截面最值 复习讲义--北师大版(2019)高中数学必修二

文档属性

名称 截面最值 复习讲义--北师大版(2019)高中数学必修二
格式 zip
文件大小 4.5MB
资源类型 试卷
版本资源 北师大版(2019)
科目 数学
更新时间 2025-08-14 22:04:09

文档简介

中小学教育资源及组卷应用平台
立体几何中的截面问题
知识点一 截面问题的基本思路
1.定义相关要素
①用一个平面去截几何体,此平面与几何体的交集,叫做这个几何体的截面.
②此平面与几何体表面的交集(交线)叫做截线.
③此平面与几何体的棱(或面)的交集(交点) 叫做实截点.
④此平面与几何体的棱(或面)的延长线的交点叫做虚截点.
⑤截面中能够确定的一部分平面叫做截小面.
2.作截面的基本逻辑:找截点→连截线→围截面
3.作截面的具体步骤
(1)找截点:方式1:延长截小面上的一条直线,与几何体的棱、面(或其延长部分)相交,交点即截点
方式2:过一截点作另外两截点连线的平行线,交几何体的棱于截点
(2)连截线:连接同一平面内的两个截点,成截线
(3)围截面:将各截线首尾相连,围成截面
知识点二 作截面的几种方法
平行线法:过直线与直线外一点作截面,拖直线所在的面与点所在的平面平行,可以通过过点找直线的平行线找到几何体的截面的交线。
延长线法:同一个平面有两个点,可以连线并延长至与其他平面相交找到交点。
模型演练:如下图E、F是中点,找到平面与正方体的截面。
方法:两点成线相交法或者平行法
特征:1.三点中,有两点连线在表面上.本题如下图是EF(这类型的关键);
2.“第三点”是在外棱上,如C1,注意:此时合格C1点特殊,在于它是几何体顶点,实际上无论它在何处,只要在棱上就可以.
方法一:相交法,做法如下图. 方法二:平行线法,做法如下图.
3、正方体中的基本截面类型
【题型一】求截面的面积
【例1】在正方体中,棱长为3,E为棱上靠近的三等分点,则平面截正方体的截面面积为( )
A. B. C. D.
【答案】C
【详解】延长交于点,连接交于点,如图,
在正方体中,面面,
面面,面面
,又
四边形是梯形,且为平面截正方体的截面.
又,在等腰梯形中,过作,
.
故选:C.
【例2】如图,正方体的棱长为为的中点,为棱上的动点,过点的平面截该正方体所得的截面记为S,则下列命题正确的是 .(请写出所有正确命题的编号)
①当时,S为等腰梯形;
②当时,S与的交点满足;
③当时,S为六边形;
④当时,S的面积为.
【答案】①②④
【详解】当时,S为等腰梯形,理由如下:
如图1,连接,,因为为的中点,为上的中点,
所以∥,
所以四边形为S,其中,
所以S为等腰梯形,①正确;
当时,S与的交点满足,理由如下:
如图2,延长至点E,使得,连接EA,EQ交于点R,
取AD中点N,DE中点M,连接MQ,MN,PN,
则,DN=CP,
所以四边形CQMD与四边形PCDN均为平行四边形,
所以MQ∥NP∥CD,且MQ=NP=CD,所以四边形MNPQ为平行四边形,
所以PQ∥MN,由中位线的性质可知:MN∥AE,所以PQ∥AE,
所以四边形AEQP即为S,其中,
所以,所以,②正确;
当时,S为五边形,理由如下:
如图3,根据②的分析,随着Q点在图2的基础上沿着向上移动,
则点E点沿着射线向上移动,此时AE与相交于点G,
EQ与相交于点R,连接GR,故所截得的S为五边形,故③错误;
当时,S的面积为,理由如下:
如图4,点Q与重合,此时G为的中点,可证得:∥,AP∥GQ,
其中,所以S为菱形APQG,
且,S的面积为,④正确.
故答案为:①②④
【例3】正三棱柱中,所有棱长均为2,点、分别为棱、的中点,若过点、、作一截面,则截面的周长为 .
【答案】
【详解】如下图所示,将正三棱柱扩大成正三棱柱,
其中,
则点E为AH1的中点,点F为AC2的中点,设 ,则 ,
所以过点A、E、F的截面为AEGF,
因为和均为两直角边分别为2, 1的直角三角形,所以,
在中,连接H1F交于,则为的重心,
所以,因为,
所以,
又因为平面,所以三角形为直角三角形,且,所以,所以截面的周长为.
