性质可得当a取最小值时w有最小值,据此求解即可.
【详解】(1)解:设男装单价为x元,女装单价为y元,
根据题意得:,
解得:.
答:男装单价为100元,女装单价为120元.
(2)解:设参加活动的女生有a人,则男生有人,
根据题意可得,
解得:,
∵a为整数,
∴a可取90,91,92,93,94,95,96,97,98,99,100,一共11个数,
故一共有11种方案,
设总费用为w元,则,
∵,
∴当时,w有最小值,最小值为(元).
此时,(套).
答:当女装购买90套,男装购买60套时,所需费用最少,最少费用为16800元.
【点睛】本题考查二元一次方程组和一元一次不等式组的应用,找到题中的等量关系或不等关系是解题的关键.
8.(2023·西藏·中考真题)列方程(组)解应用题:如图,巴桑家客厅的电视背景墙是由块形状大小相同的长方形墙砖砌成.

(1)求一块长方形墙砖的长和宽;
(2)求电视背景墙的面积.
【答案】(1),;
(2).
【分析】(1)首先设一块长方形墙砖的长为,宽为,然后用的代数式分别表示出长方形的两条长边分别为,,宽为,进而根据长方形的性质列出方程组,解方程组即可得出答案;
(2)根据长方形的面积计算公式即可得出答案.
【详解】(1)解:设一块长方形墙砖的长为,宽为.
依题意得:

解得:

答:一块长方形墙砖的长为,宽为.
(2)求电视背景墙的面积为:.
答:电视背景墙的面积为.
【点睛】此题主要考查了二元一次方程组的实际应用,长方形的性质,根据长方形的两组对边分别相等列出方程组是解答此题的关键.
9.(2025·江苏连云港·中考真题)如图,制作甲、乙两种无盖的长方体纸盒,需用正方形和长方形两种硬纸片,且长方形的宽与正方形的边长相等.
(1)现用200张正方形硬纸片和400张长方形硬纸片,恰好能制作甲、乙两种纸盒各多少个
(2)如果需要制作100个长方体纸盒,要求乙种纸盒数量不低于甲种纸盒数量的一半,那么至少需要多少张正方形硬纸片
【答案】(1)恰好能制作甲种纸盒40个,乙种纸盒80个
(2)至少需要134张正方形硬纸片
【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用,正确掌握相关性质内容是解题的关键.
(1)先设恰好能制作甲种纸盒x个,乙种纸盒y个.结合题意列出方程组,再解得,即可作答.
(2)先设制作乙种纸盒m个,需要w张正方形硬纸片.根据题意列出,结合,得,其中最小整数解为34.运用一次函数的图象性质进行分析作答即可.
【详解】(1)解:制作甲、乙两种无盖的长方体纸盒,甲种需要1个正方形,4个长方形,乙种需要2个正方形,3个长方形,
设恰好能制作甲种纸盒x个,乙种纸盒y个.
根据题意,得,
得,
答:恰好能制作甲种纸盒40个,乙种纸盒80个.
(2)解:设制作乙种纸盒m个,需要w张正方形硬纸片.
则.
由,知w随m的增大而增大,
∴当m最小时,w有最小值.
根据题意,得,
解得,
其中最小整数解为34.
即当时,.
答:至少需要134张正方形硬纸片.
考点06 求参数
1.(2025·四川遂宁·中考真题)已知是方程的解,则 .
【答案】2
【分析】本题考查了一元一次方程的解,以及解一元一次方程,理解题意,把代入,解得,即可作答.
【详解】解:∵是方程的解,
∴把代入,得,
∴,
∴,
故答案为:2
2.(2024·江苏宿迁·中考真题)若关于x、y的二元一次方程组的解是,则关于x、y的方程组的解是 .
【答案】
【分析】本题考查二元一次方程组的解,解二元一次方程组,把,代入,得到,整体代入中,得到方程组,加减消元法解方程组即可.
【详解】解:把代入,得:,
∵,
∴,即:,
,得:,
∵方程组有解,
∴,
∴,
把代入①,得:,解得:;
∴方程组的解集为:;
故答案为:.
3.(2023·四川眉山·中考真题)已知关于的二元一次方程组的解满足,则m的值为( )
A.0 B.1 C.2 D.3
【答案】B
【分析】将方程组的两个方程相减,可得到,代入,即可解答.
【详解】解:,
得,

代入,可得,
解得,
故选:B.
【点睛】本题考查了根据解的情况求参数,熟练利用加减法整理代入是解题的关键.
4.(2023·四川南充·中考真题)关于x,y的方程组的解满足,则的值是( )
A.1 B.2 C.4 D.8
【答案】D
【分析】法一:利用加减法解方程组,用表示出,再将求得的代数式代入,得到的关系,最后将变形,即可解答.
法二:中得到,再根据求出代入代数式进行求解即可.
【详解】解:法一:,
得,
解得,
将代入,解得,


得到,

法二:
得:,即:,
∵,
∴,

故选:D.
【点睛】本题考查了根据二元一次方程解的情况求参数,同底数幂除法,幂的乘方,熟练求出的关系是解题的关键.
5.(2023·四川泸州·中考真题)关于,的二元一次方程组的解满足,写出的一个整数值 .
【答案】7(答案不唯一)
【分析】先解关于x、y的二元一次方程组的解集,再将代入,然后解关于a的不等式的解集即可得出答案.
【详解】将两个方程相减得,
∵,
∴,
∴,
∵,
∴,
∴,
∴的一个整数值可以是7.
故答案为:7(答案不唯一).
【点睛】本题主要考查了解二元一次方程组和解一元一次不等式,整体代入的思想方法是解答本题的亮点.
同课章节目录