故答案为:.
变式1 在棱长为2的正方体中,若E为棱的中点,则平面截正方体的截面面积为 .
变式2 正三棱柱ABC﹣A1B1C1中,所有棱长均为2,点E,F分别为棱BB1,A1C1的中点,若过点A,E,F作一截面,则截面的周长为(  )
A.2+2 B. C. D.
变式3 已知正四棱锥的体积为,底面的面积为,点、分别为、的中点,点为的靠近点的三等分点,过点、、的平面将该四棱锥分成上、下两部分,截面形状为四边形,则该四边形的面积为( )
A. B. C. D.
【例4】在三棱锥中,平面,,,,点F为棱AV上一点,过点F作三棱锥的截面,使截面平行于直线VB和AC,当该截面面积取得最大值时,( )
A. B.
C. D.
【答案】B
【详解】根据题意,在平面VAC内,过点F作,交VC于点E;
在平面VBC内,过点E作,交BC于点Q;
在平面VAB内,过点F作,交AB于点D,连接DQ,如图所示,
因为,则∽,设其相似比为k,即,
则;
又因为,,,
由余弦定理得,,则,即.
又平面,平面,所以,.
又,则,.
因为,则∽,则,
因为,所以,即,同理可得,即,
因为,,则,
故四边形为平行四边形;而平面,平面,
故平面,同理平面,即四边形为截面图形;
又平面,平面,则,又,所以.
故平行四边形为矩形,则,
所以当时,有最大值,则,
在中,,
故选:B
变式4 在三棱锥ABCD中,对棱,当平面α与三棱锥ABCD的某组对棱均平行时,则三棱锥ABCD被平面α所截得的截面面积最大值为 .
【题型二】圆锥的截面问题
【例5】圆锥的母线长为4,侧面积是底面积的倍,过圆锥的两条母线作圆锥的截面,则该截面面积的最大值是( )
A.8 B. C. D.
【答案】A
【详解】设圆锥底面半径为r,母线为l,轴截面顶角为,则,得,
所以,因为为锐角,所以,即,则θ为钝角,
所以当圆锥两条母线互相垂直时,截面面积最大,最大值为,故选:A.
【例6】已知圆锥顶点为P,底面的中心为O,过直线OP的平面截该圆锥所得的截面是面积为的正三角形,则该圆锥的体积为 .
【答案】
【详解】由题意,过直线的平面截该圆锥所得的截面是面积为的正三角形,
设正三角形的边长为,可得,解得,
∴底面圆的半径为,圆锥的高为,所以该圆锥的体积.
【例7】若过圆锥的轴的截面为边长为4的等边三角形,正方体的顶点,,,在圆锥底面上,,,,在圆锥侧面上,则该正方体的棱长为( )
A. B. C. D.
【答案】C
【详解】根据题意过顶点和正方体上下两个平面的对角线作轴截面如下所示:
所以,,所以,,
为矩形,设,所以,所以,
所以,即,即,解得.
故选:C.
变式5 某圆锥母线长为,底面半径为,则过该圆锥顶点的平面截此圆锥所得截面面积的最大值为( )
A. B. C. D.
变式6 某圆锥的底面半径为1,高为3,在该圆锥内部放置一个正三棱柱,则该正三棱柱体积的最大值为 .
变式7 已知圆台的上、下底面半径分别为r,R,高为h,平面经过圆台的两条母线,设截此圆台所得的截面面积为S,则( )
A.当时,S的最大值为
B.当时,S的最大值为
C.当时,S的最大值为
D.当时,S的最大值为
【题型三】先做垂面再找截面
【例8】已知正方体的棱长为4,M,N分别是侧面和侧面的中心,过点M的平面与直线ND垂直,平面截正方体所得的截面记为S,则S的面积为( )
A. B. C. D.
【答案】C
【详解】正方体的棱长为4,建立如图所示的空间直角坐标系,
侧面的中心,侧面的中心,而,有,
显然点M在平面与平面的交线上,设为这条交线上任意一点,
,而平面,则,
即,令,得点,令,得点,连,
平面与平面必相交,设为这条交线上任意一点,,
由,即,令,得点,连,
因为平面平面,则平面与平面的交线过点G,与直线FE平行,
过G作交于,,
由得,即,显然平面与平面都相交,
则平面与直线相交,令交点为,,由得,
连接得截面五边形,即截面为五边形,
,取中点,连接,则,
在中,,
的面积,
在中,,
边上的高,
梯形面积,
所以S的面积为.
故选:C
变式8 已知正方体的棱长为2,点为线段的中点,若点平面,且平面,则平面截正方体所得截面的周长为( )
A. B. C. D.
【题型四】球的截面
【例9】已知三棱锥的所有棱长均为3,球O与棱PA,PB,PC都相切,且平面ABC被球O截得的截面面积为,则球O的半径为( ).
A.1 B. C. D.或
【答案】B
【详解】过点P向底面ABC作垂线,垂足为,连接,则球心O在线段或其延长线上,
为正的中心,则,.
设球O的半径为R,因为球O截平面ABC所得的截面面积为,
所以截面圆的半径为,所以,.
过O作PA的垂线,垂足为D,则,
∽,所以.
①当点O在线段上时,,即,
则,且,解得;
②当点O在线段的延长线上时,,即,
则,且,解得或,
当时,点O,重合,此时点O不在线段的延长线上,故舍去;
当时,切点D不在棱PA上,不符合题意.综合①②可知,,
故选:B.
变式9 若球是正三棱锥的外接球,,点在线段上,,过点作球的截面,则所得的截面中面积最小的截面的面积为( )
B. C. D.
变式10在三棱锥中,,平面平面,三棱锥的所有顶点都在球的球面上,分别在线段上运动(端点除外),.当三棱锥的体积最大时,过点作球的截面,则截面面积的最小值为( )
A. B. C. D.
【例11】已知正方体的棱长为,为棱上的一点,且满足平面平面,则平面截四面体的外接球所得截面的面积为( )
A. B. C. D.
【答案】
【详解】在正方体中,设平面平面,且平面,
由平面平面,可得,所以是的中点,
又四面体的外接球的直径为,可得半径,
设是的中点即球心,球心到平面的距离为,
又设与的交点为,则,则,
则,则截面圆的半径,
所以截面圆的面积为.
故选:A.
【例12】在矩形中,,将沿对角线翻折至的位置,使得平面平面,则在三棱锥的外接球中,以为直径的截面到球心的距离为( )
A. B. C. D.
【答案】B
【详解】如图,取的中点为,连接,过作,垂足为,连接.
因为三角形为直角三角形,故,
同理,故,
所以为三棱锥的外接球的球心,而,
因为,平面,平面平面,
平面平面,故平面,
而平面,故.
在直角三角形中,,故,故,
在直角三角形中,,
故,故.
设球心到以为直径的截面的距离为,
则,
故选:B.
变式11传说古希腊数学家阿基米德的墓碑上刻着“圆柱容球”,即:一个圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等.如图是一个圆柱容球,为圆柱上下底面的圆心,为球心,为底面圆的一条直径,若球的半径,则平面DEF截球所得的截面面积最小值为( )

A. B. C. D.
变式12 已知三棱锥中,Q为BC中点,,侧面底面,则过点Q的平面截该三棱锥外接球所得截面面积的取值范围为 .
【例13】已知正方体的棱长为,连接正方体各个面的中心得到一个八面体,以正方体的中心为球心作一个半径为的球,则该球的球面与八面体各面的交线的总长为( )
A. B. C. D.
【答案】B
【详解】如图所示,为的中点,为正方体的中心,过作的垂线交于点,正八面体的棱长为2,即,故,,,则,
设球与正八面体的截面圆半径为,如图所示,则,
由于,,所以,则,平面与球的交线所对应的圆心角恰为,则该球的球面与八面体各面的交线的总长为
故选:B
课后作业
在正方体中,M为AB中点,N为BC中点,P为线段上一动点(不含C)过M、N、P与正方体的截面记为,则下面三个判断,其中正确判断的序号有______.
①当P为中点时,截面为六边形;
②当时,截面为五边形;
③当截面为四边形时,它一定是等腰梯形;
已知正方体的棱长为2,M、N分别为、的中点,过 、的平面所得截面为四边形,则该截面最大面积为( )
A. B. C. D.
如图,正方体的一个截面经过顶点及棱上一点,截面将正方体分成体积比为的两部分,则的值为
在棱长为的正方体中,点分别是、、的中点,则过线段且平行于平面的截面图形的周长为 .
如图,在棱长为1的正方体中,分别为棱的中点,过作该正方体外接球的截面,所得截面的面积的最小值为( )

B. C. D.
已知球O是正三棱锥(底面是正三角形,顶点在底面的射影为底面中心)的外接球,,,点E是线段BC的中点,过点E作球O的截面,则所得截面面积的最小值是( )
B. C. D.
已知四棱锥的各个顶点都在球O的表面上,PA⊥平面ABCD,底面ABCD是等腰梯形,,,,,M是线段AB上一点,且.过点M作球O的截面,所得截面圆面积的最小值为,则= .
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
立体几何中的截面问题
一、截面问题的基本思路
1.定义相关要素
①用一个平面去截几何体,此平面与几何体的交集,叫做这个几何体的截面.
②此平面与几何体表面的交集(交线)叫做截线.
③此平面与几何体的棱(或面)的交集(交点)叫做实截点.
④此平面与几何体的棱(或面)的延长线的交点叫做虚截点.
⑤截面中能够确定的一部分平面叫做截小面.
2.作截面的基本逻辑:找截点→连截线→围截面
3.作截面的具体步骤
(1)找截点:方式1:延长截小面上的一条直线,与几何体的棱、面(或其延长部分)相交,交点即截点
方式2:过一截点作另外两截点连线的平行线,交几何体的棱于截点
(2)连截线:连接同一平面内的两个截点,成截线
(3)围截面:将各截线首尾相连,围成截面
二、作截面的几种方法
(1)平行线法:过直线与直线外一点作截面,拖直线所在的面与点所在的平面平行,可以通过过点找直线的平行线找到几何体的截面的交线。
(2)延长线法:同一个平面有两个点,可以连线并延长至与其他平面相交找到交点。
模型演练:如下图E、F是几等分点,不影响作图。可以先默认为中点,等完全理解了,再改成任意等分点
方法:两点成线相交法或者平行法
特征:1.三点中,有两点连线在表面上.本题如下图是EF(这类型的关键);
2.“第三点”是在外棱上,如C1,注意:此时合格C1点特殊,在于它是几何体顶点,实际上无论它在何处,只要在棱上就可以.
方法一:相交法,做法如下图. 方法二:平行线法,做法如下图.
三、正方体中的基本截面类型
【题型一】求截面的面积
【例1】在正方体中,棱长为3,E为棱上靠近的三等分点,则平面截正方体的截面面积为( )
A. B. C. D.
【答案】C
【详解】延长交于点,连接交于点,如图,
在正方体中,面面,
面面,面面
,又
四边形是梯形,且为平面截正方体的截面.
又,在等腰梯形中,过作,
.
故选:C.
【例2】如图,正方体的棱长为为的中点,为棱上的动点,过点的平面截该正方体所得的截面记为S,则下列命题正确的是 .(请写出所有正确命题的编号)
①当时,S为等腰梯形;
②当时,S与的交点满足;
③当时,S为六边形;
④当时,S的面积为.
【答案】①②④
【详解】当时,S为等腰梯形,理由如下:
如图1,连接,,因为为的中点,为上的中点,
所以∥,
所以四边形为S,其中,
所以S为等腰梯形,①正确;
当时,S与的交点满足,理由如下:
如图2,延长至点E,使得,连接EA,EQ交于点R,
取AD中点N,DE中点M,连接MQ,MN,PN,
则,DN=CP,所以四边形CQMD与四边形PCDN均为平行四边形,
所以MQ∥NP∥CD,且MQ=NP=CD,所以四边形MNPQ为平行四边形,
所以PQ∥MN,由中位线的性质可知:MN∥AE,所以PQ∥AE,
所以四边形AEQP即为S,其中,
所以,所以,②正确;
当时,S为五边形,理由如下:
如图3,根据②的分析,随着Q点在图2的基础上沿着向上移动,
则点E点沿着射线向上移动,此时AE与相交于点G,
EQ与相交于点R,连接GR,故所截得的S为五边形,故③错误;
当时,S的面积为,理由如下:
如图4,点Q与重合,此时G为的中点,可证得:∥,AP∥GQ,
其中,所以S为菱形APQG,
且,S的面积为,④正确.
故答案为:①②④
【例3】正三棱柱中,所有棱长均为2,点、分别为棱、的中点,若过点、、作一截面,则截面的周长为 .
【答案】
【详解】如下图所示,将正三棱柱扩大成正三棱柱,
其中,
则点E为AH1的中点,点F为AC2的中点,设 ,则 ,
所以过点A、E、F的截面为AEGF,
因为和均为两直角边分别为2, 1的直角三角形,所以,
在中,连接H1F交于,则为的重心,
所以,因为,
所以,
又因为平面,所以三角形为直角三角形,且,所以,所以截面的周长为.
故答案为:.
变式1 在棱长为2的正方体中,若E为棱的中点,则平面截正方体的截面面积为 .
【答案】
【详解】如图,在正方体中,
平面平面,
平面与平面的交线必过且平行于,
故平面经过的中点,连接,得截面,
易知截面是边长为的菱形,其对角线,
,截面面积.
故答案为:.
变式2 正三棱柱ABC﹣A1B1C1中,所有棱长均为2,点E,F分别为棱BB1,A1C1的中点,若过点A,E,F作一截面,则截面的周长为(  )
A.2+2 B. C. D.
【答案】B
【详解】如图,在正三棱柱中,延长AF与CC1的延长线交于M,
连接EM交B1C1于P,连接FP,则四边形AEPF为所求截面.
过E作EN平行于BC交CC1于N,则N为线段CC1的中点,由相似于可得MC1=2,由相似于可得:,
在中,,则,
在中,,则,
在中,,则,
在中,,
由余弦定理:,则,
所以截面周长为:.
故选:B.
变式3 已知正四棱锥的体积为,底面的面积为,点、分别为、的中点,点为的靠近点的三等分点,过点、、的平面将该四棱锥分成上、下两部分,截面形状为四边形,则该四边形的面积为( )
A. B. C. D.
【答案】C
【详解】连接、,设,连接,
易知为正四棱锥的高,连接交于点.
因为点、分别为、的中点,则,
因为,所以,为的中点.
连接并延长交于点,连接、、、,
因为四边形为正方形,则,
因为平面,平面,所以,,
因为,、平面,所以,平面,
因为平面,所以,,则,
四边形为所求的截面四边形,如图1.
因为正四棱锥的体积为,底面的面积为,
所以底面是边长为的正方形,则,
由,可得,
在中,过点作交于点,交于点,
过点作交于点,如图2.
因为,则.
又为的中点,为的中点,所以,,
,,
所以,,
则,,所以,
故,所以,则,得.
故四边形的面积为,
故选:C.
【例4】在三棱锥中,平面,,,,点F为棱AV上一点,过点F作三棱锥的截面,使截面平行于直线VB和AC,当该截面面积取得最大值时,( )
A. B.
C. D.
【答案】B
【详解】根据题意,在平面VAC内,过点F作,交VC于点E;
在平面VBC内,过点E作,交BC于点Q;
在平面VAB内,过点F作,交AB于点D,连接DQ,如图所示,
因为,则∽,设其相似比为k,即,
则;
又因为,,,
由余弦定理得,,则,即.
又平面,平面,所以,.
又,则,.
因为,则∽,则,
因为,所以,即,同理可得,即,
因为,,则,
故四边形为平行四边形;而平面,平面,
故平面,同理平面,即四边形为截面图形;
又平面,平面,则,又,所以.
故平行四边形为矩形,则,
所以当时,有最大值,则,
在中,,
故选:B
变式4 在三棱锥ABCD中,对棱,当平面α与三棱锥ABCD的某组对棱均平行时,则三棱锥ABCD被平面α所截得的截面面积最大值为 .
【答案】3
【详解】因为每组对棱棱长相等,所以可以把三棱锥ABCD放入长方体中,设长宽高分别为x,y,z,则,则.
当平面α与三棱锥ABCD的对棱AB,CD均平行时,截而为四边形EFGH,,,
设,则,,同理,(或其补角)是异面直线所成的角,

其中为定值,
,时,取得最大值,
即截面面积最大,此时是所在棱中点,
由长方体性知最大面积为长方体上下底面面积的一半,
同样地,当平面a与三棱锥ABCD的对棱AC,BD均平行时,截面最大面积为;当平面α与三棱锥ABCD的对棱AD,BC均平行时,截面最大面积为.
故答案为:3.
【题型二】圆锥的截面问题
【例5】圆锥的母线长为4,侧面积是底面积的倍,过圆锥的两条母线作圆锥的截面,则该截面面积的最大值是( )
A.8 B. C. D.
【答案】A
【详解】设圆锥底面半径为r,母线为l,轴截面顶角为,则,得,
所以,
因为为锐角,所以,即,则θ为钝角,
所以当圆锥两条母线互相垂直时,截面面积最大,最大值为.
故选:A.
【例6】已知圆锥顶点为P,底面的中心为O,过直线OP的平面截该圆锥所得的截面是面积为的正三角形,则该圆锥的体积为 .
【答案】
【详解】由题意,过直线的平面截该圆锥所得的截面是面积为的正三角形,
设正三角形的边长为,可得,解得,
∴底面圆的半径为,圆锥的高为,
所以该圆锥的体积为.
故答案为:.
【例7】若过圆锥的轴的截面为边长为4的等边三角形,正方体的顶点,,,在圆锥底面上,,,,在圆锥侧面上,则该正方体的棱长为( )
A. B. C. D.
【答案】C
【详解】根据题意过顶点和正方体上下两个平面的对角线作轴截面如下所示:
所以,,所以,,
为矩形,设,所以,所以,
所以,即,即,解得.
故选:C.
变式5 某圆锥母线长为,底面半径为,则过该圆锥顶点的平面截此圆锥所得截面面积的最大值为( )
A. B. C. D.
【答案】A
【详解】设圆锥顶点为,底面直径为,圆心,另有一任意弦,为的中点,连接、、,
如图,设为过圆锥顶点的截面,
因为底面,,
因为,为的中点,所以,
由题意可知:,,
设,,则,,
所以,,
则,
当且仅当,即时,等号成立,
故过该圆锥顶点的平面截此圆锥所得截面面积的最大值为.
故选:A.
变式6 某圆锥的底面半径为1,高为3,在该圆锥内部放置一个正三棱柱,则该正三棱柱体积的最大值为 .
【答案】
【详解】如图,设正三棱柱上底面外接圆的半径为r,三棱柱的高为h,
根据题意作出圆锥的轴截面,
由可得,则该三棱柱的高,,
则该三棱柱的体积,,
当时,,函数单调递增;当时,,函数单调递减;
所以时,V取得最大值,且最大值为.
故答案为:.
变式7 已知圆台的上、下底面半径分别为r,R,高为h,平面经过圆台的两条母线,设截此圆台所得的截面面积为S,则( )
A.当时,S的最大值为
B.当时,S的最大值为
C.当时,S的最大值为
D.当时,S的最大值为
【答案】D
【详解】如图,将圆台补成圆锥.
设圆台的母线长为,则,等腰梯形为过两母线的截面.
设,由,得,
则,
当时,,当最大,即截面为轴截面时面积最大,
则的最大值为.
当时,,当时,截面面积最大,
则的最大值为.
故选:D.
【题型三】先做垂面再找截面
【例8】已知正方体的棱长为4,M,N分别是侧面和侧面的中心,过点M的平面与直线ND垂直,平面截正方体所得的截面记为S,则S的面积为( )
A. B. C. D.
【答案】C
【详解】正方体的棱长为4,建立如图所示的空间直角坐标系,
侧面的中心,侧面的中心,而,有,
显然点M在平面与平面的交线上,设为这条交线上任意一点,
,而平面,则,
即,令,得点,令,得点,连,
平面与平面必相交,设为这条交线上任意一点,,
由,即,令,得点,连,
因为平面平面,则平面与平面的交线过点G,与直线FE平行,
过G作交于,,
由得,即,显然平面与平面都相交,
则平面与直线相交,令交点为,,由得,
连接得截面五边形,即截面为五边形,
,取中点,连接,则,
在中,,
的面积,
在中,,
边上的高,
梯形面积,
所以S的面积为.
故选:C
变式8 已知正方体的棱长为2,点为线段的中点,若点平面,且平面,则平面截正方体所得截面的周长为( )
A. B. C. D.
【答案】C
【详解】记的中点分别为E,F,连接,
由正方体性质可知,平面,
因为平面,所以
又为正方形,所以
因为,平面,所以平面,
因为平面,所以
因为P,E分别为的中点,所以,所以,
同理可证,
又,平面,所以平面,
所以三角形即为平面截正方体所得截面,
易知三角形为正三角形,,所以截面周长为.
故选:C
【题型四】球的截面
【例9】已知三棱锥的所有棱长均为3,球O与棱PA,PB,PC都相切,且平面ABC被球O截得的截面面积为,则球O的半径为( ).
A.1 B. C. D.或
【答案】B
【详解】过点P向底面ABC作垂线,垂足为,连接,则球心O在线段或其延长线上,
为正的中心,则,.
设球O的半径为R,因为球O截平面ABC所得的截面面积为,
所以截面圆的半径为,所以,.
过O作PA的垂线,垂足为D,则,
∽,所以.
①当点O在线段上时,,即,
则,且,解得;
②当点O在线段的延长线上时,,即,
则,且,解得或,
当时,点O,重合,此时点O不在线段的延长线上,故舍去;
当时,切点D不在棱PA上,不符合题意.综合①②可知,,
故选:B.
变式9 若球是正三棱锥的外接球,,点在线段上,,过点作球的截面,则所得的截面中面积最小的截面的面积为( )
B. C. D.
【答案】A
【详解】如图所示,其中是球心,是等边三角形的中心,
可得,,
设球的半径为,在三角形中,由,
即,解得,即,所以,
因为在中,,,
所以,,,
由题知,截面中面积最小时,截面圆与垂直,
设过且垂直的截面圆的半径为,则,所以,最小的截面面积为.
故选:A
变式10在三棱锥中,,平面平面,三棱锥的所有顶点都在球的球面上,分别在线段上运动(端点除外),.当三棱锥的体积最大时,过点作球的截面,则截面面积的最小值为( )
A. B. C. D.
【答案】C
【详解】如图,取的中点,连接,
因为,所以,即为球心,
则球的半径,又,所以,
又平面平面,平面平面平面.
所以平面,
设,则,所以,
所以三棱锥的体积.
当时,取得最大值,
由于,在中,由余弦定理得:

根据球的性质可知,当垂直于截面时,截面圆的面积最小,
设此时截面圆的半径为,所以.
则截面面积的最小值为.
故选:C.
【例11】已知正方体的棱长为,为棱上的一点,且满足平面平面,则平面截四面体的外接球所得截面的面积为( )
A. B. C. D.
【答案】A
【详解】在正方体中,设平面平面,且平面,
由平面平面,可得,所以是的中点,
又四面体的外接球的直径为,可得半径,
设是的中点即球心,球心到平面的距离为,
又设与的交点为,则,则,
则,则截面圆的半径,
所以截面圆的面积为.
故选:A.
【例12】在矩形中,,将沿对角线翻折至的位置,使得平面平面,则在三棱锥的外接球中,以为直径的截面到球心的距离为( )
A. B. C. D.
【答案】B
【详解】如图,取的中点为,连接,过作,垂足为,连接.
因为三角形为直角三角形,故,
同理,故,
所以为三棱锥的外接球的球心,而,
因为,平面,平面平面,
平面平面,故平面,
而平面,故.
在直角三角形中,,故,故,
在直角三角形中,,
故,故.
设球心到以为直径的截面的距离为,
则,
故选:B.
变式11传说古希腊数学家阿基米德的墓碑上刻着“圆柱容球”,即:一个圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等.如图是一个圆柱容球,为圆柱上下底面的圆心,为球心,为底面圆的一条直径,若球的半径,则平面DEF截球所得的截面面积最小值为( )

A. B. C. D.
【答案】D
【详解】由球的半径为,可知圆柱的底面半径为,圆柱的高为,过作于,
如图所示:则由题可得,
设平面截得球的截面圆的半径为,
当EF在底面圆周上运动时,到平面的距离
所以,
所以平面截得球的截面面积最小值为,故D正确;
故选:D.
变式12 已知三棱锥中,Q为BC中点,,侧面底面,则过点Q的平面截该三棱锥外接球所得截面面积的取值范围为 .
【答案】
【详解】连接,由,可知:和是等边三角形,
设三棱锥外接球的球心为,
所以球心到平面和平面的射影是和的中心,,
是等边三角形,为中点,所以,
又因为侧面底面,侧面底面,侧面,
所以底面,而底面,因此,
所以是矩形,应为和是边长为4的等边三角形,
所以两个等边三角形的高,
在矩形中,,
连接,所以,
设过点的平面为,当时,此时所得截面的面积最小,该截面为圆形,
可得,
因此圆的半径为,
所以此时面积为,当点在以为圆心的大圆上时,此时截面的面积最大,
面积为:,所以截面的面积范围为.
故答案为:.

【例13】已知正方体的棱长为,连接正方体各个面的中心得到一个八面体,以正方体的中心为球心作一个半径为的球,则该球的球面与八面体各面的交线的总长为( )
A. B. C. D.
【答案】B
【详解】如图所示,为的中点,为正方体的中心,过作的垂线交于点,正八面体的棱长为2,即,故,,,则,
设球与正八面体的截面圆半径为,如图所示,则,
由于,,所以,则,平面与球的交线所对应的圆心角恰为,则该球的球面与八面体各面的交线的总长为
故选:B
课后作业
在正方体中,M为AB中点,N为BC中点,P为线段上一动点(不含C)过M、N、P与正方体的截面记为,则下面三个判断,其中正确判断的序号有______.
①当P为中点时,截面为六边形;
②当时,截面为五边形;
③当截面为四边形时,它一定是等腰梯形;
【答案】 ①③.
【详解】如图①,延长交于,交于,延长交于,取的中点,连接交于,连接,
因为M为AB中点,N为BC中点,所以,同理,
又因,所以,
同理,所以共面,
此时六边形为截面,
所以截面为六边形;故①正确;
如图②,延长交于,交于,连接交于,连接交于,此时截面为五边形
因为,所以,
所以,即,
所以当时,截面为五边形;故②错误;
当截面为四边形时,点与点重合,如图,
由①得,,所以四边形即为截面,
设正方体的棱长为1,则,,所以,
所以四边形是等腰梯形;故③正确.
故答案为:①③.
已知正方体的棱长为2,M、N分别为、的中点,过 、的平面所得截面为四边形,则该截面最大面积为( )
A. B. C. D.
【答案】D
【详解】如图所示,最大面积的截面四边形为等腰梯形,
其中,高为,
故面积为.
故选:D.
如图,正方体的一个截面经过顶点及棱上一点,截面将正方体分成体积比为的两部分,则的值为
【答案】
【详解】设正方体棱长为1,,
如图所示,该截面把正方体分为几何体和另一几何体,
由面面平行的性质可知:,
延长,相交于点,则平面,且平面,
又平面平面,
所以在直线上,即三线共点,
所以几何体为三棱台,
其中三棱台上底面积是,下底面积为,高等于1,
所以,解得:,
所以.
故:
在棱长为的正方体中,点分别是、、的中点,则过线段且平行于平面的截面图形的周长为 .
【答案】
【详解】取的中点为,连接,,
因为点分别是、、的中点,
由正方体性质可得,所以四点共面,
因为,平面,平面,所以平面,
因为,,所以四边形为平行四边形,
所以,又平面,平面,所以平面,
又,平面,所以平面平面,
四边形即为经过线段且平行于平面的截面图,
正方体棱长为,所以,,,,所以截面图形周长为.
故答案为:.
如图,在棱长为1的正方体中,分别为棱的中点,过作该正方体外接球的截面,所得截面的面积的最小值为( )

A. B. C. D.
【答案】C
【详解】 正方体外接球的球心在其中心点处,球的半径,
要使过的平面截该球得到的截面面积最小,则截面圆的圆心为线段的中点,
连接,则,所以,
此时截面圆的半径,此时,截面面积的最小值.
故选:C.
已知球O是正三棱锥(底面是正三角形,顶点在底面的射影为底面中心)的外接球,,,点E是线段BC的中点,过点E作球O的截面,则所得截面面积的最小值是( )
A. B. C. D.
【答案】A
【详解】是在底面的射影,由正弦定理得,的外接圆半径.
由勾股定理得棱锥的高设球的半径为,
则,解得,所以,即与重合,
所以当过点E作球O的截面垂直于时,截面面积最小,
此时截面半径为,截面面积为.故选:A.
已知四棱锥的各个顶点都在球O的表面上,PA⊥平面ABCD,底面ABCD是等腰梯形,,,,,M是线段AB上一点,且.过点M作球O的截面,所得截面圆面积的最小值为,则= .
【答案】或
【详解】在等腰梯形中,连接,如图,
因为,,,则,,
于是,取中点,连接,则,
得均为正三角形,
即有,即是梯形外接圆圆心,
而O为四棱锥的外接球球心,因此平面,又PA⊥平面ABCD,
则,而为球O的弦,则过点O垂直于的平面必过的中点E,连接,
于是,而,即有,四边形为矩形,,
因此球O的半径,过点M的球O的最小截面圆所在平面必垂直于,
而此截面圆半径为,则,连接,在中,,
在中,,,
即有,解得或,所以或.
故答案为:或
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)